/
PHYS-2020:GeneralPhysicsIICourseLectureNotesSectionXIIDr.DonaldG.Lutte PHYS-2020:GeneralPhysicsIICourseLectureNotesSectionXIIDr.DonaldG.Lutte

PHYS-2020:GeneralPhysicsIICourseLectureNotesSectionXIIDr.DonaldG.Lutte - PDF document

tatiana-dople
tatiana-dople . @tatiana-dople
Follow
390 views
Uploaded On 2015-11-27

PHYS-2020:GeneralPhysicsIICourseLectureNotesSectionXIIDr.DonaldG.Lutte - PPT Presentation

AbstractTheseclassnotesaredesignedforuseoftheinstructorandstudentsofthecoursePHYS2020GeneralPhysicsIItaughtbyDrDonaldLuttermoseratEastTennesseeStateUniversityThesenotesmakereferencetotheCollegePhy ID: 206582

AbstractTheseclassnotesaredesignedforuseoftheinstructorandstudentsofthecoursePHYS-2020:GeneralPhysicsIItaughtbyDr.DonaldLuttermoseratEastTennesseeStateUniversity.ThesenotesmakereferencetotheCollegePhy

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "PHYS-2020:GeneralPhysicsIICourseLectureN..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

PHYS-2020:GeneralPhysicsIICourseLectureNotesSectionXIIDr.DonaldG.LuttermoserEastTennesseeStateUniversityEdition4.0 AbstractTheseclassnotesaredesignedforuseoftheinstructorandstudentsofthecoursePHYS-2020:GeneralPhysicsIItaughtbyDr.DonaldLuttermoseratEastTennesseeStateUniversity.ThesenotesmakereferencetotheCollegePhysics,10thHybridEdition(2015)textbookbySerwayandVuille. XII.MirrorsandLensesA.PlaneMirrors.1.Imagesformedbyplane(i.e.,\rat)mirrorshavethefollowingproperties:a)Theimageisasfarbehindthemirrorastheobjectisinfront.b)Theimageisunmagni ed,virtual,anderect.2.Imageorientation:a)Erect:Imageisorientedthesameastheobject.b)Inverted:Imageis\ripped180withrespecttotheob-ject.3.Imageclassi cation:a)Real:Imageisonthesamesideofmirrorastheobject=)lightraysactuallypassthroughtheimagepoint.b)Virtual:Imageisontheoppositesideofmirrorfromobject=)lightraysappeartodivergefromimagepoint.4.Imagesizeisdeterminedbythemagni cationofanobjectwhichisgivenbyMimageheightobjectheight=h0h.(XII-1)XII{1 XII{2PHYS-2020:GeneralPhysicsIIjMj�1=)Imageisbiggerthanobject(magni ed).jMj=1=)Imageisunmagni ed(likeaplanemirror).jMj1=)Imageissmallerthanobject(demagni ed).M&#x-7.9;硢0=)Imageiserect.M0=)Imageisinverted.M=0=)Noimageisformed.5.RayTracingRules:a)Imagesformatthepointwhereraysoflightactuallyin-tersect(forrealimages)orfromwhichtheyappeartooriginate(forvirtualimages).b)Forplanemirrors,p(theobjectdistancefromthemirror)=q(theimagedistancefromthemirror)andh=h0.c)Thefollowingdiagramshowshowimagesareconstructedforaplanemirror.i)Onerayrunsparalleltotheopticalaxis(?linetothemirrorsurfaceatthecenterofthemirror)fromtheheadoftheobject(e.g.,Ray1inthe gure).ii)Oneraytravelsfromtheheadtothemirroratthepointwheretheopticalaxisintersectsthemirror(e.g.,Ray2inthe gure). DonaldG.Luttermoser,ETSUXII{3B.SphericalMirrors1.Sphericalmirrorshavetheshapeofasegmentofasphere.a)Concavemirror:Re\rectingsurfaceisonthe\inside"ofthecurvedsurface.b)Convexmirror:Re\rectingsurfaceisonthe\outside"ofthecurvedsurface.2.Constructingtheimage.Considerthefollowingconcavemirror: XII{4PHYS-2020:GeneralPhysicsIIa)Thelinethatisnormaltothemirrorsurfaceattheexactcenteriscalledtheopticalaxisofthemirror.b)Thepointwheretheopticalaxisintersectsthemirrorsur-faceiscalledthevertex(labeled`V'intheprecedingdiagram).c)Point`C'indicatesthepositionofthecenterofcurva-tureofthemirror=)lineCVisequaltotheradiusofcurvature,R,ofthemirror.d)Notethatthelengthsp,q,andRareallmeasuredwithrespecttothevertexposition.Alsonotethattheobjectpositionislabeledwith`O'andtheimagepositionwith`I'intheprecedingdiagram.e)Constructtheimageusingthelawofre\rection:i=r;(XII-2)whereismeasuredwithrespecttothenormalofthemirrorsurface.The`negative'signisintroducedheretonotethatthere\rectedanglesweepsawayfromtheopticalaxisintheopposite`sense'oftheincidentangle.i)AllnormallinesonsphericalconcavemirrorsgothroughcenterofcurvaturepointC(i=r=0)!ii)Nowre\rectarayo thevertexofthemirrorV.f)Usingtrigonometry,weseethath0q=tanr&hp=tani:i)Sincei=r,wegettani=tanr,andhenceh0q=tani=hpor DonaldG.Luttermoser,ETSUXII{5M=h0h=qp.