/
AdvancedStudiesinPureMathematics3?,200?RepresentationTheoryofAlgebraic AdvancedStudiesinPureMathematics3?,200?RepresentationTheoryofAlgebraic

AdvancedStudiesinPureMathematics3?,200?RepresentationTheoryofAlgebraic - PDF document

tatiana-dople
tatiana-dople . @tatiana-dople
Follow
405 views
Uploaded On 2016-05-06

AdvancedStudiesinPureMathematics3?,200?RepresentationTheoryofAlgebraic - PPT Presentation

ReceivedJuly242002RevisedNovember182002 2JCJantzenforallXY2ganda2KA2ForexampleletAbeanassociativealgebraoverKconsideredasaLiealgebraviaXYXYYXThenAbecomesarestrictedLiealgebraifwesetX ID: 307390

ReceivedJuly24 2002.RevisedNovember18 2002. 2J.C.JantzenforallX;Y2ganda2K.A.2.Forexample letAbeanassociativealgebraoverKconsideredasaLiealgebravia[X;Y]=XYYX.ThenAbecomesarestrictedLiealgebraifwesetX[

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "AdvancedStudiesinPureMathematics3?,200?R..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

AdvancedStudiesinPureMathematics3?,200?RepresentationTheoryofAlgebraicGroupsandQuantumGroupspp.1{44RepresentationsofLiealgebrasinpositivecharacteristicJensCarstenJantzenAbout50yearsagoitwasdiscoveredthat nitedimensionalLieal-gebrasinpositivecharacteristiconlyhave nitedimensionalirreduciblerepresentations.About15yearsagotheirreduciblerepresentationsfortheLiealgebraglnwereclassi ed.About5yearsagoaconjecturewasformulatedthatshouldleadtoacalculationofthedimensionsofthesesimplegln{modulesifp�n.ForLiealgebrasofotherreductivegroupsourknowledgeismorerestricted,buttherehasbeensomeremarkableprogressinthisareaoverthelastyears.Thepurposeofthissurveyistoreportonthesedevelopmentsandtoupdatetheearliersurveys[H3]and[J3].ThroughoutthispaperletKbeanalgebraicallyclosed eldofprimecharacteristicp.AllLiealgebrasoverKwillbeassumedtobe nitedimensional.AGeneralTheoryA.1.IfgisaLiealgebraoverK,thenwedenotebyU(g)theuniversalenvelopingalgebraofgandbyZ(g)thecentreofU(g).ArestrictedLiealgebraoverKisaLiealgebragoverKtogetherwithamapg!g,X7!X[p],oftencalledthep{thpowermap,providedcertainconditionsaresatis ed.The rstconditionsaysthatforeachX2gtheelement(X)=XpX[p]2U(g)actuallybelongstothecentreZ(g)ofU(g).(HereXpisthep{thpowerofXtakeninU(g).)Theotherconditionsaysthat:g!Z(g)issemi-linearinthefollowingsense:Wehave(X+Y)=(X)+(Y)and(aX)=ap(X) ReceivedJuly24,2002.RevisedNovember18,2002. 2J.C.JantzenforallX;Y2ganda2K.A.2.Forexample,letAbeanassociativealgebraoverKconsideredasaLiealgebravia[X;Y]=XYYX.ThenAbecomesarestrictedLiealgebraifwesetX[p]equaltothep{thpowerofXtakeninA.Indeed,ifwewritelXandrXforleftandwritemultiplicationbyXinA(sowehave,e.g.,lX(Y)=XYforallY2A),thenad(X)=lXrX.SincelXandrXcommuteandsinceweareincharacteristicp,wegetad(X)p=(lX)p(rX)p.Now(lX)pisclearlyleftmultiplicationbythep{thpowerofXthatwehavedecidedtodenotebyX[p];similarlyfor(rX)p.Wegetthusad(X)p=ad(X[p]).NowthesameargumentusedinU(A)insteadofAshowsthatalsoad(X)p=ad(Xp),hencethatXpX[p]commuteswitheachelementofg.Therefore(X)=XpX[p]belongstoZ(A).Itremainstocheckthesemi-linearityof:Theidentity(aX)=ap(X)isobvious.TheproofoftheadditivityofrequiresaformuladuetoJacobsonexpressing(X+Y)pXpYpintermsofcommutators,see[Ja],xV.7.Ontheotherhand,ifGisanalgebraicgroupoverK,thenLie(G)hasanaturalstructureasarestrictedLiealgebra:OnecanthinkofLie(G)astheLiealgebraofcertaininvariantderivations,cf.[H2],9.1;Thenonede nesX[p]asthep{thpowerofXtakenasderivation.IncaseG=GLn(K),thenonegetsthusonLie(G)thesamestructureasfromtheidenti cationofLie(G)withthespaceMn(k)ofall(nn){matricesoverKandfromtheconstructionintheprecedingparagraph.IfGisaclosedsubgroupofGLn(K),thenwecanidentifyLie(G)withaLiesubalgebraofMn(k)andthep{thpowermapofLie(G)istherestrictionofthatonMn(k).A.3.LetnowgbeanarbitraryrestrictedLiealgebraoverK.DenotebyZ0(g)thesubalgebraofZ(g)generatedbyall(X)=XpX[p]withX2g.Thissubalgebraisoftencalledthep{centreofU(g).LetX1,X2;:::;Xnbeabasisforg.UsingthePBW-theoremonechecksnoweasily:ThealgebraZ0(g)isgeneratedbyallXpiX[p]iwith1in;theseelementsarealgebraicallyindependentoverK.ConsideredasaZ0(g){moduleunderleft(=right)multiplicationU(g)isfreeofrankpdim(g);allproductsXm(1)1Xm(2)2:::Xm(n)nwith0m(i)pforalliformabasisofU(g)overZ0(g).The rstofthesetwoclaimscanberestatedasfollows:ThemapinducesanisomorphismofalgebrasS(g(1))!Z0(g): Liealgebrasinpositivecharacteristic3Hereweusethefollowingconvention:IfVisavectorspaceoverK,wedenotebyV(1)thevectorspaceoverKthatisequaltoVasanadditivegroup,butwhereanya2KactsonV(1)asa1=pdoesonV.Nowthesemi-linearityofmeansthatisalinearmapg(1)!Z0(g),henceinducesanalgebrahomomorphismfromthesymmetricalgebraS(g(1))tothecommutativealgebraZ0(g).Theclaimintheprecedingparagraphshowsthatthismapisbijective.Itisnoweasytodeducefromtheresultsabove:Proposition:ThecentreZ(g)ofU(g)isa nitelygeneratedalgebraoverK.ConsideredasaZ(g){moduleU(g)is nitelygenerated.Thisresultactuallygeneralisestoall( nitedimensional!)Liealge-brasoverK.A.4.Theorem:Eachsimpleg{moduleis nitedimensional.Itsdi-mensionislessthanorequaltopdim(g).Proof:Chooseu1,u2;:::;ur2U(g)suchthatU(g)=Pri=1Z(g)ui.Thisispossiblebytheproposition;infact,wemayassumethatrpdim(g)asU(g)hasthatrankoverthesmallersubalgebraZ0(g).LetEbeasimpleg{module.Pickv2E,v=0.WehavethenE=U(g)v,henceE=Pri=1Z(g)uiv.SoEis nitelygeneratedasamoduleoverZ(g).SinceZ(g)isa nitelygeneratedK{algebra,henceaNoetherianring,thereexistsamaximalsubmoduleE0E.ThesimpleZ(g){moduleE=E0isthenisomorphictoZ(g)=mforsomemaximalidealmZ(g).NowxEisag{submoduleofEforallx2Z(g).Ifx2m,thenx(E=E0)=0,hencexEE0isasubmoduledi erentfromE.AsEissimple,thisimpliesthatxE=0.WegetthusthatmE=0.AweakversionoftheHilbertNullstellensatzsaysthatmhascodi-mension1inZ(g),hencethatZ(g)=K1+m.SoE=Pri=1Z(g)uivimpliesE=Pri=1Kuiv,hencedim(E)rpdim(g).A.5.ThankstoTheoremA.4wecannowassociatetogthenumberM(g)=maxfdimEjEasimpleg{moduleg:Zassenhausgavein[Za]aringtheoreticinterpretationofM(g).DenotebyF0a eldoffractionsforZ0(g).ThenFrac(U(g))=U(g)\nZ0(g)F0isalocalisationofU(g).Themapu7!u\n1fromU(g)toFrac(U(g))isinjectivebecauseU(g)isfreeoverZ0(g);weuseittoidentifyU(g)withasubringofFrac(U(g)).Eachnon-zeroelementu2U(g)isinvertibleinFrac(U(g))asuisintegraloverZ0(g).ThereforeFrac(U(g))isadivision 4J.C.Jantzenring.Itcontainsa eldoffractionsFforZ(g)andFisthecentreofFrac(U(g)).ItnowturnsoutthatM(g)2=dimFFrac(U(g))cf.[Za],Thms.1and6.Ontheotherhand,wehavedimF0Frac(U(g))=pdim(g)becauseU(g)isfreeofrankpdim(g)overZ0(g).Itfollowsthatpdim(g)=M(g)2dimF0F,hencethatM(g)isapowerofp.A.6.In[VK],1.2VeisfeilerandKatsmadeaconjectureonthevalueofM(g).Foreachlinearform2gdenotebygitsstabiliseringforthecoadjointaction:g=fX2gjX=0g=fX2gj([X;g])=0g:ThisisarestrictedLiesubalgebraofg.Foreach2gthebilinearform(X;Y)7!([X;Y])onginducesanon-degeneratealternatingformong=g;thereforethedimensionofthisquotientspaceiseven.Setr(g)=minfdimgj2gg:Thenalsodim(g)r(g)isevenandtheconjecturesays:Conjecture([VK]):M(g)=p(dim(g)r(g))=2.WorkbyMil0nerandbyPremetandSkryabin(see[Mi],Thm.3and[PS],Thm.4.4)shows:Theorem:Ifthereexistsalinearformongsuchthatgisatoralsubalgebraofg,thenthisconjectureholds.(AsubalgebrahofarestrictedLiealgebraiscalledtoralifitiscom-mutativeandifthep{powermapX7!X[p]restrictstoabijectivemaph!h.ThismeansthathisisomorphicasarestrictedLiealgebratotheLiealgebraofatorus.)A.7.LetEbeasimpleg{module.Sincedim(E)1,Schur'slemmaimpliesthateachelementinZ(g)actsasmultiplicationbyascalaronE.Thisappliesinparticulartoall(X)=XpX[p]withX2g.Usingthesemi-linearityofoneshowsnowthatthereexistsalinearformE2gwith(XpX[p])jE=E(X)pidEforallX2g.OnecallsEthep{characterofE.Foreach2gsetU(g)=U(g)=(XpX[p](X)p1jX2g): Liealgebrasinpositivecharacteristic5Thisisa nitedimensionalalgebraoverKofdimensionpdim(g).IfX1,X2;:::;Xnisabasisforg,thentheclassesofallXm(1)1Xm(2)2:::Xm(n)nwith0m(i)pforalliareabasisforU(g).OnecallsU(g)areducedenvelopingalgebraofg.(ThespecialcaseU0(g)isusuallycalledtherestrictedenvelopingalgebraofg.)EachsimpleU(g){module(forany)isinanaturalwayasimpleg{module.Thediscussioninthe rstparagraphofthissubsectionshows:Eachsimpleg{moduleisasimpleU(g){moduleforexactlyone2g.A.8.If\r:g!gisanautomorphismofgasarestrictedLiealgebra(i.e.,aLiealgebraautomorphismwith\r(X[p])=\r(X)[p]forallX2g),then\rinducesanisomorphismU(g)!U\r(g)where(\r)(X)=(\r1(X)).Inparticular,ifg=Lie(G)forsomealgebraicgroupGoverK,thenanyg2GactsviatheadjointactionAd(g)ong.EachAd(g)isanautomorphismofgasarestrictedLiealgebra.Sowegetanisomor-phismU(g)!Ug(g)wheregreferstothecoadjointactionofg.Thisimplies:Ifweknowallsimpleg{moduleswithagivenp{character,thenweknowalsoallsimpleg{moduleswithap{characterinthecoadjointorbitG.BReductiveLieAlgebrasB.1.AssumefromnowonthatGisaconnectedreductivealgebraicgroupoverKwithamaximaltorusTandaBorelsubgroupB+T.DenotetheLiealgebrasofG,T,B+byg,h,b+respectively.WedenotebyXthecharactergroupofTandsetRXequaltothesetofrootsofGrelativetoT.WedenotebyR+thesetofrootsofB+relativetoT;thisisasystemofpositiverootsinR.Foreach 2Rletg denotethecorrespondingrootsubspaceing.Setn+(resp.n)equaltothesumofallg with 2R+(resp.with 2R+).Wehavetheng=nhn+andb+=hn+.Fixforeach abasisvectorX forg .TheseelementssatisfyX[p] =0,e.g.,sinceX[p] 2gp =0.Ontheotherhand,theLiealgebrahofthetorusThasabasisH1,H2;:::;HmwithH[p]i=Hiforalli.IfaisarestrictedLiesubalgebraofg,thenweshallusuallywriteU(a)=Uja(a)forall2g. 6J.C.JantzenB.2.ForeachY2gonecan ndg2GwithAd(g)(Y)2b+,cf.[Bo],Prop.14.25.Oneshouldhaveanalogously:Foreach2gthereexistsg2Gwith(g)(n+)=0.()Thiswasprovedin[KW],Lemma3.2foralmostsimpleGexceptforthecasewhereG=SO2n+1andp=2.Theirargumentcanbeextendedtoprove()wheneverthederivedgroupofGissimplyconnected.Inmanycasesthereexistsanon-degenerateG{invariantbilinearformong.Wecanuseittoidentifygandg.LetY2gcorrespondto2g.Chooseg2GwithAd(g)(Y)2b+.ThentheimagegofAd(g)(Y)vanisheson(b+)?