/
200M.J.Mercieretal.:Resurrectingdead-waterphenomenon 200M.J.Mercieretal.:Resurrectingdead-waterphenomenon

200M.J.Mercieretal.:Resurrectingdead-waterphenomenon - PDF document

tatiana-dople
tatiana-dople . @tatiana-dople
Follow
374 views
Uploaded On 2016-07-23

200M.J.Mercieretal.:Resurrectingdead-waterphenomenon - PPT Presentation

xbm h1Cxt Fig12Fr1Interfaceevolutionxtinmfromitsrestpositionh1forseveraltimesduringtheslowdownoftheboatintheframeoftheboatwhichisrepresentedbytheblackrectangularboxSameparametersasinF ID: 416686

xb(m) h1C.x;t/ Fig.12.Fr1.Interfaceevolution.x;t/(inm)fromitsrestpositionh1forseveraltimesduringtheslowdownoftheboat intheframeoftheboatwhichisrepresentedbytheblackrectangularbox.SameparametersasinF

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "200M.J.Mercieretal.:Resurrectingdead-wat..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

200M.J.Mercieretal.:Resurrectingdead-waterphenomenon xb(m) h1C.x;t/ Fig.12.Fr1.Interfaceevolution.x;t/(inm)fromitsrestpositionh1forseveraltimesduringtheslowdownoftheboat,intheframeoftheboatwhichisrepresentedbytheblackrectangularbox.SameparametersasinFig. 11 . theleftsideofthetankanditsshaperemainsalmostun-changed(t�75s).Althoughnotpresentedhere,wehaveveriedthatthissolitarywavepropagatingupstreamiswelldescribedbyaKorteweg-deVriesmodelsinceitsamplitudeisalwayssmallerthan0:4h1( Grueetal. , 1999 ).Whentheboatstartsagain,theprocessisrepeatedandanewdepres-sionisgenerated.3.2.2IntheframeoftheboatMoreinformationcanbeobtainedwhenfollowingthedy-namicsintheframeassociatedwiththeboat.Wearemorespecicallyinterestedinwhatsetstheamplitudeandfre-quencyoftheoscillationsoftheboatwhenFr1.InFig. 12 ,wehavesuperposedtheinterfacialdisplace-mentsintheframeoftheboat(representedasablackrect-angle)fordifferenttimesextractedfromFig. 11 .Wecanobservethatthewavesgetclosertothesternoftheboatastheiramplitudegrows.ThisismainlyduetothedecreaseofspeedoftheboatsincewecanseeinFig. 11 thatthewavecrestsevolvewithaconstantspeed.Thenonlinearnatureoftheinterfacialwavesisalsoclearlyvisibleasthewavefrontssteepen,thelimitofgrowthbeingsetherebythetimewhenthewaveshitthehull(27t32s).Thesedownstreamfea-turesarefullynonlinear(amplitudeslargerthan0:6h1)andhavesimilaraspectstoobservationsmadeinthetranscriti-calregimeby MelvilleandHelfrich ( 1987 )andreproducednumericallyby Grueetal. ( 1997 ),althoughcorrespondingheretowavesinanon-galileanframe.Itismoreoversur-prisingsinceasobservedonthegreencurveinFig. 7 ,theFroudenumberdoesnotexceed0.7.Theseobservationsaddtothecommentsmadepreviouslyconcerningtheinadequacyofmodelsbasedonsteadyobjectinstratieduid.Hereagainweseeupstreamthesolitarydepressionbelowtheboatescapingatthebowasasingleoscillation.Fortimest32s,onecanobservethatthedecapitatedrstcrestdisappearsbelowtheboat,thenextwavedepres-siontakespositionbelowtheboatandtheinitiallysecondel-evationofthepacketbecomestheclosesttothestern.Hence, (a) v.t/ t(s) x(m)xb(m)(b)(c) t(s) .x;t/(m)Fig.13.Oscillatingregime(Fr1).Panel(a)presentsthespeedoftheboatversustime,whilepanels(b)and(c)showsthespatio-temporaldiagramsoftheinterfacialdisplacementsinthelabora-toryframeandintheoneoftheboatrespectively.Theblacklinesrepresentthebowandstern.Experimentalparameters:h1D5:0cm,h2D14:0cm,1D0:9980gcm�3,2D1:0157gcm�3,SbD24cm2,FtD16:3mN. duringanoscillationoftheboat,thewavetrainslidesofonewavelengthcomparedtotheboat,repeatingitself.Nochangeinthedominantwavelengthofthewavetrainisvisible.Wecannowestimatethefrequencyoftheoscillationsoftheboattobe fbDcg  (2) withcgthegroupvelocityofthewavetrainattherearoftheboatanditsdominantwavelength,correspondingapproxi-matelytothedistancebetweenthersttwowavecrests.TheexperimentpresentedinFig. 