/
Path Integrals Path integrals were invented by Feynman while a graduate student as an Path Integrals Path integrals were invented by Feynman while a graduate student as an

Path Integrals Path integrals were invented by Feynman while a graduate student as an - PDF document

tawny-fly
tawny-fly . @tawny-fly
Follow
559 views
Uploaded On 2014-12-12

Path Integrals Path integrals were invented by Feynman while a graduate student as an - PPT Presentation

Our goal in this chapter is to show that quantum mechanics and quantum 64257eld theory can be completely reformulated in terms of path integrals The path integral formulation is particularly useful for quantum 64257eld theory 1 From Quantum Mechanic ID: 22616

Our goal this

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Path Integrals Path integrals were inven..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Eq.(1.4)canbecheckedbydi erentiatingbothsideswithrespecttotandverifyingthatj (t)iasde nedbyEq.(1.4)satis estheSchrodingerequation,andalsothecorrectboundaryconditionlimt!tij (t)i=j 0i:(1.6)WecallthesolutionEq.(1.4)`formal'onlybecauseisnoeasiertoevaluatetheexponentialoftheHamiltonianthanitistosolvetheSchrodingerequation.TherealuseofEq.(1.4)isforprovinggeneralresults.Thequantity^U(t;ti)def=e�i^H(t�ti)(1.7)thatappearsinEq.(1.4)iscalledthetimeevolutionoperator.Ifweknowthisoperator,itisclearthatweknoweverythingthereistoknowaboutthewaythesystemevolvesintime.Itisalsosucientto ndthematrixelementof^Ubetweenarbitrarypositioneigenstateshqfj^U(tf;ti)jqii:(1.8)Thisquantityissometimescalledthetimeevolutionkernel.(Notethatthe nalstateappearsontheleft.Wewillalwayswriteourexpressionssothat`latertimesareontheleft.')WebeginourderivationofthepathintegralbydividingthetimeintervalfromtitotfintoNequalintervalsoflengtht=tf�ti N:(1.9)(WewilleventuallytakethelimitN!1,t!0.)Wewritethetimeevolutionoperatorase�i^H(t�ti)=e�i^Hte�i^Hte�i^Ht| {z }Nfactors:(1.10)Wetheninsertacompletesetofstatesbetweeneachofthefactorsaboveusingthecompletenessrelation1=Zdqjqihqj:(1.11)Inthisway,weobtainhqfj^U(tf;ti)jqii=ZdqN�1Zdq1hqfje�i^HtjqN�1ihqN�1je�i^HtjqN�2ihq1je�i^Htjqii:(1.12)2 andtheidentitiesf(^q)jqi=f(q)jqi;hpjf(^p)=hpjf(p);(1.20)whichholdforanarbitraryfunctionf.NoticewhathashappenedinEq.(1.18):wehaveusedthecompletenessrelationtoreplacetheoperators^pand^qwithintegralsoverclassicalquantitiespandq.SubstitutingEq.(1.18)intoEq.(1.14),weobtainhqfj^U(tf;ti)jqii=ZdqN�1dpN�1 2Zdq1dp1 2Zdp0 2exp(iN�1Xn=0tpnqn+1�qn t�H(pn;qn)):(1.21)InthecontinuumlimitN!1,t!0,wecanidentifyqn+1�qn t!_q(t);N�1Xn=0tf(tn)!Ztftidtf(t):(1.22)WecanthenwriteEq.(1.21)inthecompactform hqfj^U(tf;ti)jqii=q(tf)=qfZq(ti)=qid[p]d[q]eiSH[p;q]; (1.23)where SH[p;q]=Ztftidthp(t)_q(t)�H(p(t);q(t))i; (1.24)andwehaveusedtheabbreviationsd[p]def=N�1Yn=0dpn 2;d[q]def=N�1Yn=1dqn:(1.25)Eq.(1.23)iscalledapathintegral(orfunctionalintegral)becausetheintegralisoverall`phase-spacepaths'(p(t);q(t)).Thepathq(t)mustsatisfytheboundaryconditionsq(ti)=qi,q(tf)=qf,whilethepathp(t)iscompletelyunconstrainedandisnotrelatedtoq(t)(or_q(t))inanyway.Weemphasizethatp(t)andq(t)arede nedbyintegratingoverthevaluesofp(t)andq(t)independentlyateachvalueoft,sothepathsthatcontributetothefunctionalintegralareingeneralhighlydiscontinuous.Itisoftenusefultohaveanintuitivepictureofthepathintegralasstatingthata4 neededtomakeexpressionswell-de ned.Forexample,inthisapproachthetransfermatrixbecomesTq0;q0=Zdp 2exp(i(q0�q)p�it(1�i)"p2 2m+V(q)#):(1.30)Thisintegraliswell-de nedaslongas�0becausethecoecientofp2intheexponenthasanegativerealpartthatsuppressestheintegrandasp!1.WenowperformtheintegraloverpinEq.