=n+.Soweget()inthiscase.SupposethatGsatis es().ItthenfollowsfromA.8thatitsucestodeterminethesimpleU(g){modulesforallwith(n+)=0ifwewanttodescribeallsimpleg{modules.B.3.Let2gwith(n+)=0.TheneachX with 2R+actsnilpotentlyonanyU(n+){modulesince(X )=0andX[p] =0.Thisimplies(usinganinductiveargument)foreachU(n+){moduleMM=0=)Mn+=0:(WewritegenerallyMaforthespaceof xedpointsinamoduleMoveraLiealgebraa.)IfMisaU(b+){module,thenhstabilisesMn+asn+isanidealinb+.Sincehiscommutative,itthenhasacommoneigenvectorinMn+providedM=0.Sowegetinthiscasesomev2M,v=0andsome2hwithHv=(H)vforallH2handwithYv=0forallY2n+.Each2hde nesaonedimensionalb+{moduleKwheren+actsas0andwhereeachH2hactsas(H).ThenKisaU(b+){moduleifandonlyif2whereweset=f2hj(H)p(H[p])=(H)pforallH2hg:NowthelinearfunctionintheprecedingparagraphhastobelongtobecauseMisaU(b+){module.RecallthathhasabasisH1,H2;:::;HmwithH[p]i=Hiforalli.Thesemi-linearityofthemapH7!HpH[p]impliesthatsome2hbelongstoifandonlyif(Hi)p=(Hi)p(H[p]i)=(Hi)p(Hi)foralli.Given,thisshowsthateach(Hi)cantakeexactlypdistinctvalues.Thisimpliesthatjj=pdim(h): Liealgebrasinpositivecharacteristic7B.4.Letagain2gwith(n+)=0.Foreach2wecannowconsidertheU(b+){moduleKandtheinducedU(g){moduleZ()=U(g)\nU(b+)KwhichisoftencalledababyVermamodule.WehavedimZ()=pNwhereN=jR+j.Ifwesetv=1\n1andchooseanumbering 1, 2;:::; Nofthepositiveroots,thenallXm(1) 1Xm(2) 2:::Xm(N) Nvwith0m(i)pforalliformabasisforZ().IfMisanon-zeroU(g){module,thenthediscussioninB.3showsthatthereexistssome2withHomb+(K;M)=0.TheuniversalpropertyofthetensorproductimpliesthenHomg(Z();M)=0.Wegettherefore(asobservedin[Ru]):Lemma:IfEisasimpleU(g){module,thenEisahomomorphicimageofsomeZ()with2.B.5.LetusassumethatthederivedgroupofGissimplyconnected.Ifthep{characterofasimpleg{moduleEsatis es(n+)=0,thentheresultsinB.4implythatdimEdimZ()forasuitable,hencedimEpN.ByourassumptionGsatis esB.2(),sothisinequalityholdsforallsimpleg{modulesE.Ontheotherhand,oneknowsthatGhasaSteinbergmodulethatisirreducibleofdimensionpNandremainsirreducibleunderrestrictiontog.Thisshows(inthenotationfromA.5)thatM(g)=pN:NotethatthisresultiscompatiblewiththeconjecturementionedinA.6.Sincedim(g)=2N+dim(h),wejusthavetocheckthatdim(h)istheminimaldimensionofallgwith2g.Well,ourassumptiononthederivedgroupofGimpliesthat[g ;g ]=0forall 2R.Thereforewecan nd2gwith(n+)=0=(n)and([g ;g ])=0forall 2R.Thensatis esg=h.(Thisshows,bytheway,thattheassumptioninTheoremA.6issatis ed.)Onecannowusesemi-continuityargumentstoshowthatdimgdim(h)forall.(TheunionoftheorbitsGwithg=hisdenseing.) 8J.C.JantzenB.6.Letusmakefromnowonthefollowingsimplifyingassumptions:(H1)ThederivedgroupofGissimplyconnected.(H2)TheprimepisgoodforG.(H3)Thereexistsanon-degenerateG{invariantbilinearformong.Theassumption(H2)excludesp=2ifRhasacomponentnotoftypeA,itexcludesp=3ifRhasacomponentofexceptionaltype,anditexcludesp=5ifRhasacomponentoftypeE8.IfGisalmostsimpleandandif(H2)holds,then(H3)holdsunlessRhastypeAnwithpjn+1.NotethatG=GLnsatis esallthreeconditionsforallnandp:In(H3)onecantakethebilinearform(Y;Z)=trace(YZ)onLie(G)=Mn(K).Oneniceaspectof(H1){(H3)isthefollowing:WithGalsoeachLevisubgroupofGsatis esthesehypotheses.B.7.Premethasshownin[Pr],Thm.3.10(seealso[PS],Thm.5.6)underourassumptionsorslightlyweakerones(provingaconjecturefrom[VK],3.5):Theorem:Let2g.Thenpdim(G)=2dividesdim(M)foreach nitedimensionalU(g){moduleM.(ItturnsoutthatunderourassumptioneachorbitGhasanevendimension;sotheclaimmakessense.)ForanintroductiontoPremet'soriginalproofonemayalsocompare[J3],sections7and8.B.8.Let :g!gbeanisomorphismofG{modulesinducedbyabilinearformasin(H3).Wecanuse totransportnotionslikenilpotentorsemi-simplefromgtogandcall2gnilpotent(orsemi-simple)if 1()isso.Onecanalsode nethesenotionsintrinsicallysayingthatissemi-simpleifandonlyiftheorbitGisclosedifandonlyifthereexistsg2Gwith(g)(n+n)=0.Andisnilpotentifandonlyif02 Gifandonlyifthereexistsg2Gwith(g)(b+)=0.Ageneral2ghasthenaJordandecomposition=s+nwithssemi-simpleandnnilpotentsuchthat 1()= 1(s)+ 1(n)istheJordandecompositioning.(Again,thiscanbede neddirectlying,see[KW],section3.)ConsideraJordandecomposition=s+nasaboveandsetl=gs.Ourassumption(H2)impliesthatthereexistsaLevisubgroupLofGwithl=Lie(L).(ReplacingbyanelementinG,onemayassumethats(n+)=0=s(n).Thenlisequaltothesumofhandallg withs([g ;g ])=0.Thesetofall withthispropertyisconjugateundertheWeylgrouptoasetoftheformR\ZIwhereIisasubsetofthesetofsimpleroots;hereoneusesthatpisgood.)There Liealgebrasinpositivecharacteristic9existsthenaparabolicsubgroupPinGsuchthatPisthesemi-directproductofitsunipotentradicalUPandofL.Thenp=Lie(P)satis esp=luwhereu=Lie(UP).Wehavenow(u)=0.(Thisfollowsfromthefactthat 1(s)and 1(n)commute.)IfweextendaU(l){moduletoap{modulelettingtheidealuactvia0,thenwegetthereforeaU(p){module.Nowonecanshow:Theorem:ThefunctorsV7!U(g)\nU(p)VandM7!Muarein-verseequivalencesofcategoriesbetweenfU(l){modulesgandfU(g){modulesg.Theyinducebijectionsofisomorphismclassesofsimplemod-ules.ThisgoesbacktoVeisfeilerandKatswhoshowedin[VK],Thm.2thatthesimpleU(g){modulesaretheU(g)\nU(p)EwithEasimpleU(l){module.ThemoreprecisestatementhereisduetoFriedlanderandParshall,see[FP1],Thm.3.2andThm.8.5.(Seealso[J3],7.4foraproofofthisresultbasedonatheoremofPremet.)TheunipotentgroupUPsatis esU(u)u=K1.UsingthePBWtheoremonecannowcheckthattheequivalenceofcategoriesM7!MutakeU(g)toadirectsumofpdcopiesofU(l)whered=dim(g=p).ThisimpliesthatU(g)isisomorphictothematrixringMpd(U(l)).B.9.TheoremB.8reducestheproblemof ndingthesimpleg{modulestotheinvestigationofthesimpleU(g){modulesfor2gwithgs=gandtotheanalogousproblemforLiealgebrasofsmallerreductivegroupsthatagainsatisfy(H1){(H3).Byde nitiongs=gmeansthats([g;g])=0.Underourassump-tions[g;g]istheLiealgebraofthederivedgroupofG.Sog=[g;g]isarestrictedLiealgebra.LetEbeasimpleU\r(g=[g;g]){modulewhere\r(Y+[g;g])=s(Y)forallY2g.ThenEhasdimension1becauseg=[g;g]iscommutative,andEisaUs(g){modulewhenconsideredasag{module.NowV7!V\nEandV07!V0\nEareinverseequivalencesofcategoriesbetweenfUn(g){modulesgandfU(g){modulesg.ThisshowsthatitsucestostudyUn(g){modules.Sowehaveareductiontothecasewhereisnilpotent.B.10.Beforeweinvestigatethenilpotentcase,letuslookataspecialcaseofTheoremB.8.Supposethatisregularsemi-simple,i.e.,that=sandthatdim(g)=dim(h).ReplacingbyaconjugateunderG,wemayassumethatg=h.Thismeansthat(n+)=0=(n)andthat([g ;g ])=0forall 2R.Wehavel=hinthenotationofB.8andmaychooseP=B+.SoTheoremB.8saysinthiscasethatallU(g){modulesaresemi-simple(sinceU(h){modulesareso)andthat 10J.C.JantzenthesimpleU(g){modulesaretheZ()with2.TheseZ()arepairwisenon-isomorphic.CNilpotentFormsWekeepthroughouttheassumptionsandnotationsfromB.1andB.6.C.1.ByB.8andB.9wemayrestricttothecasewhereisnilpotent.Replacingbysomegwithg2G,wemayassumethat(b+)=0.Wehavetheninparticular=0.OnecanidentifythemultiplicativegroupoverKwithGL1,henceitsLiealgebrawithM1(K).ThisLiealgebrahasbasisHequaltothe(11){matrix(1).ThisshowsthatH[p]=Handthateachcharacter'n:t7!tnwithn2Zofthemultiplicativegrouphastangentmapd'nmappingHton.AlinearformonM1(K)satis es(H)p(H[p])=0ifandonlyif(H)2Fpifandonlyif=d'nforsomen.Furthermore,wehaved'n=d'mifandonlyifnm(modp).ThisimpliesnowforT,adirectproductofmultiplicativegroups,that0=fdj2Xgandthatd=difandonlyif(modpX).WeshalloftenwriteKinsteadofKdandZ()insteadofZ(d)for2Xand2gwith(b+)=0.WehavetokeepinmindthatthenZ()=Z(+p)forall;2X.Let2gwith(b+)=0.WeknowbyB.4thateachsimpleU(g){moduleisthehomomorphicimageofsomeZ()with2X.Theproblemnowisthatisnotnecessarilyuniquelydetermined;weshallseeanexampleofthisinamoment.Furthermore,someZ()mayhavemorethanonesimplehomomorphicimage.Infact,thereexistevenZ()thataredecomposable,see[J3],6.9.C.2.Fix2gwith(b+)=0.Foreach nitedimensionalU(g){moduleMdenoteby[M]theclassofMintheGrothendieckgroupofall nitedimensionalU(g){modules.IfE1,E2;:::;ErisasystemofrepresentativesfortheisomorphismclassesofsimpleU(g){modules,then[E1],[E2];:::;[Er]isabasisoverZforthisGrothendieckgroup.AnarbitraryMthensatis es[M]=Pri=1[M:Ei][Ei]where[M:Ei]isthemultiplicityofEiasacompositionfactorofM.LetWdenotetheWeylgroupofGwithrespecttoT.Foreach 2Rdenotebys 2Wthecorrespondingre\rectiongivenbys ()=h; _i where _isthecorootto .Weshalloftenusethe\dotaction"ofWonX,givenbyw=w(+)where2X\nZQishalfthesumofallpositiveroots. Liealgebrasinpositivecharacteristic11Proposition:Wehave[Z(w)]=[Z()]forallw2Wand2X.Thiswas rstshownin[H1],Thm.2.2incase=0;theproofinthatcasegeneralises.Itsucestotakew=s with asimpleroot.Letddenotetheintegerwithh+; _id(modp)and0dp.Thens d (modpX);sowehavetoshowthat[Z(d )]=[Z()].Thisistrivialifd=0.Ifd&#x-342;&#x.422;0,thenrank1calculationsshowthatthereexistsahomomorphismofg{modules':Z(d )!Z()givenby'(vd )=Xd v.(WeuseherenotationslikevasinB.4.)If(X )=0,thenXp X[p] =Xp actsasthenon-zeroscalar(X )ponZ().Itthenfollowsthatv=(X )pXp v=(X )pXpd '(vd )belongstotheimageof'.Therefore'issurjective,hencebijectivebydimensioncomparison.Sointhiscase'isanisomorphismZ(d )!Z().If(X )=0,thenonechecks|workingwithbasesasinB.4suchthat N= |thatthekernelof'isgeneratedbyXpd vd .Furthermorethereisahomomorphism fromZ(p )=Z()toZ(d )with (v)=Xpd vd .Onegetsthenker(')=im( )andker( )=im('),hence[Z()]=[ker( )]+[im( )]=[im(')]+[ker(')]=[Z(d )]asclaimed.C.3.If(asinC.2)satis es(X )=0forallsimpleroots ,thenthe(sketched)proofofPropositionC.2showsthatZ(w)'Z()forallw2Wand2X.Inthiscaseis\regularnilpotent",i.e.,satis esdim(G)=2dim(g=b)=2N.