11 allowsanobservationofthesteepeningprocessbutdoesnotpresentmanyoscil-lations.Inordertoconrmthevalidityofformula( 2 ),weconsideranotherexperimentwithFtD16:3mNinFig. 13 .FromFig. 13 a,onecanestimatethefrequencyoftheoscilla-tionsoftheboattobefb0:07�0:08Hz.ThegroupspeedandwavelengthofthewavetrainobtainedfromthediagraminFig. 13 b,correspondstocg0:035�0:040ms�1and0:5m.Indeed,weobtaincg=0:07�0:08Hzshow-ingverygoodagreementwithfb.AfterrevisitingexperimentssimilartotheonesperformedbyEkman,wehaveconsiderednewsituations.Indeed,dead-waterphenomenoncanbestudiedinmorecomplex(andreal-istic)stratications,whentheuidhasmorethantwolayersofdifferentdensities.Wenowturntonewexperimentswithathree-layeruidorwithacontinuouslystratieduidwithapycnocline,wherethecomplexdynamicshasalsobeenob-served. Nonlin.ProcessesGeophys.,18,193– 208 ,2011www.nonlin-processes-geophys.net/18/193/2011/ M.J.Mercieretal.:Resurrectingdead-waterphenomenon201 Table2.Experimentalparametersusedfortheexperimentswithathree-layeruid. Parameterssymbolsvaluesunits Fluid1density10:9967gcm�3depthh15:0cmFluid2density21:0079gcm�3depthh23:0cmFluid3density31:0201gcm�3depthh35:5cmInterface12meandensityN12D2C1 21:0023gcm�3densityjump112D2�1 N120:0112maximumphasespeedcm;12Dq 112gh1h2 h1Ch20:0147ms�1FroudenumberFr12DU cm;124.1–7.5Interface23meandensityN23D3C2 21:014gcm�3densityjump123D3�2 N230:012maximumphasespeedcm;23Dq 123gh2h3 h2Ch30:0150ms�1FroudenumberFr23DU cm;234.0–7.3Modess/amaximumphasespeedcms=a0:073=0:044ms�1FroudenumberFrs=aDU cms=a1.5/2.4–0.6/0.9 zx - 6123 12.x;t/ 23.x;t/Fig.14.Pictureillustratingthedead-waterphenomenonforathree-layeruid. 4Experimentswithathree-layeruidWeconsiderathree-layeruidofdepthhianddensityi,iD1;2;3.Twointerfacesmustbeconsiderednow,ij.x;t/correspondingtotheinterfacialdisplacementsbetweenlay-ersiandj.ApicturesummarizesthesetupinFig. 14 andthemainparametersaregiveninTable 2 .Onlyonegivenstraticationwillbediscussedhere.Weusetechnique1againtoextractthepositionsofthetwointerfaces12and23,alongwiththepositionoftheboat.4.1AnalyticsAlthoughthethree-layercaseisasimpleextensionofthewelldocumentedtwo-layeronediscussedinprevioussec-tion,weherereproduceexplicitexpressionsforthephasespeedofthetwoeigenmodesolutionsofthisproblem,whichcanalsobendestablishedinthemostgeneralformby Rus asandGrue ( 2002 )or Xiao-GangandJin-Bao ( 2006 )forexample.Perturbationsofathree-layeruidcanbedescribedbytwotypesofharmonicinterfacialwaves,verifyingthedispersionrelationexpressedasthefollowingdeterminant 1 2 D0; (3) with,foriD1;2 iDg.i�iC1/C!2 ki tanh.khi/CiC1 tanh.khiC1/; (4) D�2!2 ksinh.kh2/: (5) Thefourthorderpolynomialin!associatedwithEq.( 3 )leadstotwotypesofinterfacialwaves.Usingthenotations www.nonlin-processes-geophys.net/18/193/2011/Nonlin.ProcessesGeophys.,18,193– 208 ,2011 M.J.Mercieretal.:Resurrectingdead-waterphenomenon203 Fig.16.Oscillatingregime(Frs1).Spatio-temporaldiagramofinterfacialdisplacementss.x;t/anda.x;t/(inm).Thesolidblacklinesarethebowandsternoftheboat.Themagenta(resp.white)dottedlineisanindicationofthespeedofpropagationof0:0325ms�1(resp.0:06ms�1).ExperimentalparametersaregivenininTable 2 