/
Application Report SNOAC October  Revised April  AN Sine Wave Generation Techniques Application Report SNOAC October  Revised April  AN Sine Wave Generation Techniques

Application Report SNOAC October Revised April AN Sine Wave Generation Techniques - PDF document

test
test . @test
Follow
505 views
Uploaded On 2014-12-21

Application Report SNOAC October Revised April AN Sine Wave Generation Techniques - PPT Presentation

ABSTRACT This application note describes the sine wave generation techniques to control frequency amplitude and distortion levels Contents Introduction ID: 27305

ABSTRACT This application note

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Application Report SNOAC October Revise..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

ApplicationReport SNOA665C–October1999–RevisedApril2013 AN-263SineWaveGenerationTechniques ..................................................................................................................................................... ABSTRACT Thisapplicationnotedescribesthesinewavegenerationtechniquestocontrolfrequency,amplitude,and distortionlevels. Contents 1Introduction..................................................................................................................3 2PhaseShiftOscillator.......................................................................................................3 3LowDistortionOscillation..................................................................................................4 4HighVoltageACCalibrator................................................................................................5 5NegativeResistanceOscillator............................................................................................7 6ResonantElementOscillator—TuningFork.............................................................................8 7ResonantElementOscillator—QuartzCrystal.........................................................................10 8ApproximationMethods...................................................................................................10 9SineApproximation—BreakpointShaper..............................................................................11 10SineApproximation—LogarithmicShaping............................................................................12 11SineApproximation—VoltageControlledSineOscillator............................................................13 12SineApproximation—DigitalMethods..................................................................................14 ListofFigures 1Phase-ShiftWaveOscillator...............................................................................................3 2BasicWeinBridge..........................................................................................................5 3MoreComplexWeinBridge...............................................................................................6 4WeinBridgeWaveforms...................................................................................................6 5GenerateHigh-VoltageSineWavesUsingIC-BasedCircuitsbyDrivingaTransformerinaStep-Up Mode.........................................................................................................................7 6LCSineWaveSourcesOfferHighStabilityandReasonableDistortionLevels...................................8 7TuningForkBasedOscillator.............................................................................................9 8OutputLevelsProvidedbytheTuningForkOscillator................................................................9 9StableQuartz-CrystalOscillatorsCanOperatewithaSingleActiveDevice......................................10 