(IfcorrespondstoY2gunderanisomorphismg!gasinB.8,thenY=P 2R+a X withsuitablea 2Kandwitha =0forallsimpleroots .Suchelementsingareregularnilpotent,see[J6],6.7(1).)NowTheoremB.7saysinthiscasethatpNdividesthedimensionofeachU(g){module.SinceallZ()havethisdimension,theyhavetobesimple.Wehavethusshownmostofthefollowingresult(provedin[FP1],4.2/3forcertaintypes,in[FP2],2.2{4ingeneralunderslightlymorerestrictiveconditionsonp;forG=SLnseealso[P1],Thm.5):Proposition:Let2gwith(b+)=0and(X )=0forallsimpleroots .TheneachZ()with2Xissimpleandeachsimple 12J.C.JantzenU(g){moduleisisomorphictosomeZ()with2X.Given;2XwehaveZ()'Z()ifandonlyif2W+pX.C.4.Theonlyargumentmissingaboveistheproofoftheclaim:IfZ()'Z(),then2W+pX.Forthisonelooksatthesubalge-braU(g)GofallAd(G){invariantelementsinU(g).ThissubalgebraiscontainedinthecentreZ(g)ofU(g).Ifwewereworkingincharacteris-tic0,thenU(g)GwouldbeallofZ(g).Inourpresentset-up,however,therearemanyelementsoftheformYpY[p]withY2gthatbelongtoZ(g),butnottoU(g)G.OnecanshowthatZ(g)isgeneratedbyU(g)GandZ0(g),cf.[BG],Thm.3.5.(However,thisdoesnotimplythatthecanonicalmapU(g)!U(g)mapsU(g)GontothecentreofU(g);seethecounter-examplebyPremetin[BG],3.17.)Onechecksnowthatthereexistsforeachu2U(g)Gandeach2Xascalarcen(u)2Ksuchthatuv=cen(u)vinZ()forall2gwith(b)=0.Itthenfollowsuactsasmultiplicationwithcen(u)onallofZ(),hencealsoonallcompositionfactorsofZ().EachcenisanalgebrahomomorphismfromU(g)GtoK.NowonehasanalogouslytotheHarish-Chandratheoremincharacteristic0:Proposition:If;2X,thencen=cenifandonlyif2W+pX.Infact,onehasasincharacteristic0aHarish-ChandraisomorphismU(g)G!U(h)W.Thiswas rstprovedin[H1],Thm.3.1forlargep(largerthantheCoxeternumber)andin[KW]foralmostsimpleG.(Theargumentsthereextendtothepresentset-up.See[J3],9.6foraproofthatusesreductionmoduloptechniques,asin[H1].)C.5.PropositionC.4hasanobviouscorollaryforthedescriptionoftheblocksofU(g):IftwosimpleU(g){modulesEandE0belongtothesameblock,thenU(g)GhastoactviathesamecharacteronbothEandE0.So,ifEisacompositionfactorofZ()andifE0isoneofZ(0),andifE,E0belongtothesameblock,then02W+pX.ButthenPropositionC.2impliesthatE0isalsoacompositionfactorofZ().Thisprovestheimplications\(i))(ii))(iii)"and\(iii))(ii)"in:Proposition:Let2gwith(b+)=0.LetEandE0besimpleU(g){modules.Thenthefollowingareequivalent:(i)EandE0belongtothesameblockofU(g).(ii)U(g)GactsviathesamecharacteronEandE0. Liealgebrasinpositivecharacteristic13(iii)Thereexists2XsuchthatbothEandE0arecompositionfactorsofZ().Remark:If(i)or(ii)holdsforone,thenitholdsforallgwithg2G.Thereforetheequivalenceof(i)and(ii)holdsforallnilpotent2g,notonlyforthosewith(b+)=0.Notethattheimplication\(iii))(i)"[thatwedidnotprovehere]isobviousinthecaseswhereallZ()areindecomposable.Thisholdsfor=0by[H1],Prop.1.5,andmoregenerallyforinstandardLeviform,seeD.1below.(Itactuallysucesto ndforeach2Xone02W+pXsuchthatZ(0)isindecomposable;thatisinmanyadditionalcasespossible,forexamplealwayswhenRhasnocomponentofexceptionaltype,see[J5],C.3andH.1.)The rstgeneralproofof\(ii))(i)"wasgivenin[BG],Thm.3.18(assumingp�2).Amoredirectproof(thatworksalsoforp=2)isduetoGordon,see[Go],Thm.3.6.Letm0denotethenumberoforbitsofWonX=pXwithrespecttothedotaction.Theimplication\(i))(iii)"showsthatthenumberofblocksofU(g)isatleastequaltom0forall2(b+)?=f2gj(b+)=0g.Sotheimplication\(iii))(i)"isequivalenttotheclaimthateachU(g)hasatmostm0blocks.NowonechecksforeachmthatthesetDm=f2(b+)?jU(g)hasatmostmblocksgisclosedin(b+)?.PropositionC.3impliesthatallregularnilpotentelementsin(b+)?belongtoDm0.Astheseelementsaredensein(b+)?,wegetDm0=(b+)?,hencetheclaim.C.6.Semi-continuityargumentsliketheoneusedinC.5canbeusedformanypurposesinthepresenttheory.Theyoftenrelyonthefollowingobservation:Fix2Xandchooseanumbering 1, 2;:::; Nofthepositiveroots.Forall2(b+)?andm=(m(1);m(2);:::;m(N))inZNwith0m(i)pforalliletzm;denotethebasiselementXm(1) 1Xm(2) 2:::Xm(N) NvofZ(),cf.B.4.TherearethenforallY2gandallm,nelementscn;m(Y;)2KsuchthatYzm;=Xncn;m(Y;)zn;cf.theproofofA.7(2)in[J5].Eachcn;m:g(b+)?!KisalinearfunctionofY2gandapolynomialfunctionof2(b+)?.Usingthisonecancheckthatbothf2(b+)?jZ()issimplegandf2(b+)?jZ()isprojectiveg 14J.C.Jantzenareopensubsetsof(b+)?.TheyarealsoAd(T){stable.Itiseasytoseethat02 Ad(T)forall2(b+)?.SoifZ()isnotsimple(ornotprojective)forsome2(b+)?,thenalsoZ0()isnotsimple(ornotprojective).NowclassicalresultsontheSteinbergmoduleintherestrictedcase(cf.[J1],II.3.18andII.10.2)yield:Proposition:Let2Xwithh+; _i0(modp)forallroots .ThenZ()issimpleandprojectiveforall2(b+)?.KacseemstohavehadinmindaproofalongthelinesindicatedabovewhenheclaimedthesimplicityofZ()forthesein[Ka].Proofsoftheseresultsappearedin[FP2],Thms.4.1/2.Comparealso[BG],Cor.3.11.Remark:Letmeindicatehowonecanprovethatthetwosetsaboveareopenin(b+)?orratherthattheircomplementsareclosed.AllZ()havedimensionr=pN;wehavebijectionsf:Kr!Z()mappingafamily(am)mtoPmamzm;.SetNdequaltothesetofall2(b+)?forwhichZ()hasasubmoduleofdimensiond.WewanttoshowthateachNdwith0drisclosedin(b+)?.LetGd;rdenotetheGrassmannianofalld{dimensionalsubspacesofKr.ThedescriptionoftheactionofY2gonzm;impliesthatthesetMd(Y)ofall(V;)2Gd;r(b+)?withYf(V)f(V)isclosed.HencesoistheintersectionMdofallMd(Y)withY2g.NowthesecondprojectionmapsMdontoNd,andthisimageisclosedbecauseGd;risacompletevariety.InordertogettheclaimonprojectivityIshallusesupportvarieties.SetNp(g)equaltothesetofallx2gwithx[p]=0.Thisisaclosedandconicsubvarietyofg.SotheimagePNp(g)ofNp(g)nf0gintheprojectivespaceP(g)isclosed.ForanyU(g){moduleMsetg(M)equaltothesetofallKx2PNp(g)suchthattherankofx(x)actingonMisstrictlylessthan(p1)dim(M)=p.ThenMisaprojectiveU(g){moduleifandonlyofg(M)=;,see[FP1],Thm.6.4.NowKx2PNp(g)belongstog(Z())ifandonlyifall(mm){minorswithm=(p1)pN1ofthematrixofx(x)withrespecttothezm;are0.Thereforethesetofall(Kx;)2PNp(g)(b+)?withKx2g(Z())isclosed.HencesoisitsimageunderthesecondprojectionsincePNp(g)isacompletevariety.Thatimageisexactlythesetofall2(b+)?suchthatZ()isnotprojective.DStandardLeviFormWekeepthroughoutthesameassumptionsandnotationsasinthepre-cedingsection. Liealgebrasinpositivecharacteristic15D.1.Alinearform2gissaidtohavestandardLeviformif(b+)=0andifthereexistsasubsetIofthesetofsimplerootssuchthat(X )=0forall 2Iwhile(X )=0forall 2R+nI.(Thisde nitiongoesbackto[FP2],3.1.)IfhasstandardLeviform,then([n;n])=0and(n[p])=0.Thisimpliesthatde nesaone-dimensionaln{modulethatisthenaU(n){module.Sincenisunipotent,thisistheonlysimpleU(n){module(uptoisomorphism),cf.[J3],3.3.ItthenfollowsthatU(n)istheprojectivecoverofthissimplemodule,hencehasauniquemaximalsubmodule.EachZ()with2XisisomorphictoU(n)asann{module.Anyproperg{submoduleofZ()isthencontainedinthatuniquemaximaln{submodule.Takingthesumofalltheseg{submoduleswesee:Lemma:If2ghasstandardLeviform,theneachZ()with2Xhasauniquemaximalsubmodule.WethendenotebyL()theuniquesimplequotientofZ().LemmaB.4tellsusnowthateachsimpleU(g){moduleisisomorphictosomeL()with2X.However,willnotbeunique:WehaveatleastL()'L(+p)forall2X;buttheremaybeadditionalisomorphisms.D.2.BeforereturningtothequestionwhenL()'L(0)inD.1,letuslookatthespecialcase=0thatclearlyhasstandardLeviform.Thiswasthe rstcasetobeinvestigated.IfVisaG{module(i.e.,avectorspaceoverKwitharepresentationG!GL(V)thatisahomomorphismofalgebraicgroups),thenVbecomesag{moduletakingthetangentmapat1oftherepresentation.OnegetsthusU0(g){modules.ThesimpleG{modulesareclassi edbytheirhighestweight.Thereisforeach2Xwith0h; _iforall 2R+asimpleG{moduleL()withhighestweight;eachsimpleG{moduleisisomorphictoexactlyoneoftheseL(),cf.[J1],II.2.7.NowCurtisprovedin[Cu]:Theorem:a)TheL()with2Xand0h; _ipforallsimpleroots aresimplealsoasg{modules.b)EachsimpleU0(g){moduleisisomorphictooneoftheseL().If;02Xbothsatisfytheconditionina),thenL()andL(0)areisomorphicasg{modulesifandonlyif02pX.Note:if;02Xbothsatisfytheconditionina)andif02pX,thenh; _i=h0; _iforall 2R;incaseGissemi-simplethisimpliesthat=0. 16J.C.JantzenIfonecompareswiththesetupinD.1,specialisedtothecase=0,thenwegetthatL()withasina)isisomorphicasag{moduletoL0().Andwegetforall;2XthatL0()'L0()ifandonlyif(modpX).D.3.ReturntothemoregeneralsituationinD.1andconsider2ginstandardLeviformwithasetIofsimplerootsasinthede nition.The(sketched)proofofPropositionC.2showsthatZ()'Z(w)forall2Xandw2WIwhereWIisthesubgroupoftheWeylgroupWgeneratedbyallre\rectionss with 2I.Wegetthusonedirectionof:Proposition:SupposethathasstandardLeviformandthatI=f 2Rj(X )=0g.Let;2X.ThenL()'L()ifandonlyif2WI+pX.The\onlyif"partisprovedin[FP2],3.2/4;forG=SLnseealso[P1],Thm.3.GeneralisationswerefoundbyShenGuangyuandbyNakano,cf.[J3],10.7.D.4.Theclassi cationaboveofthesimpleU(g){modulesforinstandardLeviformleadsimmediatelytoaclassi cationofthesimpleU(g){modulesforintheG{orbitofsome0instandardLeviform.Consideranisomorphismg!garisingfromabilinearformasin(H3).IfhasstandardLeviformandifI=f 2Rj(X )=0g,thencorrespondsunderthisisomorphismtosomeY2gthatisregularnilpotentintheLevifactorgIofgspannedbyhandallg with 2R\ZI.IfG=GLnorG=SLn,thentheclassi cationofnilpotentorbitsingbytheJordannormalformshowsthateachnilpotentelementingisconjugatetoaregularnilpotentoneinsomeLevifactor,henceeachnilpotentlinearformongconjugatetooneinstandardLeviform.ThereforePropositionD.3andtheearlierreductionsyieldacompleteclassi cationofallsimpleg{modulesincaseGisisomorphictosomeGLn(oraproductofsuchgroups).AlsoforRoftypeB2orB3eachnilpotentlinearformongisconjugatetooneinstandardLeviform.Thisisnolongertruefortheothertypes.InthosecasesPropositionD.3doesnotyieldacompleteclassi cationofallsimplemodules.D.5.LetusstaywithinstandardLeviform.Havingachievedaclassi cationofthesimplemodulesonewouldliketoknowmoreabouttheirstructure;atleasttheirdimensionsoughttobedetermined.Inthecase=0Lusztig'sconjecturein[L1]onformalcharactersofsimpleG{modulesyieldsviaTheoremD.2aconjectureforsimpleg{modules Liealgebrasinpositivecharacteristic17thatdetermines(amongotherthings)theirdimensionsprovidedpisnottoosmall.OnemayhopethatpgreaterthantheCoxeternumberofRwilldo.ItisknownthatLusztig'sconjectureistrueforplargerthananunknownboundthatdependsontherootsystem,see[AJS].ThereisasimilarconjectureforanyinstandardLeviform.Inordertoformulateit,wehavetoreplacethecategoryofU(g){modulesbyacertaincategoryofgradedU(g){modules.Fix2ginstandardLeviformandsetI=f 2Rj(X )=0g.TheenvelopingalgebraU(g)isinanaturalwayZR{gradedsuchthateachX hasdegree andeachH2hdegree0.However,itwillnowbemoreusefultoregardU(g)asZR=ZI{gradedsuchthateachX hasdegree +ZIandeachH2hdegree0+ZI.ThishastheadvantagethatthekernelofthecanonicalmapU(g)!U(g)ishomogeneous:ItisgeneratedbyallHpH[p]withH2h|homogeneousofdegree0+ZI|andbyallXp (X )pwith 2R|homogeneousofdegreep +ZIsincep 2ZIwhenever(X )=0.WegetnowaZR=ZI{gradingonU(g).Itwillbeconvenienttore-gardthisasagradingbythelargergroupX=ZIandnowtostudyX=ZI{gradedU(g){modules.Forexample,wecangiveeachZ()with2XagradingsuchthateachbasiselementXm(1) 1Xm(2) 2:::Xm(N) NvasinB.4ishomogeneousofdegreePNi=1m(i) i+ZI.DenoteZ()withthisgradingbybZ().Generalresultsongradedmodules(cf.