andSbD24cm2,FtD20:6mN. Asobservedpreviously,bothmodesaregeneratedwhentheboatstarts.Mode-sremainstwotimeslargerthanmode-abuttheyareofnoticeableamplitude.Thesymmetricmodeevolveswiththeboatandreproducestheamplicationandsteepeningprocessesobservedinthetwo-layercase.Themode-sbreaksontheboatwhenitsamplitudeisthelargest,andadepression(symmetricforbothinterfaces)isexpelledatthebow.Thecharacteristicsofthemode-s,wavelengths'0:4mandgroupvelocitycg;s'0:06ms�1leadtoanoscillatingfrequencyof0:15Hz,tooslowforthisvisualiza-tion.Concerningmode-a,itsspatialstructureisclosetoasoli-tarywavetrain,withagroupvelocitycg;a'0:0325ms�1,closetocma(being0:044ms�1).Eachtimeitisgenerated,astrongaccelerationoftheboatoccurs.4.4DiscussionTheunsteadybehaviorassociatedwithdead-waterisstillob-servedinthethree-layeruid,withstronganalogytothetwo-layercase.Thestraticationconsideredbeingmorecomplex,wemustconsidertwobaroclinicmodesassociatedwithsymmetricandanti-symmetricoscillationsoftheinter-facesandthatarealsoreferredtoasmode-1andmode-2intheliterature. Rus asandGrue ( 2002 )presentsolutionsofthenonlinearequationsthathavestrongsimilaritieswithourobservations.Morespecically,thespatio-temporaldiagramofmode-aex-hibitsolitarywavesofmode-2withoscillatoryshortmode-1wavessuperimposed.Thisisinagreementwithclosevaluesoftheexperimentswiththenumericalcalculations(Boussi-nesqlimit,h1=h3'1andh1=h2'1:7).Perturbationsgeneratedbytheboatgivebirthtobothmodes,especiallywhentheaccelerationoftheboatisim-portant.Thisresultisconsistentwiththestudyof Nico-laouetal. ( 1995 ),veriedexperimentallyby Robey ( 1997 ),statingthatanacceleratedobjectinacontinuouslystratieduid,withaBrunt–V¨ais¨al¨afrequencyN.z/,excitesacontin-uumofmodeswhoseverticalprolew.z/isdescribedby d2w dz2.z/Ck2x N2.z/ !2�1!w.z/D0; (11) alongwiththeboundaryconditionsfortheverticalvelocitytobezeroatthetopandbottom.Finally,wehaveobservedthatthemode-1isstronglycou-pledtothedynamicsoftheboat,whichcorrespondstothefastestwavepropagatinginthisstratication.Aweakmode-2isassociatedtonoticeableaccelerationoftheboat,butevolvesfreelyfromtheothermode.5ContinuouslystratieduidwithapycnoclineWehaveobservedthatseveralwavesaregeneratedwhentheboatevolvesinacomplexstratication.Inthecaseofalin-earlystratieduid,aninnitenumberofmodescanpropa-gate.Wehaveactuallyconsideredthecaseofalinearlystrat-ieduidwithapycnocline(seeFig. 4 ).Severalreasonscanbeinvoked.Itkeepsthestraticationundisruptedwhentheboatevolvesinthetoplayer,itallowslargerverticaldis-placementsatthedensityjumpleadingtolargeramplitudes,itcanbemodeledasacouplingbetweeninterfacialandin-ternalwaves,anditcorrespondstoamorerealisticsetupincomparisonwithobservationsmadeinnaturalenvironment. www.nonlin-processes-geophys.net/18/193/2011/Nonlin.ProcessesGeophys.,18,193– 208 ,2011 206M.J.Mercieretal.:Resurrectingdead-waterphenomenon Fig.20.Frh1.Instantaneoushorizontaldensitygradients@x.x;z;t0/attimes(a)t0D32sand(b)t0D61s,ingcm�4. Fig.21.Frh1.AmplitudesOan.x0;t/withtimeoftheprojectedmodalstructureatseveralx0-locationsformodesnD1(a),2(b)and3(c)ofthehorizontaldensitygradientinarbitraryunits.Differentcolorscorrespondtodifferentfrequenciesassociatedwiththemodalbasis.ThetilteddashedlinescorrespondstothecharacteristicspeedofpropagationcmD7:2cms�1.Theblackrectanglerepresentstheboatpassingthroughaverticalcross-sectionateachx0-locationstudied. Fig. 21 bisofcomparableamplitudeatthelowestfrequencies(!D0:25and0:50rads�1)butisabsentforlargervaluesof!.Highermodes(n3)areevenweakerinamplitudesandonlypresentatlowfrequencies(Fig. 21 c).WenoticethattheinitialperturbationsfortheselowmodesaregeneratedbelowtheboatsincetheblackrectanglesinFig. 21 aandbareassociatedwitharampingamplitudeofmodes1and2.Thelongertherectangleis,thesmallerthespeedoftheboatis,leadingtolargerinitialperturbationswhichareverysimilartowhathasbeenobservedinthetwo-layercase(seeFig. 12 ).Furthermore,theapparentlycno¨dal(sharpcrestsandattroughs)oscillationsassociatedwiththemode-1internalwavesobservedinFig. 21 aasthemodespropagate,areasignatureofthenonlineardynamicsoftheinternalwaves.Finally,bygivinginallimagesthemaximumphasespeedof Nonlin.ProcessesGeophys.,18,193– 208 ,2011www.nonlin-processes-geophys.net/18/193/2011/