/
Arbitrary nonparaxial accelerating Arbitrary nonparaxial accelerating

Arbitrary nonparaxial accelerating - PowerPoint Presentation

tatiana-dople
tatiana-dople . @tatiana-dople
Follow
397 views
Uploaded On 2017-12-02

Arbitrary nonparaxial accelerating - PPT Presentation

beams and applications to femtosecond laser micromachining F Courvoisier A Mathis L Froehly M Jacquot R Giust L Furfaro J M Dudley FEMTOST Institute University ID: 611896

courvoisier 2013 lett icam 2013 courvoisier icam lett beams opt accelerating 2012 mathis phys µm nonparaxial beam rev profile

Share:

Link:

Embed:

Download Presentation from below link

Download Presentation The PPT/PDF document "Arbitrary nonparaxial accelerating" is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Slide1

Arbitrary nonparaxial accelerating beams and applications to femtosecond laser micromachining

F. Courvoisier

, A

.

Mathis, L. Froehly, M. Jacquot, R. Giust, L. Furfaro, J. M. Dudley

FEMTO-ST InstituteUniversity of Franche-ComtéBesançon, FranceSlide2

Accelerating beamsAiry beams are invariant solutions of the paraxial wave equation.

Airy beams follow a parabolic trajectory: they are one example of accelerating beam

.

2F. Courvoisier, ICAM 2013

Siviloglou et al, Phys. Rev. Lett. 99, 213901 (2007)

PropagationTransverse dimensionIntensitySlide3

High-power accelerating beams3

F. Courvoisier, ICAM 2013

Polynkin

et

al, Science 324, 229 (2009)Airy beams can generate curved filaments.Lotti et al, Phys. Rev. A

84, 021807 (2011)BUT: paraxial trajectories, parabolic onlySlide4

Motivations4

F. Courvoisier, ICAM 2013

Aside from the fundamental interest for novel types of light waves, accelerating beams provide a novel tool for laser material processing.

Nonparaxial and arbitrary trajectories are needed.Slide5

OutlineWe have developed a caustic-based approach to synthesize arbitrary accelerating beams in the nonparaxial regime.

I- Direct space shapingII-Fourier-space shapingIII-Application to femtosecond laser micromachining

5

F. Courvoisier, ICAM 2013Slide6

Accelerating beams are caustics Accelerating beams can be viewed as caustics – an envelope of rays that forms a curve of concentrated light.

The amplitude distribution is accurately described diffraction theory and allows us to calculate the phase mask.

6

F. Courvoisier, ICAM 2013

S. Vo et al, J.Opt.Soc. Am. A 27 2574 (2010)M. V. Berry & C. Upstill, Progress in Optics XVIII (1980) "Catastrophe optics"J. F. Nye, “Natural focusing and fine structure of light”,IOP Publishing (1999).Slide7

Sommerfeld integral for the field at M :

Condition for M to beon the caustic:

Accelerating beams are caustics

7

F. Courvoisier, ICAM 2013I0(y)MInput Beam

y

z

y

M

Phase mask

F

y

=c(z)

M

. V.

Berry & C.

Upstill

, Progress in Optics XVIII (1980

) "Catastrophe optics"

J. F. Nye, “Natural focusing and fine structure of light”,IOP Publishing (1999).Slide8

Sommerfeld integral for the field at any point from distance u of M :

Condition for M to beon the caustic:

This provides the equation for the phase mask:

Accelerating beams are caustics

8F. Courvoisier, ICAM 2013I0(y)MInput Beam

y

z

y

M

Greenfield

et al.

Phys. Rev. Lett.

106

213902 (2011)

L. Froehly

et al

, Opt. Express

19

16455 (2011)

Phase mask

F

y

=c(z)Slide9

Shaping in the direct space. Experimental setup

Polarization direction

4-f telescope

Ti:Sa, 100 fs

800 nmNA 0.8F. Courvoisier, ICAM 20139Courvoisier et al, Opt. Lett. 37, 1736 (2012)Slide10

ResultsExperimental results are in excellent agreement with predictions from wave equation propagation using the calculated phase profile.

10

F. Courvoisier, ICAM 2013

L. Froehly

et al., Opt. Express 19 16455 (2011) Propagation dimension z (mm)Transverse dimension z (mm)Slide11

ResultsMultiple caustics can be used to generate Autofocusing waves

11

F. Courvoisier, ICAM 2013

N. K. Efremidis and D. N. Christodoulides,

Opt. Lett. 35, 4045 (2010).I. Chremmos et al, Opt. Lett. 36, 1890 (2011). L. Froehly et al, Opt. Express 19 16455 (2011) Slide12

Nonparaxial regimeArbitrary nonparaxial accelerating beams

12

F. Courvoisier, ICAM 2013

Circle

R = 35 µmParabolaQuartic

Numeric

Experiment

Courvoisier

et al, Opt. Lett

. 37, 1736

(2012)Slide13

A

Sommerfeld integral

for the

field:

An optical ray corresponds to a stationary point

Mapping & geometrical rays13F. Courvoisier, ICAM 2013I0(y)

Input

Beam

y

z

Greenfield

et al.

Phys. Rev. Lett.

106

213902 (2011)

Courvoisier

et al

,

Opt

.

Lett

.

37

,

1736

(2012)

Phase mask

F

y

=c(z)

B

C

A

f

(y)

y

C

f

(y)

y

B

f

(y)

y

Fold catastrophe associated to an Airy function

B

points realize a mapping from the SLM to the causticSlide14

Sommerfeld integral for the field at any point from distance u of M :

Non vanishing d3f/dy3

yields an Airy profile:

Transverse profile

14F. Courvoisier, ICAM 2013I0(y)MInput Beam

u

y

z

Input

intensity

profile

Local radius of

curvature

y

M

M

u

Courvoisier

et al

,

Opt

.