(XII-3)ii)Themagni cationalsocanbedeterminedbytheratiooftheimagetotheobjectdistance.g)Usingthe\ "trianglesintheprecedingdiagram,wecanwritetan =hpR&tan =h0Rq;orhpR=h0Rq;orh0h=RqpR:Finally,usingEq.(XII-3)givesqp=RqpR:SolvingthisaboveexpressiongivesRqq=pRpRq1=1RpRq+Rp=1+1=2:Finally,1p+1q=2R,(XII-4)whichisthemirrorequation.i)IfpR,then1=p2=R,sowesaythatasp!1,1=p!0and1q=2Rorq=R2 XII{6PHYS-2020:GeneralPhysicsII=)theimageisformed(i.e.,comestoafocus)halfwayouttothecenterofcurvature.ii)SowhenpR,thefocallengthofthemirrorisf=R2:(XII-5)iii)WhenpR,themirrorappears\thin"tothedistantobject,thereforeEq.(XII-5)iscalledthethinmirrorapproximationandwerewriteEq.(XII-4)as1p+1q=1f.(XII-6)3.BothconvexandconcavemirrorsuseEq.(XII-6),exceptthereisa\change"insignfortheradiusandfocallengthofthemirror.TableXII-1showsthesignconventionsusedforthegeometricopticsparametersforcurvedmirrors.4.ImagelocationcaneitherbedeterminedalgebraicallyfromEqs.(XII-3)&(XII-6)orbydrawingraydiagrams.Therearethreeprincipleraysthatde netheimagelocation(see guresonpageXII-8):a)Concavemirror:Ray1isdrawnparalleltotheopticalaxisandisre\rectedbackthroughthefocalpoint,F.b)Concavemirror:Ray2isdrawnthroughthefocalpoint,F,andre\rectedparalleltotheopticalaxis.c)Concavemirror:Ray3isdrawnthroughthecenterofcurvature,C,andre\rectedbackonitself. DonaldG.Luttermoser,ETSUXII{7TableXII{1:SignConventionsforCurvedMirrors+SIGNS{pobjectleftofmirrorobjectrightofmirror(realobject)(virtualobject)imagesamesideofimageoppositesideofqmirrorasobjectmirrorasobject(realimage)(virtualimage)hobjectiserectobjectisinvertedh0imageiserectimageisinvertedMimageisinsameimageisinvertedorientationasobjectwithrespecttoobjectRconcavemirrorconvexmirrorfconcavemirrorconvexmirrorsymbol XII{8PHYS-2020:GeneralPhysicsIId)Convexmirror:Ray4isdrawnparalleltotheopticalaxisandisre\rectedbackawayfromthefocalpoint,F,onthebacksideofthemirror.e)Convexmirror:Ray5isdrawntowardthefocalpoint,F,onthebacksideofthemirrorandre\rectedback,paralleltotheopticalaxis.f)Convexmirror:Ray6isdrawntowardthecenterofcurva-tureonthebacksideofthemirror,C,andre\rectedbackonitself.CFVaxisConcave Mirror Special RaysRay 1Ray 2Ray 3Radius Rf = R/2to objectFC DonaldG.Luttermoser,ETSUXII{9ExampleXII{1.Aconvexsphericalmirrorwithradiusofcur-vatureof10.0cmproducesavirtualimageone-thirdthesizeoftherealobject.Whereistheobject?Solution:Aconvexmirror(R0)willonlyproduceanerect,virtualimagesofrealobjects,thusM&#x-7.9;硢0.ThenEq.(XII-3)givesM=qp=+13orq=p=3.Usingthisinthemirrorequation(Eq.XII-4),weonlyneedtosolveforp,thelocationoftheobject:1p+1q=2R1p3p=2R2p=210:0cmp=+10:0cmortheobjectis10.0cminfrontofthemirror.C.ImagesFormedbyRefraction.1.UsingSnell'slawandalittletrigonometry,itcanbeshownthatn1p+n2q=n2n1R(XII-7)forasphericalsurfacethattransmitslight.a)n1=indexofrefractionofmediumcontainingtheobject.b)n2=indexofrefractionofmediumcontainingtheimage.c)Theothervariableshavethesamemeaningastheyhadformirrors. XII{10PHYS-2020:GeneralPhysicsII2.Furthermore,itcanbeshownthatthemagni cationgoingthroughsucha\transmitting"medium(i.e.,alens)isM=h0h=n1qn2p.(XII-8)Thesignconventionsarethesameasmirrorsexceptforq,whereq�0whentheimageisontheoppositesideofthelensandq0whentheimageisonthesamesideofthelensastheobject(seeTableXII-2).3.Planerefractingsurfacesdonotmagnifyimages:a)R!1,so(n2n1)=R!0=)n1=p+n2=q=0orq=n2n1p.