(1.30).TheintegralhastheformofageneralizedGaussianintegralZ1�1dpe�1 2Ap2+Bp;Re(A)�0:(1.31)Wecanevaluatethisintegralbycompletingthesquareintheexponent�1 2Ap2+Bp=�1 2Ap�B A2+B2 2A(1.32)andshiftingthevariableofintegrationtop0=p�B=A:Z1�1dpe�1 2Ap2+Bp=eB2=(2A)Z1�1dp0e�1 2Ap02=eB2=(2A)2 A1=2:(1.33)ThistrickfordoingGaussianintegralswillbeusedrepeatedly.Applyingthisformula,weobtainTq0;q=m 2it1=2exp(it(1�i)24m 2 q0�q t(1�i)!2�V(q)35):(1.34)Notethatthetimealwaysappearswithasmallnegativeimaginarypart.Omittingtheifactorsforbrevity,thetime-evolutionkernelishqfj^U(tf;ti)jqii=m 2itN=2ZdqN�1Zdq1exp(iN�1Xn=0t"m 2qn+1�qn t2�V(qn)#):(1.35)NotethatthereisonefactorC=m 2it1=2(1.36)foreachqintegral,withonefactorleftover.Wethereforede nethepathintegralmeasuretobed[q]def=N�1Yn=1Cdqn:(1.37)6 where�0istakentozeroattheendofthecalculation.Notethatthisisequivalenttotheiprescriptionthatwasusedtomakethepathintegralwell-de nedabove.Insertingacompletesetofenergyeigenstates,wegethqfj^U(0;�T(1�i))jqii=Xne�iEnTe�EnThqfjnihnjqii:(1.44)TakingT!1,the-dependenttermsuppressesthecontributionofallexcitedstates,leavingonlythecontributionfromthegroundstaten=0:hqj^U(0;�T(1�i))jqii!eiE0T 0(qf) 0(qi):(1.45)Viewedasafunctionofqf,thisgivesthegroundstateofthesystemuptoa(singular)normalizationfactor.Therefore,wecanwrite 0(qf)=Nq(0)=qfZd[q]eiS[q]: (1.46)Here,theintegralisoverallpathsfromti!�1withtheiprescriptionisunder-stood,andNisa(singular)normalizationfactor.Thefactthattheiprescriptionprojectsoutthegroundstatewillbeusedfrequentlyinthefollowing.Thesingularnormalizationfactorsshouldnotbotheryoutoomuch.Conceptually,theyariseforthesamereasonasnon-normalizablestatesinquantummechanics,andwewillseehowtodealwiththemwhenwestartusingthepathintegraltocomputephysicalquantities.2FromPathIntegralstoQuantumMechanicsWenowreversetheprocedureaboveandshowhowtoreconstructtheoperatorformofquantummechanicsfromthepathintegral.Thatis,weattempttode neaquantum-mechanicalevolutionoperatorbythepathintegralwithagivenaction.Thereisonegeneralizationoftheprevioussectionthatwillbeneededhere.Inthediscussionabove,thepathintegralmeasureisindependentofq(seeEq.(1.36)).Asimpleexampleofaquantum-mechanicalsystemwithanontrivialpathintegralmeasureisgivenbyaparticlewithaposition-dependentmass,de nedbytheLa-grangianL=1 2m(q)_q2�V(q):(2.1)Thecanonicalmomentumisp=@L @_q=m(q)_q;(2.2)8 where~L(q;_q)=1 2m(q)_q2+i 2m0(q) m(q)_q�(m0(q))2 8m3(q)+V(q):(2.10)Again,the`extra'termscomefromtheoperatorordering.ThemeasurefactorisC(q)= m(q) 2it!1=2:(2.11)TheLagrangianappearinginthepathintegralisnotthesameastheclassicalLa-grangianwestartedwith.Thisshouldnotworryus,sinceweshouldaprioriallowallpossibletermsconsistentwithsymmetries(andrestrictedbyexperimentaldataifweareattemptingtodescribetherealworld).Anotherfeatureofthisexampleisthefactthatthemeasurefactordependsonq.Thepathintegralforthissystemcanthenbewritten hqfj^U(tf;ti)jqii=C(qi)q(tf)=qfZq(ti)=qid[q]eiS[q]: (2.12)Herethemeasureisde nedbyd[q]=limN!1N�1Yn=1C(qn)dqn;(2.13)wherethetimeintervalfromtitotfisdiscretizedintoNstepsasbefore.ThefactthatthemeasurefactorinEq.