10AchieveMaximumFrequencyStabilitybyMountingtheOscillatorinanOvenandUsingaTemperature- ControllingCircuit.........................................................................................................10 11AVaractorNetworkCanFineTuneaCrystal.........................................................................11 12BreakpointShapingNetworksEmployDiodesThatConductinDirectProportiontoanInputTriangle WaveAmplitude..........................................................................................................11 13BreakpointShapingNetworkWaveforms..............................................................................12 14LogarithmicShapingScheme............................................................................................13 15Voltage-TunableOscillator...............................................................................................14 16Voltage-TunableOscillatorWaveforms.................................................................................14 17LogarithmicShaperWaveforms........................................................................................15 18LogShaper.................................................................................................................16 19FilteredSineOutput.......................................................................................................17 20DistortionLevels...........................................................................................................17 Alltrademarksarethepropertyoftheirrespectiveowners. 1 SNOA665C–October1999–RevisedApril2013 AN-263SineWaveGenerationTechniques SubmitDocumentationFeedback Copyright©1999–2013,TexasInstrumentsIncorporated www.ti.com ListofTables 1Sine-Wave-GenerationTechniques......................................................................................4 2 AN-263SineWaveGenerationTechniques SNOA665C–October1999–RevisedApril2013 SubmitDocumentationFeedback Copyright©1999–2013,TexasInstrumentsIncorporated www.ti.comIntroduction 1Introduction Producingandmanipulatingthesinewavefunctionisacommonproblemencounteredbycircuit designers.Sinewavecircuitsposeasignificantdesignchallengebecausetheyrepresentaconstantly controlledlinearoscillator.Sinewavecircuitryisrequiredinanumberofdiverseareas,includingaudio testing,calibrationequipment,transducerdrives,powerconditioningandautomatictestequipment(ATE). Controloffrequency,amplitudeordistortionlevelisoftenrequiredandallthreeparametersmustbe simultaneouslycontrolledinmanyapplications.Anumberoftechniquesutilizingbothanaloganddigital approachesareavailableforavarietyofapplications.Eachindividualcircuitapproachhasinherent strengthsandweaknesseswhichmustbematchedagainstanygivenapplication(seeTable1). 2PhaseShiftOscillator AsimpleinexpensiveamplitudestabilizedphaseshiftsinewaveoscillatorwhichrequiresoneICpackage, threetransistorsandrunsoffasinglesupplyappearsinFigure1.Q2,incombinationwiththeRCnetwork comprisesaphaseshiftconfigurationandoscillatesatabout12kHz.Theremainingcircuitryprovides amplitudestability.ThehighimpedanceoutputatQ2'scollectorisfedtotheinputoftheLM386viathe10 F-1Mseriesnetwork.The1Mresistorincombinationwiththeinternal50k\runitintheLM386divides Q2'soutputby20.ThisisnecessarybecausetheLM386hasafixedgainof20.Inthismannerthe amplifierfunctionsasaunitygaincurrentbufferwhichwilldrivean8\rload.Thepositivepeaksatthe amplifieroutputarerectifiedandstoredinthe5Fcapacitor.ThispotentialisfedtothebaseofQ3.Q3's collectorcurrentwillvarywiththedifferencebetweenitsbaseandemittervoltages.Sincetheemitter voltageisfixedbytheLM3131.2Vreference,Q3performsacomparisonfunctionanditscollectorcurrent modulatesQ1'sbasevoltage.Q1,anemitterfollower,providesservocontrolleddrivetotheQ2oscillator. IftheemitterofQ2isopenedupanddrivenbyacontrolvoltage,theamplitudeofthecircuitoutputmay bevaried.TheLM386outputwilldrive5V(1.75Vrms)peak-to-peakinto8\rwithabout2%distortion.A ±3Vpowersupplyvariationcauseslessthan±0.1dBamplitudeshiftattheoutput. APhase-shiftsinewaveoscillatorscombinesimplicitywithversatility.This12kHzdesigncandeliver5Vp-ptothe8\r loadwithabout2%distortion. Figure1.Phase-ShiftWaveOscillator 3 SNOA665C–October1999–RevisedApril2013 AN-263SineWaveGenerationTechniques SubmitDocumentationFeedback Copyright©1999–2013,TexasInstrumentsIncorporated LowDistortionOscillationwww.ti.com Table1.Sine-Wave-GenerationTechniques Typical Typical Typical Type Frequency Distortion Amplitude Comments Range (%) Stability (%) PhaseShift 10Hz–1MHz 1–3 3(Tighter Simple,inexpensivetechnique.Easilyamplitudeservo withServo controlled.Resistivelytunableover2:1rangewith Control) littletrouble.Goodchoiceforcost-sensitive,moderate- performanceapplications.Quickstartingandsettling. WeinBridge 1Hz–1MHz 0.01 1 Extremelylowdistortion.Excellentforhigh-grade instrumentationandaudioapplications.Relatively difficulttotune—requiresdualvariableresistorwith goodtracking.Takeconsiderabletimetosettleafter astepchangeinfrequencyoramplitude. LC 1kHz–10MHz 1–3 3 Difficulttotuneoverwideranges.HigherQthanRC Negative types.Quickstartingandeasytooperateinhigh Resistance frequencyranges. TuningFork 60Hz–3kHz 0.25 0.01 Frequency-stableoverwiderangesoftemperatureand supplyvoltage.Relativelyunaffectedbysevereshock orvibration.Basicallyuntunable. Crystal 30kHz–200MHz 0.1 1 Highestfrequencystability.Onlyslight(ppm)tuning possible.Fragile. Triangle- 1Hz–500kHz 1–2 1 Widetuningrangepossiblewithquicksettlingtonew DrivenBreak- frequencyoramplitude. PointShaper Triangle- 1Hz–500kHz 0.3 0.25 Widetuningrangepossiblewithquicksettlingtonew Driven frequencyoramplitude.Triangleandsquarewavealso Logarithmic available.Excellentchoiceforgeneral-purpose Shaper requirementsneedingfrequency-sweepcapabilitywith low-distortionoutput. DAC-Driven 1Hz–500kHz 0.3 0.25 SimilartoabovebutDAC-generatedtrianglewave Logarithmic generallyeasiertoamplitude-stabilizeorvary.Also, Shaper DACcanbeaddressedbycounterssynchronizedtoa mastersystemclock. ROM-Driven 1Hz–20MHz 0.1 0.01 Powerfuldigitaltechniquethatyieldsfastamplitude DAC andfrequencyslewingwithlittledynamicerror.Chief detrimentsarerequirementsforhigh-speedclock(e.g., 8-bitDACrequiresaclockthatis256×outputsine wavefrequency)andDACglitchingandsettling,which willintroducesignificantdistortionasoutput frequencyincreases. 3LowDistortionOscillation Inmanyapplicationsthedistortionlevelsofaphaseshiftoscillatorareunacceptable.Verylowdistortion levelsareprovidedbyWeinbridgetechniques.InaWeinbridgestableoscillationcanonlyoccurifthe loopgainismaintainedatunityattheoscillationfrequency.InFigure3thisisachievedbyusingthe positivetemperaturecoefficientofasmalllamptoregulategainastheoutputattemptstovary.Thisisa classictechniqueandhasbeenusedbynumerouscircuitdesigners*toachievelowdistortion.The smoothlimitingactionofthepositivetemperaturecoefficientbulbincombinationwiththenearideal characteristicsoftheWeinnetworkallowveryhighperformance.ThephotoofFigure4showstheoutput 4 AN-263SineWaveGenerationTechniques SNOA665C–October1999–RevisedApril2013 SubmitDocumentationFeedback Copyright©1999–2013,TexasInstrumentsIncorporated www.ti.comHighVoltageACCalibrator ofthecircuitofFigure2.Theuppertraceistheoscillatoroutput.Themiddletraceisthedownwardslope ofthewaveformshowngreatlyexpanded.TheslightaberrationisduetocrossoverdistortionintheFET- inputLF155.Thiscrossoverdistortionisalmosttotallyresponsibleforthesumofthemeasured0.01% distortioninthisoscillator.Theoutputofthedistortionanalyzerisshowninthebottomtrace.Inthecircuit ofFigure3,anelectronicequivalentofthelightbulbisusedtocontrolloopgain.Thezenerdiode determinestheoutputamplitudeandthelooptimeconstantissetbythe1M-2.2Fcombination. The2N3819FET,biasedbythevoltageacrossthe2.2Fcapacitor,isusedtocontroltheACloopgain byshuntingthefeedbackpath.ThiscircuitismorecomplexthanFigure2butoffersawaytocontrolthe looptimeconstantwhilemaintainingdistortionperformancealmostasgoodasinFigure3. NOTE:*IncludingWilliamHewlettandDavidPackardwhobuiltafewofthesetypecircuitsinaPalo Altogarageaboutfortyyearsago. 