[J4],1.4/5)implythattheradicalofanyZ()isagradedsubmodule.ItfollowsthateachL()hasagradingsuchthattheimageofvinL()ishomogeneousofdegree+ZI.DenotethisgradedmodulebybL().NotethatanybZ(+p)isjustbZ()withthegradingshiftedbyp+ZI,similarlyforbL(+p)andbL().If2ZI,thenwestillhavebZ(+p)'bZ();butthisisnolongertruewhen=2ZI.Onecannowshow(see[J3],11.9):Proposition:Let;2X.ThenbL()'bL()()bZ()'bZ()()2WI+pZI:D.6.KeeptheassumptionsonandIuntiltheendofSectionD.WebeganinD.5withadiscussionofgradedU(g){modules.However,weshallnotconsiderallpossiblemodulesofthistype.IfM=L\r2X=ZIM\risanX=ZI{gradedU(g){module,theneachM\rish{stable,henceadirectsumofweightspacesforh.Wenowmaketheadditionalcondition: 18J.C.JantzenIf\r=+ZIwith2X,thenallweightsofhonM\rhavetheformd(+)with2ZI.WedenotebyCthecategoryofallX=ZI{gradedU(g){modulessatisfyingthiscondition.(Incase=0wehaveI=;anddealherewithX{gradedU0(g){modulesM=L2XM.InthiscasetheextraconditionmeansthathactsoneachMviad.ItfollowsthatwecanidentifyCfor=0withthecategoryofG1T{modulesasin[J1],II.9.)Nowoneeasilychecks(inthegeneralcase)thatallbZ()belongtoC.Sodoalltheircompositionfactors,inparticularallbL().Anargu-mentlikethatinB.4showsthateachsimplemoduleinCisisomorphictosomebL()with2X,cf.[J4],2.5.SetCI=f2Xj0h+; _ipforall 2R+\ZIg:ThisisafundamentaldomainforthedotactiononXoftheanere\rectiongroupgeneratedbyWIandbythetranslationsbyallp with 2I.ThereforePropositionD.5implies:Corollary:EachsimplemoduleinCisisomorphictoexactlyonebL()with2CI.D.7.LetWpdenotetheaneWeylgroupofR,generatedbyWandthetranslationsbyelementsinpZR.Itisalsogeneratedbyallanere\rectionss ;rpwith 2Randr2Zwheres ;rp()=(h; _irp) .WeshallusuallyconsiderthedotactionofWponXwherew=w(+).LetdenotetheusualorderrelationonX:Wehaveifandonlyif2P 2R+N .There\rectionss ;mp2Wpareusedtode neanotherorderrelationonXthatwillbedenotedby".If 2R+,m2Z,and2X,thenwesaythats ;mp"ifandonlyifh+; _imp.Ingeneral"isde nedasthetransitiveclosureofthisrelation.Itisthenclearthat"impliesand2Wp.(Cf.[J1],II.6.4.)Onehasnowastronglinkageprinciple,see[J3],11.11and[J4],4.5:Proposition:Let;2CI.If[bZ():bL()]=0,then".ThisisanalogoustoclassicalresultsforG{modulesorG1T{modules(thecase=0here),cf.[J1],II.6.16andII.9.12.Wehavefurthermore(see[J4],2.8(1))[bZ():bL()]=1forall2CI. Liealgebrasinpositivecharacteristic19Itfollowsthatthe(in nite)\decompositionmatrix"ofall[bZ():bL()]islowertriangularwithonesonthediagonal(withrespecttosometotalorderingonXthatre nes.Thiswillbecrucialforuswhenweshallwanttouseinformationonthisdecompositionmatrixtodeterminecharactersanddimensionsofthesimplemodules,cf.thediscussioninD.12below.WithoutintroducingthegradingthiswouldnotworkbecausePropositionC.2saysthatallZ()inablockhavethesamecompositionfactors.D.8.OnepossibleproofofPropositionD.7involvesasumformulaforacertain ltration:EachbZ()hasa ltrationbZ()bZ()1bZ()2withbZ()=bZ()1=bL()andbZ()i=0fori0suchthatforallsimplemodulesEinCXi�0[bZ()i:E]=X (Xi0[bZ((ip+n ) ):E]Xi�0[bZ(ip ):E])wheren istheintegerwith0n pandh+; _in (modp)andwherewesumoverall 2R+nZIwithn p.Thisformulaisprovedin[J4],3.10generalisingthecase=0treatedin[AJS],6.6.(Thein nitesumintheformulamakessensebecauseonecancheckforeachEthatthereareonly nitelymanynon-zerotermsinthesum.)D.9.ThesumformulainD.8isalsooneofthemaintoolsindetermin-ingallmultiplicities[bZ():bL()]in\easy"cases.OtherimportanttoolsusedtherearePremet'stheoremB.7,translationfunctors,andin-decomposableprojectivemodules.Projectivemoduleswillbediscussedlateron,seeG.1.ThetranslationfunctorsonCarede nedinawaysimilartotheoneusedforG{orG1T{modules(forthesecompare[J1],II.7andII.9.19)andtheyhavesimilarproperties:Translationfroma\regularweight"(i.e.,onewithtrivialstabiliserinWp)toanarbitraryweighttakesababyVermamoduletoababyVermamodule,andittakesasimplemoduletoasimplemoduleorto0,andoneknows,whenonegets0,see[J4],4.9and4.11.UsingsuchtechniquesIhavebeenabletodetermineall[bZ():bL()]inthefollowingcases(sometimesunderadditionalrestrictionsonp):G AnBnB2An+1G2Dn I An1Bn1A1A1An1eA1Dn1 20J.C.JantzenHereGisassumedtobesemi-simpleandsimplyconnectedofthetypementionedinthe rstrow.ThesecondrowthendescribesthetypeoftherootsystemR\ZI.InthecasesoftworootlengthsIoftypeA1(resp.eA1)meansthatIconsistsofalong(resp.short)simpleroot.Forn=2theBn1underBnhastobeinterpretedaseA1.The rsttwocasesinthetableweretreatedin[J2];theretheonlyrestrictionsonparethoseimposedby(H3)or(H2):Onehasp-n+1fortypeAn,andp=2fortypeBn.(Ifoneworksinthe rstcasewithGLn+1insteadofSLn+1,thennorestrictiononpisneededaccordingto[GP],Rem.9.3.)Thecase(B2;A1)was rstdealtwith(forp=2)bybruteforcecalculationsinanAarhuspreprint(1997:13);in[J4],5.2{10thiscaseistreatedforp�3usingthegeneralideasmentionedabove.IntheremainingcasesIassumethatpislargerthantheCoxeternumberofR.FileswiththelengthycalculationsintheAn+1andDncasesareavailablefrommeuponrequest.D.10.TheexplicitresultsreferredtoinD.9con rmineachcaseaconjecturebyLusztig.Asinthecase=0(seeD.5)onewillhavetoexpectsomerestrictionsonpforthisconjecturetobetrue;onemayalsoherehopethatpgreaterthantheCoxeternumberofRwillsuce.Theconjecturesaysthatanymultiplicity[bZ():bL()]with;2CIisthevalueofacertainpolynomialat1or1(dependingonsomenormalisationofthepolynomial).Thesepolynomialswere rstconstructedin[L2]whereLusztigthen(in13.17)expresseshishopethattheywouldplayarolesimilartothatofsomepreviouslyconstructedpolynomialsinthecase=0.(Seealsotheexplicitformulationin[J3],11.24.)Asinothersituationsonemayspeculatewhetheralsothecoecientsofthesepolynomialshavearepresentationtheoreticinterpretation.Forexample,onemayaskwhethertheyyieldthemultiplicitiesinthefactorsofsubsequenttermsinthe ltrationmentionedinD.8orintheradical ltrationofbZ().[These ltrationsmaywellcoincide.]SetA0=f2Xj0h+; _ipforall 2R+g:Thisisthesetofintegralweightsintheinteriorofthe\ rstdominantalcove"withrespecttoWp.ThisistheintersectionofXwiththe\ rstdominantalcoveoverR"asin[J1],II.6.2(6).LetusassumethatA0=;,i.e.,thatpisatleastequaltotheCoxeternumber,cf.[J1],II.6.2(10).WecallsetsoftheformwA0withw2Wpalcoves(inX).WedenotethesetofallalcovesbyA;thenw7!wA0isabijectionfromWpontoA.SetAIequaltothesetofallalcovesA2AwithACI. Liealgebrasinpositivecharacteristic21Choose02A0.ForeachA2AletAdenotetheuniqueelementinA\Wp0;ifA=wA0withw2Wp,thenA=w0.WehavenowCI\Wp0=fAjA2AIg.Lusztig'sconjectureintheversionof[L5],17.3says:Conjecture([L5]):[bZ(A):bL(B)]=B;A(1)forallA;B2AI.HeretheB;AareLusztig's\periodicpolynomials"normalisedasin[L5],9.17.ThankstothelinkageprincipletheconjecturewoulddetermineallcompositionfactorsofallbZ()with2CI\Wp0.ThentranslationfunctorswouldyieldallcompositionfactorsofallbZ()with2CI.SincebabyVermamodulesare nitedimensional,thereareforeachA2AIonly nitelymanyB2AIwith[bZ(A):bL(B)]=0.Accord-ingtoConj.9.20(b)in[L5]theB;Aareexpectedtohavealternatingsigns.ThereforeB;A=0shouldimplyB;A(1)=0.SogivenAthereshouldbeonly nitelymanyB2AIwithB;A=0.Thatisknowntoholdinmanyexamples,butisonlyconjecturedbyLusztigingeneral,see[L5],12.7/8.Also,itisnotclearwhetherthereisagoodalgorithmforcomputingtheB;A,cf.[L2],13.19.D.11.Theformalcharacterofa nitedimensionalX=ZI{gradedU(g){moduleM=L2X=ZIMisde nedaschM=X2X=ZIdim(M)e()2Z[X=ZI]wherethee()with2X=ZIformthecanonicalbasisofthegroupringZ[X=ZI].NotethatZR=ZIisafreeabeliangroupof niterank:ThecosetsofthesimplerootsnotinIareabasis.ThereforethegroupringZ[ZR=ZI]isalocalisedpolynomialring,henceanintegraldomain.ThelargergroupringZ[X=ZI]containsZ[ZR=ZI]asasubringandisafreemoduleoverthissubring.ThestandardbasisofbZ()showsthatchbZ()=pN(I)e(+ZI)Y 2R+nZI1e(p ) 1e( )(1)forall2X,whereN(I)=jR+\ZIj.ItisthenclearthatchbZ()=e(+ZI)chbZ()(2) 22J.C.Jantzenforall;2X.Ontheotherhand,wehavebL(+p)=e(p+ZI)chbL()(3)forall;2Xbecauseaddingponlyamountstoashiftofthegrading.WegetfromtheresultsinD.7thatforall2CIchbZ()=chbL()+X;2CI[bZ():bL()]chbL():ItfollowsthatwecanwriteeachchbL()asa(usuallyin nite)linearcombinationoftheformPachbZ()withalla2Zanda=1.Suchin nitesumsmakesensebecauseeache()with2X=ZIoccursonlyin nitelymanychbZ(),2CIwithanon-zerocoecient.Hereisaneasyexamplethatshowsalsohowonemayreplaceanin nitesumbya niteone.ConsiderG=SL2and=0.Denotetheonlypositiverootby .Consider2Xandanintegerdwithh+; _id(modp)and0dp.Itiseasytoshow(andaclassicalresult)foralli2Zthat[bZ(ip )]=[bL(ip )]+[bL((ip+d) )]and[bZ((ip+d) )]=[bL((ip+d) )]+[bL((i+1)p )]intheGrothendieckgroup.ItfollowsthatchbL()=Xi0chbZ(ip )chbZ((ip+d) ):ComparingwiththeanalogousformulaforchbL(p )onegetsusing(2)and(3)(1e(p ))chbL()=chbL()chbL(p )=chbZ()chbZ(d )=(1e(d ))chbZ():Nowplugin(1):(1e(p ))chbL()=(1e(d ))(1e(p )) 1e( )e()andcancelthecommonfactor1e(p ):chbL()=1e(d ) 1e( )e()=d1Xj=0e(j ):Notethatsuchacancellationisquitegenerallypermittedbecauseweworkinafreemoduleoveranintegraldomain,seeabove. Liealgebrasinpositivecharacteristic23D.12.IwanttoconcludethissectionbyshowingthatitwillalwaysbepossibletogeteachchbL()asa nitesummodulotwoconjecturesbyLusztig.ForthisIneedsomepropertiesofthepolynomialsB;AandthereforehavetolookcloseratLusztig'sconstructions.LusztigworkswiththelocalisedpolynomialringA=Z[v;v1]intheindeterminatevandheconsidersthefreeA{moduleMcwithbasisAIaswellastwocompletions,MandM,ofMc.Inordertode nethem,weneedanorderrelationonA:WesetABifandonlyifA"Bintheset-upofD.10.