(2.12)involvesqiratherthanqforiginatesinthefactthatwechosetoorderthequantumHamiltoniansothat^pistotheleftof^q,ratherthantheotherwayaround.Itisclearthatphysicalquantitiesshouldnotdependonthischoice,andwewillseethatindeedthemeasurefactorC(q)cancelsoutwhenwecomputephysicalquantities.Wewanttoseeifwecande nethetimeevolutionoperatorusingtheright-handsideofthepathintegralEq.(2.12)withthegeneralizedmeasure.(Eq.(2.12)de nesthematrixelementsofthetimeevolutionoperatorforacompletesetofstates,whichisthesameasde ningtheoperator.)Inordertode neaconsistenttimeevolution,theoperator^U(tf;ti)de nedbythepathintegralmustbeunitary,anditmustsatisfythe`timecompositionrule'^U(tf;ti)=^U(tf;t)^U(t;ti)(2.14)10 Tocheckthis,wecomputehq0j^Tjqi=Zd(q)hq0je�iq^peitL(^q;q=t)jqi=Zd(q)hq0jq+qieitL(q;q=t)=eitL(q;(q0�q)=t):(2.22)Notethatthisde nesthematrixelementsof^Tinacompletesetofstates,sothesolutionisunique.Withthisresult,wecanwritethepathintegralasanintegral(sum)overinter-mediatestates:hqNj^U(tN;t0)jq0i=ZdqN�1dq1hqNj^T^CjqN�1ihq1j^T^Cjq0i;(2.23)where^C=C(^q).Thiscanbewrittenmuchmorecompactlyastheoperatorstatement^U(tN;t0)=(^T^C)N:(2.24)Thatis,^T^Cisthein nitesmaltimeevolutionoperator.Weseethat^Uisunitaryifandonlyiftheoperator^T^Cisunitary.Theoperator^Tde nedbyEq.(2.21)isnotunitarybyitself,sinceitisanintegral(sum)ofunitaryoperators.Unitarityof^T^Cisequivalenttohq0j(^T^C)y(^T^C)jqi!hq0jqi=(q0�q):(2.25)AshortcalculationanalogoustoEq.(2.22)giveshq0j(C^T)y(C^T)jqi=C(q0)C(q)Zd(q)exp(it"Lq;q t�L q0;q�q0+q t!#):Theintegralontheright-handsideisafunctionofqandq0thatissharplypeakedatq=q0forsmallt.Thereasonisthatforq06=q,thephaseoftheintegrandoscillateswildly,suppressingthevalueoftheintegral.Theintegralbecomesmoreandmoresharplypeakedast!0,andwehavehq0j(C^T)y(C^T)jqi!jC(q)j2(sharplypeakedfunctionofq0�q):(2.26)WecanchooseC(q)(asafunctionoft)sothatthishasunitareainthelimitt!0,i.e.theintegralisequalto(q�q0).12 Notethatthereareindependentquantumoperators^(~x)and^(~x)ateachspatialpoint~x.Tomakethiswell-de ned,wecanreplacethespatialcontinuumwithadiscretesquarelatticeofpointswithspacinga:~x=a(n1;n2;n3);(3.4)wheren1;n2;n3areintegers.Wethenhaveindependentoperators^~xand^~xateachlatticesite.ThequantumHamiltonianthen^H=X~xa32641 2^2~x+1 2X~j0@^~x+~j�^~x a1A2+V(^~x)375;(3.5)where~jrunsovertheunitlatticevectors(a;0;0);(0;a;0);(0;0;a).Wenowretracethestepsleadinguptothepathintegral.Wewanttoevaluatethetimeevolutionkernelhfj^U(tf;ti)jii=hfje�i^H(tf�ti)jii;(3.6)wherejiisaneigenstateofthe eldoperator:^~xji=~xji:(3.7)(Thatis,jiisasimultaneouseigenstateofalloftheoperators^~x.)WeagainbreakthetimeintervalintoNintervalsoflengtht=(tf�ti)=N,andinsertacompletesetofstatesjibetweeneachinterval.Inthisway,weobtaintheHamiltonianpathintegralhfj^U(tf;ti)jii=(~x;tf)=f(~x)Z(~x;ti)=i(~x)d[]d[]eiSH[;];(3.8)withHamiltonianactionSH[;]=N�1Xn=0tX~xa3"~x;n~x;n+1�~x;n t�1 22~x;n�1 2X~j ~x+~j;n�~x;n a!2�V(~x;n)#(3.9)�!ZtftidtZd3x_�1 22�1 2~r2�V();(3.10)14 is nite,andtheintegralscanbeapproximatednumerically.Thisapproachiscalled`lattice eldtheory,'andthereiscurrentlyamajorresearche ortunderwaytoperformquantum eldtheorycalculationsusingthisapproach.16