(XII-9)b)Ascanbeseenfromthisequation,sinceqisnegative(assumingpispositive),theimageformedbyaplanerefractingsurfaceisonthesamesideofthesurfaceastheobject.D.ThinLenses1.Ifanobjectisplacedadistance,p,thatismuchfartherthanthefocallengthofalens,f(i.e.,pf),thenthethicknessofthelenscanbeconsiderednegligiblewithrespecttoq(theimagedistance),p,andf=)thinlensapproximation.2.Theimageformsatthefocallengthwhentheobjectis\in- nitely"faraway:p!1;1p!0or1p+1q=1f=)1q!1fasp!1: DonaldG.Luttermoser,ETSUXII{113.Thereare2basictypesoflenses:a)Converginglens:i)Lensthickeratcenterthanedges.ii)Lightraysarerefractedtowardsthefocalpoint,F,ontheothersideofthelens.FFb)Diverginglens:i)Lensthinneratcenterthanedges.ii)Lightraysarerefractedinadirectionawayfromthefocalpoint,F,ontheinnersideofthelens.FF4.Justaswehadformirrors,thethinlensequationis1p+1q=1f:(XII-10)withmagni cationbeinggivenbyMimageheightobjectheight=h0h=qp:(XII-11) XII{12PHYS-2020:GeneralPhysicsII5.Thefocallengthforalensinairisrelatedtothecurvaturesofitsfrontandbacksurfacesviathelensmaker'sequation:1f=(n1) 1R11R2!;(XII-12)wherenindexofrefractionofthelens,ffocallength(i.e.,distancefromthelenstothefocalpointF),R1radiusofcurvatureoffrontsurface,andR2radiusofcurvatureofbacksurface.6.ThevariablesinEqs.(XII-10,11,12)takeonpositiveornegativevaluesbasedupontheirrelativepositionswithrespecttothegivenlens.TableXII-2givesthesignconventionsforthinlenses.7.RayDiagramsforThinLenses(see guresonpageXII-14).a)The rstray(i.e.,Ray1)isdrawnparalleltotheopticalaxisfromthetopoftheobject.Afterbeingrefractedbythelens,thisrayeitherpassesthroughthefocalpoint,F,ontheothersideofthelens(foraconverginglens),orappearstocomefromthenearsidefocalpoint,F,infrontofthelens(foradiverginglens).b)Thesecondray(i.e.,Ray2)isdrawnfromthetopoftheobjectandthroughthecenterofthelens.Thisraycontinuesontheothersideofthelensasastraightline.c)Thethirdray(i.e.,Ray3)isdrawnthroughthefocalpoint,F,onthenearsideandemergesfromthelensontheoppositeside,paralleltotheopticalaxis. DonaldG.Luttermoser,ETSUXII{13TableXII{2:SignConventionsforThinLenses+SIGNS{pobjectinfrontoflensobjectinbackoflens(realobject)(virtualobject)qimageinbackoflensimageinfrontoflens(realimage)(virtualimage)hobjectiserectobjectisinvertedh0imageiserectimageisinvertedMimageisinsameimageisinvertedorientationasobjectwithrespecttoobjectR1;R2centerofcurvatureincenterofcurvatureinbackoflensfrontoflensfconverginglensdiverginglenssymbol XII{14PHYS-2020:GeneralPhysicsIIFFORay 1Ray 2Ray 3IFRONTBACKreal &invertedFFORay 1Ray 2Ray 3IFRONTBACKvirtual& erectFF DonaldG.Luttermoser,ETSUXII{158.Refractingtelescopesandmicroscopesuse2ormorelensesinunisontomagnifyimages.ExampleXII{2.Aprojectionlensinacertainslideprojectorisasinglethinlens.Aslide24.0mmhighistobeprojectedsothatitsimage llsascreen1.80mhigh.Theslide-to-screendistanceis3.00m.(a)Determinethefocallengthoftheprojectionlens.(b)Howfarfromtheslideshouldthelensoftheprojectorbeplacedinordertoformtheimageonthescreen?Solution(b):Forthisproblem,itiseasiertodothequestioninPart(b) rst,thenuseitsresultsinPart(a).Thequestiondoesn'ttelluswhattypeoflenstouse.However,sincetheimageisreal(i.e.,ontheothersideofthelensfromtheslide)andmagni ed,thelensmustbeaconverginglens.Also,toproduceareal,magni edimage,theimagewillalwaysbeinverted(i.e.,h00)goingthroughaconverginglens.Therefore,themagni cationequationgivesforthissetupthefollowingM=h0h=1:80m24:0103m=75:0=qp;orq=75:0p:Also,weknowthatp+q=3:00mp+75:0p=3:00m76:0p=3:00mp=3:95102m=39:5mm. XII{16PHYS-2020:GeneralPhysicsIISolution(a):NowwecanusethesolutionfromPart(b)todeterminetheanswerforPart(a).Thethinlensequation(Eq.XII-10)thengives1p+1q=1f1p+175:0p=1f75:075:0p+175:0p=1f76:075:0p=1ff=75:0p76:0=75:076:0(39:5mm)=39:0mm.