(Thisistheorderrelationonthealcovesdenotedby"in[J1],II.6.5.)Thesupportofafunctionf:AI!AisthesetfA2AIjf(A)=0g.WeidentifyMcwiththeA{moduleofallfthathave nitesupport.ThenM(resp.M)consistsofallfunctionsf:AI!Awhosesupportisboundedabove(resp.below)relativeto.Wewritesuchfunctionsasformalsumsf=PA2AIf(A)A.In[L5],9.17/19Lusztigintroduces(foreachB2AI)elementsB=PAB~A;BA2MandB=PABB;AA2MandB=PABA;BA2Mwherethecoecients(~A;Betc.)belongtoZ[v1].Moreprecisely,wehave~B;B=1and~A;B2v1Z[v1]ifA=B,simi-larlyfortheotherpolynomials.Lemma11.7(b)in[L5]says@(CkB)=C;Bwhichmeansbythede nitionin[L5],11.6thatXAB;AA;C=C;B(1)forallB;C2AI.ThefundamentaldomainpropertyofCIshowsforallA2AIand2ZRthatthereexistsanalcove\r(A)2AIsuchthat\r(A)=w(A+p)+pforsuitablew2WIand2ZI.If2ZI,thenobviously\r(A)=AforallA.ItfollowsthatwegetanactionofZR=ZIonAI.WedenotethisactionbyandwriteA=\r(A)if=+ZI.Thisactionpreserves,see[L2],2.12(c).TheelementB2MisdeterminedbytheformofthecoecientsstatedabovetogetherwithitsinvarianceunderacertaininvolutiononM.ThisinvolutioncommuteswiththeactionofZR=ZIdescribedabove.Usingthisonecancheckthat(B)=(B)forallB,hencethatB;A=B;AforallB;A.Similarresultsholdfortheotherpolynomials.WeshallusebelowthecorrespondingresultfortheB:A;B=A;B:(2)In[L5],8.3Lusztigconstructsahomomorphism0I:ZR!Zsuchthat0I( )=2forall 2Iandsuchthatthereareintegersc with 24J.C.Jantzen0I()=P 2Ic h; _iforall2ZR.Then0Iinducesahomomor-phism7!"fromZR=ZItof1gsuchthat"+ZI=(1)0I()forall.LusztigextendstheA{modulestructureonMc,M,andMtothegroupalgebraA[ZR=ZI]bysettinge()A="(A)forallA2AIand2ZR=ZI.Thereisacertainelementz=Pze()2A[ZR=Z]withB=zB,see[L5],9.19.ThismeansthatB=XAXA;B"z(A)=XAX()1A;B"zA;hence~A;B=X"z()1A;B=X"zA;B(3)whereweused(2)forthelaststep.Combining(3)and(1)wegetnowXAC;A~A;B=X"zC;B:(4)IfnowLusztig'sconjectureasinD.10holds,thenwegetforallB2AI(intheGrothendieckgroup)XAB~A;B(1)[bZ(A)]=X"z(1)[bL(B)]:(5)ThismeansonthecharacterlevelforeachBXAB~A;B(1)ch(bZ(A))=ch(bL(B))X"z(1)e(p):(6)Thereisaringhomomorphism':A[ZR=ZI]!Z[ZR=ZI]with'(v)=1and'(e())="e(p)forall.Inthisnotationtherighthandsidein(6)isequalto'(z)ch(bL(B)).Theelementzisintroducedin[L5],Lemma8.15.Bythatlemma(comparealsotheproofofLemma3.2.ain[L5])zisaproductoffactorsoftheform1vme()withm2Zand2(ZR=ZI)n0,inparticularwithe()=1.Itfollowsthat'(z)=0.Thecharactersin(6)belongtoafreemoduleoverZ[ZR=ZI].Thereforech(bL(B))isuniquelyde-terminedby'(z)ch(bL(B))andwecanuse(6)tocomputeit.Finally,LusztigconjecturesthatforeachBoneshouldhaveonly nitelymanyAwith~A;B=0,see[L5],12.7/8.Sothelefthandsidein(6)shouldbea nitesum. Liealgebrasinpositivecharacteristic25ERepresentationsandSpringerFibresWekeepthroughoutthesameassumptionsandnotationsasinthepre-cedingsection.LethdenotetheCoxeternumberoftherootsystemR.E.1.SetB=G=B+;thisisthe\ragvarietyofG.Itcanbeidenti edviagB+7!gB+g1withthesetofallBorelsubgroupsofG,orviagB+7!Ad(g)(b+)withthesetofallBorelsubalgebrasofg.Foreach2gsetB=fgB+2Bj(Ad(g)(b+))=0g:ThisisaclosedsubvarietyofB.Usingtheidenti cationabovewecanthinkofBasthesetofallBorelsubalgebrasofgcontainedinthekernelof.NotethatB=;ifandonlyif(g1)(b+)=0forsomeg2Gifandonlyifisnilpotent,cf.B.8.Supposethatweidentifygandgusingabilinearformasin(H3)andthatY2gcorrespondstosomenilpotent2g.ThenwegetB=BYwhereBYisthesetofallgB+withY2Ad(g)(n+).SoBisequaltothe breoverYinSpringer'sresolutionofthenilpotentconeing,cf.[J6],6.6(3).WethereforecallBtheSpringer breof.TheSpringerresolutionandits breshaveplayedanimportantroleinotherpartsofrepresentationtheory,e.g.,inSpringer'stheoryofWeylgrouprepresentations.Humphreyshassuggestedforsometime(cf.[H3],23)thattheremightbeconnectionsbetweenthetheoryofU(g){modulesandthegeometryofB.Thismotivatedgeometriccon-structionsofrepresentationsbyMirkovicandRumyninin[MR].LusztigmadethensomeexplicitconjecturesinvolvingB(in[L3],[L4],and[L5])partofwhichhasnowbeenprovedbyBezrukavnikov,Mirkovic,andRumyninin[BMR].Weshalldescribetheirmainresultsinthissection.E.2.RecallfromC.2thesubalgebraU(g)GofthecentreZ(g)ofU(g)andthealgebrahomomorphismscen:U(g)G!K.ForanynilpotentandanythesimpleU(g){modulesonwhichU(g)GactsviacenarethesimplemodulesinoneblockofU(g),seeC.5.Forany2gletU0denotethequotientalgebraofU(g)bytheidealgeneratedbytheimageofker(cen0)underthecanonicalmapU(g)!U(g).SothesimpleU0{modulesarefornilpotentthesimpleU(g){modulesinonespeci cblockofU(g).Nowoneofthemainresultsin[BMR](Cor.5.2.2andSection6)is:Theorem:Supposethatp�2h2.Let2gbenilpotent.ThenthenumberofsimpleU0{modulesisequaltotherankoftheGrothendieck 26J.C.JantzengroupofthecategoryofcoherentsheavesontheSpringer breB.Thisrankisalsoequaltothedimensionofthel{adiccohomologyofB.HerehistheCoxeternumberofR;oneshouldexpectthatthetheoremshouldextendtoallp�h.TakeforexampleinstandardLeviformandIasinthede nitioninD.1.ThenPropositionD.3showsthatthenumberofsimpleU0{modulesisequaltojW=WIjincasep�h.Thisiscompatiblewiththepresenttheorem.Forphthenumbergetssmallerindicatingthatthetheoremcannotextendtosuchp.Thetheoremproves(forp�2h2)aconjectureofLusztig.InhisformulationtheconjectureactuallydidnotinvolveB,butananalogueoverC:LetGCdenotetheconnectedreductivegroupoverCwiththesamerootdataasG,setgC=Lie(GC)andletBCdenotethe\ragvarietyofGC.UnderourassumptiononpwehaveabijectionbetweenthesetofnilpotentorbitsingandthesetofthoseingC,hencealsoabijectionbetweenthesetofnilpotentorbitsingandthesetofthoseingC.Chooseanilpotent(C)2gCintheorbitcorrespondingtothatof.ThenLusztigpredictsthatthenumberofsimpleU0{modulesshouldbeequaltothedimensionoftheordinarycohomologyofBC(C)withcoecientsina eldofcharacteristic0.However,thatdimensionisequaltothedimensionofthel{adiccohomologyofB,thankstoworkbyLusztig,cf.[BMR],6.4.3.E.3.Let2gbenilpotent.TheoremE.2yieldsforp�2h2thenumberofsimpleU(g){modulesinaspeci cblockofU(g).Onemayaskabouttheremainingblocks.Consider rst2Xsuchthat+pXhastrivialstabiliserforthedotactiononX=pX.ThenthenumberofsimpleU(g){modulesintheblockdeterminedbycenisequaltothenumberofsimpleU0{modules.Infacttherearetranslationfunctorsthatareequivalencesbetweentheblocksdeterminedbycenandbycen0andthatinduceinversebijectionsbetweenthetwosetsofsimplemodules,cf.[J5],Prop.B.5.Itisnotclearwhatwillhappenwhen+pXhasanon-trivialstabiliserforthedotactiononX=pX.Supposethatp�h.IfhasstandardLeviform(orifGcontainsanelementinstandardLeviform),thenthetranslationfunctorfromtheblockof0totheblockoftakessimplemodulesto0ortosimplemodules;wegetthuseachsimplemoduleintheblockoffromexactlyonesimplemodule(uptoisomorphism)intheblockof0.(ThisfollowsfromtheanalogousresultinthegradedcasementionedinD.9.)WegetthesamebehaviourinthesubregularnilpotentcasesinSectionF.Onemayspeculatewhethersuchresultsgeneralise.Maybefurtherworkinthespiritof[BMR]willleadtosomeanswerstothesequestions. Liealgebrasinpositivecharacteristic27E.4.SetU0equaltothequotientofU(g)bytheidealgeneratedbyker(cen0).SowecandescribeanyU0alsoasthequotientofU0bytheidealgeneratedbytheimagesinU0ofallYpY[p](Y)pwithY2g.Theworkin[BMR]leadingtoTheoremE.2isinspiredbythepaper[BB1].ThereBeilinsonandBernsteinshowthattheanaloguetoU0overCisisomorphictothealgebraofglobalsectionsofthesheafDCofdi erentialoperatorsonthe\ragvariety,andthattheglobalsectionfunctorinducesanequivalenceofcategoriesfrom(certain)sheavesofDC{modulestoU0{modules.(ThisresultisoneofthemainstepsinBeilinson'sandBernstein'sproofoftheKazhdan-LusztigconjectureoncharactersofsimplehighestweightmodulesovergC.)Thegeneralisationofthisresulttoprimecharacteristicinvolvestwomajorchanges:Onehastoreplacedi erentialoperatorsby\crystalline"di erentialoperators(usingtheterminologyof[BMR]),andonegetsattheendnotanequivalenceofcategories,butanequivalenceofderivedcategories.E.5.IfAisthealgebraofregularfunctionsonasmoothanevarietyoverK,thenthealgebraof\crystalline"di erentialoperatorsonAisanalgebrageneratedbyAandtheLiealgebraDerK(A)ofallK{linearderivationsofA.Oneimposessomeobviousrelations,e.g.,DaaD=D(a)foralla2AandD2DerK(A).Forexample,ifAisapolynomialringA=K[X1;X2;:::;Xn],thenthealgebraof\crystalline"di erentialoperatorsonAisafreemoduleoverAwithbasisallmonomialsinthepartialderivatives@i=@=@Xi,1in.ThisalgebraactsonAvia\true"di erentialoperators,butthisactionisnotfaithfulbecause(e.g.)any(@i)pactsas0.Thisconstructionhasasheafversionthatleadstoasheafof\crys-talline"di erentialoperatorsDYonanysmoothvarietyYoverK.OnereplacesAbythesheafOYofregularfunctionsonY,andDerK(A)bythetangentsheafTY,cf.[BMR],1.2.Thisisaspecialcaseofaconstructionfrom[BB2],1.2.5.E.6.ConsidernowY=B,the\ragvariety,andsetD=DB.TheactionofGonB=G=B+de nesaLiealgebrahomomorphismfromgtotheglobalsectionsofthetangentsheafTB.Thisinducesbyconstruc-tionahomomorphismfromtheenvelopingalgebraU(g)tothealgebraH0(B;D)ofglobalsectionsofD.ThishomomorphismfactorsoverU0([BMR],3.1.7)andinducesforgoodpanisomorphismU0!H0(B;D)(1) 28J.C.Jantzensee[BMR],Prop.3.3.1.Theproofusesatransitiontotheassociatedgradedalgebras;thistechniqueshowsalsothatHi(B;D)=0foralli�0.Denotebymodc(D)thecategoryofcoherentD{modules;herecoher-entmeanslocally nitelygenerated.Writemodfg(U0)forthecategoryof nitelygeneratedU0{modules.ForeachcoherentD{moduleFthespaceH0(B;F)ofglobalsectionsisvia(1)aU0{modulethatturnsouttobe nitelygenerated.OnegetsthusafunctorthatinducesafunctorontheboundedderivedcategoriesDb(modc(D))!Db(modfg(U0))be-causeHi(B;?)