Lett

.

37

,

1736

(

2012)

Kaminer

et al

, Phys. Rev. Lett.

108

, 163901 (2012)Slide15

The parabolic Airy beam is not diffraction free in the nonparaxial regime

Circular accelerating beams are nondiffracting.

Transverse profile

15F. Courvoisier, ICAM 2013

Input intensity profileLocal radius of curvature

Mu

Courvoisier

et al,

Opt. Lett. 37, 1736 (2012)

Kaminer et al, Phys. Rev. Lett. 108

, 163901 (2012)Slide16

More rigourous theory also supports our resultsSlide17

The temporal profile is preserved on the caustic17

F. Courvoisier, ICAM 2013

15 fs pulse propagating along a circle

The pulse is preserved in the diffraction-free domain.Slide18

Beams are generated from the Fourier space

Fourier space shaping

18

F. Courvoisier, ICAM 2013

A/ cw, 632 nmB/ 100 fs, 800 nmD. Chremmos et al, Phys. Rev. A 85, 023828 (2012)Mathis et al, Opt. Lett., 38, 2218 (2013) Slide19

Beams are generated from the Fourier space

Debye-Wolf integral is used to accurately describe the microscope objective and the precise mapping of the Fourier frequencies.

Fourier space shaping

19

F. Courvoisier, ICAM 2013Leutenegger et al Opt. Express 14, 011277 (2006)Mathis et al, Opt. Lett., 38, 2218 (2013)

A/ cw, 632 nmB/ 100 fs, 800 nmSlide20

Arbitrary accelerating beams-nonparaxial regime20

F. Courvoisier, ICAM 2013

Bending over more than 95 degrees.

Numerical results are obtained from Debye integral and plane wave spectrum method.The phase masks that we can calculate analytically (circular and Weber beams) are the same as those obtained from Maxwell’s equations.

Numeric

ExperimentMathis et al

, Opt. Lett., 38

, 2218 (2013)Aleahmad et al

Phys. Rev. Lett. 109, 203902 (2012).P. Zhang et al Phys. Rev. Lett. 109, 193901 (2012).

Slide21

Arbitrary accelerating beams-nonparaxial regimeAn excellent agreement is then found with the target trajectories

21

F. Courvoisier, ICAM 2013

Mathis et al,

Opt. Lett.,

38

, 2218 (2013) Slide22

Periodically modulated accelerating beamsEach Fourier frequency corresponds to a single point on the caustic trajectory.

22

F. Courvoisier, ICAM 2013

M

Mathis et al, Opt. Lett., 38, 2218 (2013) Slide23

Periodically modulated accelerating beamsEach Fourier frequency corresponds to a single point on the caustic trajectory.

An additional amplitude modulation is performed by multiplying the phase mask by a binary function and Fourier filtering of zeroth order.

23

F. Courvoisier, ICAM 2013

MphaseSlide24

Periodically modulated accelerating beamsAdditional amplitude modulation allows us to generate periodic beams from arbitrary trajectories.

24

F. Courvoisier, ICAM 2013

Periodic Circular beam

Periodic Weber (parabolic) beamMathis et al, Opt. Lett., 38, 2218 (2013) Slide25

Spherical light

25

F. Courvoisier, ICAM 2013

Half-sphere with 50 µm radius

Alonso and Bandres, Opt. Lett. 37, 5175 (2012)Mathis et al, Opt. Lett., 38, 2218 (2013) Slide26

Spherical light

26

F. Courvoisier, ICAM 2013

Mathis et al,

Opt. Lett., 38, 2218 (2013) Slide27

Application-laser machiningBeam profile

27

F. Courvoisier, ICAM 2013

Propagation

Beam cross section3D View@ 5%@ 50%

Transverse distance (µm)Mathis et al, Appl. Phys. Lett. 101, 071110 (2012)Slide28

Edge profiling – 3D processing concept

28F. Courvoisier, ICAM 2013Slide29

Edge profiling – 3D processing concept

29F. Courvoisier, ICAM 2013Slide30

Results on silicon100 µm thick silicon slide initially cut squared

30

F. Courvoisier, ICAM 2013

Mathis

et al, Appl. Phys. Lett. 101, 071110 (2012)R=120 µm100 µmSlide31

Results on silicon – quartic profile31

F. Courvoisier, ICAM 2013

Mathis

et al, Appl. Phys. Lett. 101

, 071110 (2012)R=120 µm100 µmSlide32

It also works for transparent materials – diamond

32

F. Courvoisier, ICAM 2013

Mathis

et al, Appl. Phys. Lett. 101, 071110 (2012)50 µm

R=120 µmR=70 µm100 µmSlide33

Direct trench machining in silicon

Debris distribution is highly asymmetric.

33

F. Courvoisier, ICAM 2013

Mathis et al, Appl. Phys. Lett. 101, 071110 (2012)Mathis et al, JEOS:RP , 13019 (2013)Slide34

Analysis in terms of light propagation direction

Surface trench opening determines the depth of the trench

34

F. Courvoisier, ICAM 2013

Intensity on

top surfaceSlide35

Nonparaxial Debye–Wolf wave diffraction theory allows the design and experimental generation of arbitrary nonparaxial beams over arc angles exceeding 90°.E

xcellent agreement is found between experimental results and target trajectories.Additional amplitude modulation yields high contrast periodic accelerating beams.3D half-spherical fields have been reported.

Conclusions

35

F. Courvoisier, ICAM 2013We have developed a novel application of accelerating beams, ie curved edge profiling.