=0fori�dim(B).Nowthe rstmainresultin[BMR](Thm.3.2)says:Theorem:Supposethatp�2h2.ThenthefunctorDb(modc(D))!Db(modfg(U0))(2)isanequivalenceofderivedcategories.Aspointedoutin[BMR](Remarks1and2followingThm.3.2)thistheoremdoesnotholdwithoutgoingovertothederivedcategories;italsowillnotholdforsmallp.Theequivalenceintheoppositedirectionin(2)isinducedbythe\localisationfunctor"thattakesaU0{moduleMtotheD{moduleD\nU0M.Forthistoworkone rsthastoshowthatthederivedfunctorDL\nU0takesDb(modfg(U0))totheboundedderivedcategoryDb(modc(D)),see[BMR],Prop.3.8.1.Onethenwantstoshowthatthecompositionsofthesefunctorsareisomorphictotheidentity.Thisischeckedonlyoncertainspecialobjects;theproofthatitsucestolookatthesespecialobjectsrequirestheboundonpinthetheorem.E.7.ThetransitionfromTheoremE.6toTheoremE.2involvestwomainsteps.DenotebyDtherestrictionofDtoBB.Ifwewerelucky,thentheequivalenceinE.6(2)wouldinduceanequivalencebe-tweenDb(modc(D))andDb(modfg(U0))foreachnilpotent2g,andthederivedcategoryDb(modc(D))wouldalsobeequivalenttothederivedcategoryofcoherentmodulesoverthestructuresheafofB.Thisisalmosttrue:ItholdswhenwereplaceBbyaformalneighbour-hood,see[BMR],Thm.5.2.1.ThathoweverdoesnotmatterintheendbecausethistransitiondoesnotchangetheGrothendieckgroupsofthecategoriesinvolved,cf.theproofofCor.4.1.4in[BMR].FinallyonehastoobservethattheGrothendieckgroupsofthesecategoriesandthoseoftheirboundedderivedcategoriescoincide. Liealgebrasinpositivecharacteristic29FTheSubregularNilpotentCaseInadditiontoourearlierconventions,weassumeinthissectionthatGisalmostsimple.F.1.SinceweassumeGtobealmostsimplethereisexactlyonenilpotentorbitingofdimension2(N1)whereN=jR+j.Thankstoourgeneralassumption(H3)thereisalsoonlyonenilpotentorbitingofthisdimension.Wecalltheseorbitsthesubregularnilpotentorbits(ingorg).IfRisoftypeAnorBnforsomen,thenwecanchooseinthesubregularnilpotentorbitingsuchthathasstandardLeviform.InthesecasesthesimpleU(g){modulesaswellasthestructureofthebabyVermamodulesweredeterminedin[J2].ForRnotoftypeAnorBn,thenthesubregularnilpotentorbitingdoesnotcontainanelementinstandardLeviform.InthesecasesmanyresultsonU(g){moduleswereprovedin[J5].Theresultsweremostdetailedinthesimplylacedcases(i.e.,forRoftypeDnorEn)andprovedinthesespecialcasesLusztig'sconjecturesfrom[L4],2.4/6and[L5],17.2.Forothertypestheresultsin[J5]arelesscompleteandcannowbeimprovedusingtheresultsfrom[BMR].Thoughoutthissectionweusuallysay\simplemodules"whenwemean\isomorphismclassesofsimplemodules".F.2.Choosesomeinthesubregularnilpotentorbitingsuchthat(b+)=0.Wepicksome2Xsuchthat0h+; _ipforall 2R+.EachorbitofWonX=pXhasarepresentativeofthisform.SowedescribeanarbitraryblockofU(g)ifwedescribetheblock\of",i.e.,theblockwhereU(g)Gactsonallsimplemodulesviacen,cf.C.5.WeknowalsothatthesimplemodulesinthisblockareexactlythecompositionfactorsofZ().Wecallregularifpdoesnotdivideanyh+; _i,or,equivalently,if0h+; _ipforall 2R+,i.e.,ifbelongstotheinteriorA0ofthe rstdominantalcoveasinD.10.Weshallassumethroughoutthatp&#x-366;&#x.499;h.Thisimpliesthatregulardoexist.Denotethesetofallsimplerootsbyanddenoteby 0thelargestshortroot.Setm 0=1andde nepositiveintegers(m ) 2by _0=P 2m _.Let($ ) 2denotethefundamentalweights.Ifisregular,thenweassociatetoeachU(g){moduleMintheblockofaninvariant(M)de nedby(M)=f 2[f0gjT$ (M)=0g 30J.C.Jantzenwhereweset$0=0.HereeachTisatranslationfunctor,cf.[J5],B.2.F.3.AssumeinthissubsectionthatRissimplylaced,i.e.,oftypeAn,Dn,orEn.IntypeE8theresultsstatedbelowareprovedonlyforp�h+1;thisadditionalrestrictionshouldbeunnecessary.Suppose rstthatisregular.Thentheblockofcontainsjj+1simplemodules.WecandenotethesesimplemodulesbyL with 2[f 0gsuchthatdim(L )=(h+; _ipN1;if 2;(ph+; _0i)pN1;if = 0;(1)(recallthatN=jR+j)and(L )=(f g;if 2;[f0g;if = 0:(2)Wehave[Z():L ]=m (3)forall 2[f 0g.DenotebyQ theprojectivecoverofL inthecategoryofallU(g){modules.Thenwehave[Q :L ]=jWjm m (4)forall ; 2[f 0g.LetuswriteExtforExt-groupsinthecategoryofallU(g){modules.OnegetsnowExt1(L ;L )'(K;ifh ; _i0;0;ifh ; _i=0;(5)forall ; 2[f 0gwith = |exceptthatwehavetoreplaceKbyK2ifRhastypeA1.ThesizeoftheExtgroupincase = isunknowntome;onecanshowthatitisnon-zeroinmostcases.Thestrategyfortheproofoftheseresultsin[J5]isasfollows:UsinghomomorphismsbetweenbabyVermamodulesoneconstructsachainofsubmodulesinZ()wherethedimensionsand{invariantsareknownforthequotientsofsubsequentterms.ThentranslationfunctorsandPremet'stheoremareusedtoshowthatthesequotientsaresimple.Nextadeformationargumentyieldsthatsimplemoduleswiththesame{invariantareisomorphictoeachother.Thusonegetstheclassi cationofthesimplemodulesand(1){(3),cf.[J5],Thm.F.5.Quitegeneralargumentsimplyinourcasethatdim(Q )=pNjWj[Z():L ],see Liealgebrasinpositivecharacteristic31G.3(1)below.Inductiveargumentsusingtranslationfunctorsshowinthepresentcasethat[Q]=(dim(Q)=pN)[Z()]intheGrothendieckgroupforallprojectivemodulesQ.Now(4)followsfrom(3),see[J5],Thm.G.6.Theproofof(5)usesanideaofVogan,relatingExtgroupstothestructureofsimplemodulestranslatedthroughawall,see[J5],Prop.H.12.Thestatementaboutthenumberofsimplemodulesaswellastheresult(4)ontheCartanmatrixoftheblockproveconjecturesbyLusztigfrom[L4],2.4/6and[L5],17.2.Dropnowtheassumptionthatshouldberegular,butcontinuetoassumethath+; _ip.Thenthenumberofsimplemodulesintheblockofis1+jf 2jh+; _i&#x-282;&#x.199;0gj.OnecandenotethesesimplemodulesbyL with = 0orwith 2withh+; _i&#x-282;&#x.199;0.Then(1)and(3)abovestillholdaslongasweonlyallow fromthisnewparameterset.Sodoes(4)ifwereplacejWjbyjW(+pX)j.Also(2)survivesifwemodifythede nitionofappropriately.If2A0,thenTtakesL toL ifthismoduleisde ned,to0otherwise.IhavenoinformationaboutExtgroupsbetweensimplemoduleswhenisnotregular(exceptforRoftypeAnwhereonecanconsult[J2],Prop.2.19).Theseresultsareactuallyprovedalsoforph(exceptintypeE8)aslongas(H2)and(H3)hold.Supposeontheotherhandthath+; _i=pforsome 2R+.Thenwehaveinparticularh+; _0i=p.Inthiscasethesimplemodulesshouldbeparametrisedbythesimpleroots withh+; _i&#x-318;&#x.311;0,and(1),(3),(4)shouldstillholdwiththeappropriatemodi cationsasintheprecedingparagraph.ThisistrueforRoftypeAnandDn,butopenintypeEn.F.4.Asmentionedbefore,theclassi cationofthesimplemodulesintheregularcaseinF.3wasthe rstevidencebesidesthecaseofstandardLeviformthatTheoremE.2shouldhold.Toseethis,letusdescribeBexplicitlyforsubregularnilpotent.ForRoftypeAn,Dn,orEnthevarietyBhasjjirreduciblecomponents(` ) 2.Eachcomponent` isisomorphictotheprojectivelineP1.Twodistinctcomponents` and` donotintersectifh ; _i=0;theyintersecttransversallyinonepointifh ; _i0.ThisdescriptionshowsthatH0(B;Ql)'QlbecauseBiscon-nected,andthatdimH2(B;Ql)=jjbecauseallirreduciblecompo-nentsofBhavedimension1andtherearejjofthem.ThisfactimpliesalsothatHi(B;Ql)=0fori&#x-5.1;䡣2.Finally,H1(B;Ql)=0follows(e.g.)fromthefactthatonecanpaveBbyanelinesandonepoint. 32J.C.JantzenFortheremainingrootsystemsonecanreducethedescriptionofBtothecasesalreadyconsidered:IfRhastypeBn(resp.Cn,F4,G2),thenBisisomorphicasvarietytotheanalogousobjectforagroupoftypeA2n1(resp.Dn+1,E6,D4).SoagaineachirreduciblecomponentofBisomorphictotheprojectivelineP1.Buttheirnumberisnowlargerthanjj.IntypesBn,Cn,andF4onehasnowonecomponentforeachshortsimpleroot,buttwocomponentsforeachlongsimpleroot.IntypeG2thereareonecomponentfortheshortsimplerootandthreecomponentsforthelongsimpleroot.Inanycasethecentraliser Gofintheadjointgroup GofGactsonB,hencepermutestheirreduciblecomponentsofB.Theconnectedcomponent G0of1in GhastostabiliseeachcomponentofB,sothecomponentgroupC()= G= G0actsaspermutationgroupontheirreduciblecomponentsofB.ForRoftypeAn,Dn,orEnthegroupC()istrivial.ForRoftypeBn,Cn(withn2inbothcases),orF4thegroupC()iscyclicoforder2;thenontrivialelementinterchangesforeachlongsimpleroot thetwocomponentsbelongingto andit xesthecomponentsbelongingtoshortsimpleroots.ForRoftypeG2thegroupC()isisomorphictothesymmetricgroupS3;it xesthecomponentbelongingtotheshortsimplerootandactsasfullpermutationgrouponthethreecomponentsbelongingtothelongsimpleroot.Theactionof GonBinducesanactionofC()onH(B;Ql).ThisactionistrivialonH0(B;Ql).Ontheotherhand,H2(B;Ql)hasabasisindexedbytheirreduciblecomponentsofBandC()permutesthesebasiselementsinthesamewayasitpermutestheirreduciblecomponents.F.5.AssumeinthissubsectionthatRisoftypeBn,Cn(withn2inbothcases),orF4.Assumethatp�2h2ifRhastypeCnwithn3orF4,i.e.,p�4n2intypeCnandp�22intypeF4.Weneedthisboundsothatwecanapplytheresultsfrom[BMR].Lets(resp.l)denotethesetofallshort(resp.long)simpleroots.Welookagain rstatthecasewhereisregular.Thentheblockofcontainsjsj+2jlj+1simplemodules.WecandenotethembyL with 2s[f 0gandL ;1,L ;2with 2lsuchthatF.3(1){(3)alsoholdhereforallshort ,i.e.,for 2s[f 0g,andsuchthatforall 2landalli2f1;2gdim(L ;i)=h+; _ipN1(1) Liealgebrasinpositivecharacteristic33and(L ;i)=f g(2)and[Z():L ;i]=m 2:(3)In[J5]IhadtoleaveopenthequestionwhetherintypesCnandF4thetwosimplemodulesL ;1andL ;2correspondingtosome 2lareisomorphictoeachotherornot;theresultsfrom[BMR]yieldingthetotalnumberofsimplemodulesgivetheanswer:theyarenot.DenotebyQ theprojectivecoverofL forshort andbyQ ;itheprojectivecoverofL ;iforlong .ThenF.3(4)holdsforshort and .If isshortand islong,thenonehasforalli2f1;2g[Q :L ;i]=[Q ;i:L ]=jWjm m 2:(4)FortheremainingCartaninvariantsIcanonlystatetheobvious:Conjecture:[Q ;i:L ;j]=jWjm m 4foralllong and andalli;j2f1;2g.(ThisshouldbeaspecialcaseofLusztig'sconjecturein[L5],17.2.)AtleastintypeBnthisformulaholdsthankstotheresultsin[J2].Ifboth and areshortwith = ,thenF.3(5)extendstothepresentsituation.If isshortand islong,thenonegetsforalli2f1;2gExt1(L ;L ;i)'Ext1(L ;i;L )'(K;ifh ; _i0;0;ifh ; _i=0:(5)Finally,onecanchoosethenumberingoftheL ;isuchthatforalllong and with = andalli;j2f1;2gExt1(L ;i;L ;j)'(K;ifh ; _i0andi=j;0;ifh ; _i=0ori=j:(6)IdonotknowwhatdimExt1(L ;1;L ;2)isforlong .Furthermore,usuallythesimplemoduleshavenon-trivialself-extensions,butasinF.3IdonotknowhowbigtheExtgroupis.(Forallofthis,see[J5],Prop.H.12.)IfwetwistaU(g){modulewithAd(g)forsomeg2 G,thecen-traliserofintheadjointgroupofG,thenwegetagainaU(g){module.Iftheoriginalmodulewassimple,thensoisthetwistedone.IfU(g)G 34J.C.Jantzenactsviacenontheoriginalmodule,thenalsoonthenewone.WegetthusanactionofthecomponentgroupC()asinF.4onthesetofisomorphismclassesofsimpleU(g){modulesintheblockof.InourpresentsituationC()iscyclicoforder2andthenon-trivialelementinC()interchangesL ;1andL ;2foralllong ,andit xesallL with short,see[J5],Prop.F.7.Fornon-regularthesituationshouldbesimilartotheonede-scribedinF.3.Ifwestillhaveh+; _ipforall 2R+,thenonegetssimplemodulesL andL ;imoreorlessasaboveexceptthatwedropall withh+; _i=0.Eachsimplemoduleisisomorphictooneofthese.TheonlyproblemisthatwenolongercanbesurethatL ;1andL ;2forlong arenotisomorphictoeachotherbecause[BMR]doesnottellusthenumberofsimplemodulesinthenon-regularcase.However,inthecasewherethereisonlyone 2R+suchthatpdividesh+; _i,thenonecanshowthatthesimplemodulesL ;1andL ;2forlong arenotisomorphic,see[J5],LemmaH.11.b.F.6.ConsidernowRoftypeG2andassumethatp&#x-294;&#x.236;2h2=10.Denotethesimplerootsby 1(short)and 2(long).Letberegular.Then[J5],D.11shows:TheblockofcontainsasimplemoduleL 0with{invariant[f0ganddimension(ph+; _0i)pN1;thisistheonlysimplemoduleinthisblockwith{invariant[f0g.Thereareoneortwosimplemoduleinthisblockwith{invariantf 1g;thismoduleorthesemoduleshavedimensionh+; _1ipN1.Thereisatleastonesimplemodulewith{invariantf 2ganddimensionh+; _2ipN1.Allremainingsimplemoduleshave{invariantf 2gor;.Now[BMR]tellsusthatthereare vesimplemodules.WeknowalsothatthecomponentgroupC()'S3permutesthesemodules.Thisactionpreservesthe{invariantby[J5],D.5(3),andisindependentofthechoiceofifweusetranslationfunctorstoidentifythesimplemodulesindi erentblocksforregularweights,see[J5],B.13(2).ThepossibleorbitsizesofC()permutingthe vesimplemodulesare1,2,and3.Therehavetobeatleastthreeorbits.Ifoneoftheorbitshassize3,thenthereareexactlythreeorbits;theothertwoorbitshavecardinality1.Ifthereisnoorbitofsize3,thenthealternatingsubgroupinC()'S3hasto xallsimplemodules.Wehaveby[BMR]anisomorphismbetweentheGrothendieckgroupoftheblockof0andtheGrothendieckgroupK0(B)ofcoherentsheavesonB.Bythenaturalityoftheconstructionin[BMR]onemayhopethatthisisomorphismiscompatiblewiththeactionsof G.Letusassumethatthisistrue.Thentheactionof GonK0(B)factorsoverC()sincethisholdsfortheactionontheblockside. Liealgebrasinpositivecharacteristic35DenotebyYtheirreduciblecomponentofBcorrespondingtotheshortsimpleroot,andbyUthe(open)complementofY.Thegroup GstabilisesYandhencealsoU.WehavethenasurjectivemapK0(B)!K0(U)thatiscompatiblewiththeactionof G.NowUisisomorphictoadisjointunionofthreeanelines.ThisimpliesthatK0(U)'Z3.Furthermore,theactionof GonK0(U)hastofactoroverC(),andtheactionofC()hastopermutethethreesummandsisomorphictoZinK0(U)becauseC()permutesthethreeanelines.ThereforeC()actsfaithfullyonK0(U),henceonK0(B).ThisshouldnowimplythatalsotheactionofC()ontheGrothen-dieckgroupoftheblockisfaithful.Aspointedoutabovethismeansthattherearethreeorbits,andthattheyhavecardinality1,1,and3.Thisholdsat rstfor=0andthenforallusingtranslationfunctors.Itthenfollowsthatthereisonlyonesimplemodule,sayL 1,with{invariantf 1g,andthattherearethreesimplemodules,sayL 2;1,L 2;2,L 2;3,with{invariantf 2g,allofdimensionh+; _2ipN1.Onegetsthen(using[J5],D.11oncemore)that[Z():L 1]=2and[Z():L 0]=1=[Z():L 2;i]foralli.GProjectiveModulesWekeepthepreviousassumptionsasinSectionsDandE.G.1.EachU(g)with2gisa nitedimensionalalgebra.SothereisabijectionbetweenthesetofisomorphismclassesofsimpleU(g){modulesandthesetofisomorphismclassesofindecomposableprojectiveU(g){modules.AnysimpleU(g){moduleEcorrespondstoitsprojectivecoverQE,theunique(uptoisomorphism)indecomposableprojectiveU(g){modulewithE'QE=rad(QE).Thematrixofall[QE:E0]withE,E0runningoverrepresentativesfortheisomorphismclassesofsimpleU(g){modulesisthentheCartanmatrixofU(g).G.2.Supposethat2ghasstandardLeviform.Denotethepro-jectivecoverofanyL()asinD.1byQ().RecallnowthegradedcategoryCfromD.5/6.EachsimplemodulebL()inChasaprojectivecoverbQ()inC.Ifweforgetthegrading,thenbQ()isisomorphictoQ(),cf.[J4],1.4. 36J.C.JantzenSetI=f 2Rj(X )=0g.RecallfromD.6thede nitionofCIandthefactthat7!bL()yieldsabijectionbetweenCIandthesetofisomorphismclassesofsimplemodulesinC.Onecanshow(see[J4],Prop.2.9)thateachbQ()with2CIhasa ltrationwithfactorsbZ()with2CI,eachbZ()occurringjWI(+pX)j[bZ():bL()]times.(Notethatthereisamisprintin[J4],page154,line2:ReplacejWI(+pX)jbyjWI(+pX)j.)ThisyieldsintheGrothendieckgroupofCusingPropositionD.7[bQ()]=X2CI;"jWI(+pX)j[bZ():bL()][bZ()]:(1)Wehaveintheungradedcategory[Z()]=[Z()]forall2W+pX,henceforallwith",seePropositionC.2.So(1)impliesthatintheGrothendieckgroupoftheungradedcategory[Q()]=[Z()]X2CI;"jWI(+pX)j[bZ():bL()]:(2)ItfollowssincedimZ()=pNwithN=jR+j[Q()]=dim(Q()) pN[Z()]:(3)SoallrowsintheCartanmatrixbelongingtoa xedblockarepropor-tionaltoeachother.ThereforetheCartanmatrixhasdeterminant0unlesseachblockcontainsonlyonesimplemodule.ThelatteristhecaseifandonlyifIconsistsofallsimpleroots,i.e.,ifandonlyifisregularnilpotent.InthatspecialcaseallcompositionfactorsofQ()areisomorphictoL()=Z(),andtherearejWI(+pX)jofthem.G.3.Foranarbitrarynilpotent2gwith(b+)=0oneknowslessabouttheprojectiveindecomposablemodules.IfEisasimpleU(g){moduleintheblockofsome2X,thenonecanshowthatdim(QE)=pNjW(+pX)j[Z():E](1)see[J5],B.12(2).ForinstandardLeviformthiscanbededucedfromG.2(2).Ingeneral(fornotinstandardLeviform)itisnotknownwhetherQEhasa ltrationwithfactorsoftheformZ()thatwould\explain"(1)andthatwouldallowustogeneraliseG.2(3).SowehaveatpresentonlyaHope:[QE]=dimQE pN[Z()] Liealgebrasinpositivecharacteristic37forallsimpleEintheblockofsome.Resultsinthesubregularnilpo-tentcase(seeF.3andF.5)supportthishope.G.4.Let2gbenilpotentandlet2Xberegular.(ThismeansasinF.2thatpdoesnotdivideanyh+; _iwith 2R.Soweassumethatph.)LusztighasageneralconjectureontheCartanmatrixoftheblockofofU(g),see[L4],2.4and[L5],17.2.Actually,theconjectureisstatedforagradedversionofthatcategory.OnechoosesamaximaltorusT0inthecentraliserofinG.ThentheadjointactionofT0onU(g)inducesoneonU(g).ThisleadsthentoagradingofU(g)bythecharactergroupX(T0)ofT0.OnenowconsidersX(T0){gradedU(g){modulessatisfyingacompatibilityconditionanalogoustotheoneinD.6; nallyonetakesablockofthiscategorywhereU(g)Gactsonallsimplemodulesviacen.NowLusztig'sconjecturepredictsthatthesimplemodulesinthisblockshouldbeinbijectionwithacertainbasisofsomeequivariantK{groupofsomevariety(aSlodowyvariety)relatedtoB,andthattheentryintheCartanmatrixcorrespondingtotwosimplemodulesshouldbegivenbyacertainbilinearformevaluatedatthetwocorrespondingbasiselements.(See[L5]formoredetails.)InthecasewhereissubregularnilpotentandGalmostsimplenotoftypeAnorBn,thenT0=1,sowecanforgetaboutthegrading.IfGisalmostsimpleoftypeDnorEn,then[L4],2.6givesanexplicitdescriptionoftheconjecturedCartanmatrixthatsincehasturnedouttobecorrect,seeF.3(4).SupposethathasstandardLeviform(forarbitraryG).InthiscaseonecanchooseT0TwithX(T0)=ZR=ZI.InthiscasethecategorydescribedaboveisadirectsummandofthecategoryCfromD.6wheregradingsbyX=ZIarepermitted.However,thissmallercategorycontainstheblockcorrespondingto=0;allotherblocksforregularareequivalenttothisone(assumingph).ForsuchLusztig'sconjectureontheCartanmatrixwillfollowusingG.2(1)fromLusztig'sconjecture,mentionedinD.10,onthecompositionfactorsofthebZ(),see[L5],17.3.G.5.Considerthecase=0.SothegradedcategoryCfromD.6isthesameasthatofallG1T{modulesasin[J1],II.9.LetusnowdropinthiscasetheindexandwritebL(),bZ(),bQ()insteadofbL(),etc.Sotheseobjectsareparametrisedby2X.EachbQ()hasa ltrationwithfactorsoftheformbZ()suchthateachbZ()occurs[bZ():bL()] 38J.C.Jantzentimes.Wehaveinparticular[bQ():bL()]=X2X[bZ():bL()][bZ():bL()](1)forall;2X.ThereisnowtheolderconjecturebyLusztigpredictingall[bZ():bL()]forp�handprovedin[AJS]forp0.Andthereistheneweronethatpredictsall[bQ():bL()]forp�h,andthatfollows,accordingtoLusztig,fromtheolderoneusing(1).NowIwanttopointoutthatinthiscase(=0)converselytheolderconjecturefollowsfromthenewerone.SinceLusztighasalreadyshowntheotherdirection,itsucestoshowthattheCartanmatrixdeterminesthedecompositionmatrix.Moreprecisely:Claim:Let2A0.Ifweknowall[bQ(x):bL(w)]withx;w2Wp,thenweknowall[bZ(x):bL(w)]withx;w2Wp.HereA0XisasinD.10theinteriorofthe rstdominantalcoveinsideX,andWpistheaneWeylgroupasinD.7.G.6.BeforewecanstartprovingtheclaiminG.5weneedsomefactsonthealcovegeometry.LetX+denotethesetofalldominantweightsinX.Foreach2Xthereexistsw2Wsuchthatwisantidominant(or,equivalently,suchthatw2X+)andwisuniquewiththisproperty.Movingtheorigintoanotherpoint,weget:Fix2X.Foreach2Xthereexistsw2Wpsuchthatw(p)=pandpw2X+.Theweightwisuniquelydeterminedbythiscondition;weshalldenoteitbya().Indeed:Thereexistsx2Wwithx(p)2X+.Set\r=x()2ZRandsetw2Wpequaltothecompositionof rstx,thentranslationwithp\r.Thenw(p)=x(p)+p\r=pandpw=pw(+)=pp\rx(+)=x(p)2X+:Thisyieldstheexistence;theuniquenessisleftasanexercise.Keepasabove.Atrivialremark:Ifz2Wp,then:z(p)=p=)a(z)=a()forall2X.(1)(Ifa()=wwithw2Wpandw(p)=pthena()=(wz1)(z)and(wz1)(p)=p.) Liealgebrasinpositivecharacteristic39Weclaimthatnexta()"forall2X.(2)Itiswellknownthatx0"0forallx2Wif0+isdominant.Onehassimilarly0"x0forallx2Wif0+isantidominant.Wecanapplythistoa()psincea()+pisantidominant.Therearex2Wand\r2ZRwitha()=p\r+xand\r=x().Nowwegeta()p"x1(a()p)=x1(p\r+x(+)p)=phence(2).Claim:Ifandareantidominant,thena(z)"a()forallz2W.(3)Thisfollowsbyinductiononthelengthofzfromthefollowingclaim,whereisassumedtobeantidominantandisarbitrary:Let 2R.Then"s =)a(s )"a():(4)Proof:Wemayassumethat �0.Wehaves =+m withm=h+; _i0.Thereexistsw2Wpwithw(p)=panda()=w.Set0=w(s ).Then(1)saysthata(0)=a(s );sowewanttoshowthata(0)"a().Therearex2Wand\r2ZRsuchthatwisthecompositionof rstxandthentranslationbyp\r.Theassumptionw(p)=pimpliesthat\r=x().Set =x( ).Wehavethenws w1=s ;rpwithr=h\r; _i.Now0=ws =s ;rp(w)=s ;rpa()showsthata()"0or0"a().Ontheotherhand,wehavews =p\r+x(+m )=p\r+x+m =a()+m :If 0,thenm0showsthat0"a(),hencea(s )=a(0)"0"a()using(2).Supposenowthat &#x-5.1;䝀0.Setn=h; _i2Z.Itisclearthats ;np(p)=p.Sowehavea(0)=a(s ;np0).Notethats ;np0=s ;nps ;rpa()=a()+p(nr) andnr=h\r; _i=hx(); _i=h;x1( )_i=h; _i: 40J.C.JantzenSinceisantidominant,thelastequationyieldsnr0,hencea()+p(nr) "a().Nowwegeta(s )=a(s ;np0)"s ;np0=a()+p(nr) "a()asclaimed.G.7.(ProofoftheclaiminG.5)Ourmultiplicitiesareperiodic:Wehave[bZ(+p):bL(0+p)]=[bZ():bL(0)]forall;0;2Xsinceaddingpamountsjusttoashiftofthegrading.Each2Xcanbewrittenintheform=0+p1with12Xand02X1whereX1=f2Xj0h; _ipforallsimpleroots g:Actually,itwillbemoreconvenientforustoreplaceX1byX1p.SetW=fw2Wpjw2X1pg.Bytheobservationabovewegetall[bZ(x):bL(w)]ifweknowthemforallx2Wpandw2W.Wegetfrom[J1],II.9.13that[bZ(yx):bL(w)]=[bZ(x):bL(w)](1)forallw2W,x2Wp,andy2W.Itisthereforeenoughtoknowall[bZ(x):bL(w)]withw2Wandx2Wpsuchthatxisantidominant.SetW0equaltothesetofallx2Wpsuchthatxisantidominantandsuchthatthereexistsw2Wwithw"x.Thisisa nitesetcontainingW.WehavetoshowthattheCartanmatrixdeterminesall[bZ(x):bL(w)]withw2Wandx2W0.Usethenotationd(C)foranyalcoveCasin[J1],II.6.6(1).ChooseanumberingW0=fw1;w2;:::;wrgsuchthatd(wiA0)d(wjA0)impliesji.Itfollowsthatwi"wjimpliesji,cf.[J1],II.6.6.Inparticular,if[bZ(wj):bL(wi)]=0,thenji.Weuseinductiononi.Fori=1observethattheonlyrelevantmultiplicityis[bZ(w1):bL(w1)]=1.Letnowi&#x-270;&#x.122;1andassumethattheCartanmatrixdeterminesall[bZ(w):bL(ws)]withsiandw2Wp.Thereexistsaweightiwithwi2piX1.Sincewiisantidominant,soisi.Nowwipi2X1showthatthereexistswm2WwithwiA0=pi+wmA0.Ifi=0,thend(wmA0)&#x-318;&#x.308;d(wiA0),hencemi.Thereexists02A0withwipi=wm0.Weknowbyinduction(andtranslation)all[bZ(w0):bL(wm0)]andgetbyperiodicityall[bZ(w):bL(wi)]. Liealgebrasinpositivecharacteristic41Sosupposethati=0,i.e.,thatwi2W.WehaveintheGrothen-dieckgroup[bQ(wi)]=Xji[bZ(wj):bL(wi)]Xx2W[bZ(xwj)]:(2)Herewehaveused(1).Wewanttoshowbyinductiononlthatall[bZ(wl):bL(wi)]aredetermined.As[bZ(wi):bL(wi)]=1,wemayassumeli.Suppose rstthatwl2W.Then[bQ(wi):bL(wl)]isby(1)and(2)equaltoXjijWj[bZ(wj):bL(wi)][bZ(wj):bL(wl)]:(3)Byourinductiononiweknowall[bZ(wj):bL(wl)].Thismultiplicityis0unlessjl.Ifjl,thenweknow[bZ(wj):bL(wi)]byourinductiononl.Sotheonlyunknownsummandin(3)istheoneforj=lwherewegetjWj[bZ(wl):bL(wi)].Thisshowsthat[bZ(wl):bL(wi)]isdeterminedbytheCartanmatrix.Nowturntothecasewherewl=2W.Thereexistsanantidominantweight=0suchthatwl2pX1.Inthiscase[J1],II.9.13impliesforallthat[bZ():bL(wl)]=[bZ(a()):bL(wl)]:Sowegetfrom(2)that[bQ(wi):bL(wl)]isequaltoXji[bZ(wj):bL(wi)]Xx2W[bZ(a(xwj)):bL(wl)]:(4)Againweknowbyourinductiononiall[bZ(a(xwj)):bL(wl)].Ifthismultiplicityisnon-zero,thenwl"a(xwj).Sinceandwjareantidominant,wegetthenfromG.6(3)thatwl"a(wj),hencefromG.6(2)thatwl"wjandjl.Ifjl,thenweknow[bZ(wj):bL(wi)]byourinductiononl.Sotheonlyunknownsummandin(4)istheoneforj=lwhereweget[bZ(wl):bL(wi)]Xx2W[bZ(xwl):bL(wl)]:(Wedonotneedaanylonger.)Nowthesumoverxispositivesincealltermsarenon-negativeandtheoneforx=1isequaltoone.Weseeasabovethat[bZ(wl):bL(wi)]isdeterminedbytheCartanmatrix. 42J.C.JantzenForusefulcommentsonthe rstdraftofthissurveyIwanttothankN.Lauritzen,J.Humphreys,andD.Rumynin.References[AJS]H.H.Andersen,J.C.Jantzen,W.Soergel:Representationsofquan-tumgroupsatapthrootofunityandofsemisimplegroupsinchar-acteristicp:independenceofp,Asterisque220(1994)[BB1]A.Beilinson,J.Bernstein:Localisationdeg{modules,C.R.Acad.Sc.Paris(I)292(1981),15{18[BB2]A.Beilinson,J.Bernstein:AproofofJantzenconjectures,pp.1{50in:S.Gelfand,S.Gindikin(eds.),I.M.GelfandSeminar(Adv.SovietMath.16:1),Providence,R.I.1993(Amer.Math.Soc.)[BMR]R.Bezrukavnikov,I.Mirkovic,D.Rumynin:Localizationofmod-ulesforasemisimpleLiealgebrainprimecharacteristic,preprint,arXiv:math.RT/0205144v3[Bo]A.Borel:LinearAlgebraicGroups,2nded.(GraduateTextsinMath.126),NewYorketc.1991(Springer)[BG]K.A.Brown,I.Gordon:Therami cationofcentres:Liealgebrasinpositivecharacteristicandquantisedenvelopingalgebras,Math.Z.238(2001),733{779[Cu]C.W.Curtis:RepresentationsofLiealgebrasofclassicaltypewithapplicationstolineargroups,J.Math.Mech.9(1960),307{326[FP1]E.M.Friedlander,B.J.Parshall:ModularrepresentationtheoryofLiealgebras,Amer.J.Math.110(1988),1055{1093[FP2]E.M.Friedlander,B.J.Parshall:DeformationsofLiealgebrarepre-sentations,Amer.J.Math.112(1990),375{395[Go]I.Gordon:RepresentationsofsemisimpleLiealgebrasinpositivechar-acteristicandquantumgroupsatrootsofunity,pp.149{167in:A.Pressley(ed.),QuantumGroupsandLieTheory,Proc.Durham1999(LondonMath.Soc.LectureNotesSeries290),Cambridge2001(CambridgeUniv.)[GP]I.Gordon,A.Premet:Blockrepresentationtypeofreducedenvelopingalgebras.Trans.Amer.Math.Soc.354(2002),1549{1581[H1]J.E.Humphreys:ModularrepresentationsofclassicalLiealgebrasandsemisimplegroups,J.Algebra19(1971),51{79[H2]J.E.Humphreys:LinearAlgebraicGroups(GraduateTextsinMath.21),NewYorketc.1975(Springer)[H3]J.E.Humphreys:ModularrepresentationsofsimpleLiealgebras,Bull.Amer.Math.Soc.(N.S.)35(1998),105{122[Ja]N.Jacobson:LieAlgebras,3rdprinting(InterscienceTractsinPureandAppliedMath.10),NewYorketc.1966(Interscience/Wiley)[J1]J.C.Jantzen:RepresentationsofAlgebraicGroups(PureandAppliedMath.131),Orlandoetc.1987(Academic) Liealgebrasinpositivecharacteristic43[J2]J.C.Jantzen:Subregularnilpotentrepresentationsofslnandso2n+1,Math.Proc.CambridgePhilos.Soc.126(1999),223{257[J3]J.C.Jantzen:RepresentationsofLiealgebrasinprimecharacteristic,pp.185{235in:A.Broer(ed.),RepresentationTheoriesandAlge-braicGeometry,Proc.Montreal1997(NATOASIseriesC514),Dordrechtetc.1998(Kluwer)[J4]J.C.Jantzen:ModularrepresentationsofreductiveLiealgebras,J.PureAppl.Algebra152(2000),133{185[J5]J.C.Jantzen:SubregularnilpotentrepresentationsofLiealgebrasinprimecharacteristic,Represent.Theory3(1999),153{222[J6]J.C.Jantzen:NilpotentOrbitsinRepresentationTheory,NotesfortheEuropeanSummerSchoolinGroupTheory,Odense2000[Ka]V.G.Kats:OneprivodimyhpredstavlenihalgebrLiklassi-qeskogotipa(IrreduciblerepresentationsofLiealgebrasofclassicaltype),UspehiMat.Nauk27:5(1972),237{238[KW]V.Kac,B.Weisfeiler:Coadjointactionofasemi-simplealgebraicgroupandthecenteroftheenvelopingalgebraincharacteristicp,Indag.Math.38(1976),136{151[L1]G.Lusztig:Someproblemsintherepresentationtheoryof niteChevalleygroups,pp.313{317in:B.Cooperstein,G.Mason(eds.),TheSantaCruzConferenceonFiniteGroups,Proc.1979(Proc.Symp.PureMath.37),Providence,R.I.1980(Amer.Math.Soc.)[L2]G.Lusztig:PeriodicW{graphs,Represent.Theory1(1997),207{279[L3]G.Lusztig:BasesinequivariantK-theory,Represent.Theory2(1998),298{369[L4]G.Lusztig:Representationtheoryincharacteristicp,pp.167{178in:M.Maruyama,T.Sunada(eds.),TaniguchiConferenceonMath-ematicsNara'98,Proc.(Adv.Stud.PureMath.31),Tokyo2001(Math.Soc.Japan)[L5]G.Lusztig:BasesinequivariantK-theoryII,Represent.Theory3(1999),281{353[Mi]A.A.Mil'ner:IrreduciblerepresentationsofmodularLiealge-bras,Math.USSR-Izv.9(1975),1169{1187,translatedfrom:NeprivodimyepredstavelimodulrnyhalgebrLi,Izv.Akad.NaukSSSR(Serimatem.)39(1975),1240{1259[MR]I.Mirkovic,D.Rumynin:Geometricrepresentationtheoryofre-strictedLiealgebras,Transform.Groups6(2001),175{191[P1]A.N.Panov:IrreduciblerepresentationsoftheLiealgebrasl(n)overa eldofpositivecharacteristic,Math.USSRSbornik56(1987),19{32,translatedfrom:NeprivodimyepredstavlenialgebryLisl(n)nadpolempoloitel~noharakteristiki,Matem.Sb.128/170(1985)21{34[P2]A.N.Panov:IrreduciblerepresentationsofmaximaldimensionofsimpleLiealgebrasovera eldofpositivecharacteristic,Funct.Anal.Appl.23(1989),240{241,translatedfrom:Neprivodimye 44J.C.Jantzenpredstavlenimaksimal~norazmernostiprostyhalgebrLinadpolempoloitel~noharakteristiki,Funkc.analiziegopril.23:3(1989),80{81[Pr]A.Premet:IrreduciblerepresentationsofLiealgebrasofreductivegroupsandtheKac-Weisfeilerconjecture,Invent.math.121(1995),79{117[PS]A.Premet,S.Skryabin:RepresentationsofrestrictedLiealgebrasandfamiliesofassociativeL-algebras.J.reineangew.Math.507(1999),189{218[Ru]A.N.Rudakov:OnrepresentationsofclassicalsemisimpleLiealge-brasofcharacteristicp,Math.USSRIzvestiya4(1970),741{749,translatedfrom:OpredstavleniiklassiqeskihalgebrLivharakteristikep,Izv.Akad.NaukSSSR(Serimatem.)34(1970),735{743[VK]B.Yu.Veisfeiler,V.G.Kats:IrreduciblerepresentationsofLiep{algebras,Funct.Anal.Appl.5(1971),111{117,translatedfrom:Oneprivodimyhpredstavlenihp{algebrLi,Funkc.analiziegopril.5:2(1971),28{36[Za]H.Zassenhaus:TherepresentationsofLiealgebrasofprimecharac-teristic,Proc.GlasgowMath.Assoc.2(1954/56),1{36MatematiskInstitutAarhusUniversitetDK-8000AarhusCDenmark

Related Contents


Next Show more