4HighVoltageACCalibrator Anotherdimensioninsinewaveoscillatordesignisstablecontrolofamplitude.Inthiscircuit,notonlyis theamplitudestabilizedbyservocontrolbutvoltagegainisincludedwithintheservoloop. A100Vrmsoutputstabilizedto0.025%isachievedbythecircuitofFigure2.Althoughcomplexin appearancethiscircuitrequiresjust3ICpackages.Here,atransformerisusedtoprovidevoltagegain withinatightlycontrolledservoloop.TheLM3900Nortonamplifierscomprisea1kHzamplitude controllableoscillator.TheLH0002bufferprovideslowimpedancedrivetotheLS-52audiotransformer.A voltagegainof100isachievedbydrivingthesecondaryofthetransformerandtakingtheoutputfromthe primary.Acurrent-sensitivenegativeabsolutevalueamplifiercomposedoftwoamplifiersofanLF347 quadgeneratesanegativerectifiedfeedbacksignal.ThisiscomparedtotheLM329DCreferenceatthe thirdLF347whichamplifiesthedifferenceatagainof100.The10Ffeedbackcapacitorisusedtoset thefrequencyresponseoftheloop.TheoutputofthisamplifiercontrolstheamplitudeoftheLM3900 oscillatortherebyclosingtheloop.Asshownthecircuitoscillatesat1kHzwithunder0.1%distortionfora 100Vrms(285Vp-p)output.IfthesummingresistorsfromtheLM329arereplacedwithapotentiometer theloopisstableforoutputsettingsrangingfrom3Vrmsto190Vrms(542Vp-p!)withnochangein frequency.IftheDAC1280D/AconvertershownindashedlinesreplacestheLM329reference,theAC outputvoltagecanbecontrolledbythedigitalcodeinputwith3digitcalibratedaccuracy. AAbasicWeinbridgedesignemploysalamp'spositivetemperaturecoefficienttoachieveamplitudestability. Figure2.BasicWeinBridge 5 SNOA665C–October1999–RevisedApril2013 AN-263SineWaveGenerationTechniques SubmitDocumentationFeedback Copyright©1999–2013,TexasInstrumentsIncorporated HighVoltageACCalibratorwww.ti.com AAmorecomplexversionoftheWeinbridgedesignprovidesthesamefeaturewiththeadditionaladvantageofloop time-constantcontrol. Figure3.MoreComplexWeinBridge ALow-distortionoutput(toptrace)isaWeinbridgeoscillatorfeature.Theverylowcrossoverdistortionlevel(middle) resultsfromtheLF155'soutputstage.Adistortionanalyzer'soutputsignal(bottom)indicatesthisdesign's0.01% distortionlevel. Figure4.WeinBridgeWaveforms Trace Vertical Horizontal Top 10V/DIV 10ms/DIV Middle 1V/DIV 500ns/DIV Bottom 0.5V/DIV 500ns/DIV 6 AN-263SineWaveGenerationTechniques SNOA665C–October1999–RevisedApril2013 SubmitDocumentationFeedback Copyright©1999–2013,TexasInstrumentsIncorporated www.ti.comNegativeResistanceOscillator AA1–A3=¼LM3900 A4=LH0002 A5–A7=¼LF347 T1=UTCLS-52 Alldiodes=1N914 *=low-TC,metal-filmtypes BYoucanrealizedigitalamplitudecontrolbyreplacingtheLM329voltagereferencewiththeDAC1287. Figure5.GenerateHigh-VoltageSineWavesUsingIC-BasedCircuitsbyDrivingaTransformerinaStep- UpMode 5NegativeResistanceOscillator AlloftheprecedingcircuitsrelyonRCtimeconstantstoachieveresonance.LCcombinationscanalsobe usedandoffergoodfrequencystability,highQandfaststarting. InFigure6anegativeresistanceconfigurationisusedtogeneratethesinewave.TheQ1-Q2pair providesa15Acurrentsource.Q2'scollectorcurrentsetsQ3'speakcollectorcurrent.The300k\r resistorandtheQ4-Q5LM394matchedpairaccomplishavoltage-to-currentconversionthatdecreases Q3'sbasecurrentwhenitscollectorvoltagerises.Thisnegativeresistancecharacteristicpermits oscillation.ThefrequencyofoperationisdeterminedbytheLCintheQ3-Q5collectorline.TheLF353 FETamplifierprovidesgainandbuffering.Powersupplydependenceiseliminatedbythezenerdiodeand theLF353unitygainfollower.Thiscircuitstartsquicklyanddistortionisinside1.5%. 7 SNOA665C–October1999–RevisedApril2013 AN-263SineWaveGenerationTechniques SubmitDocumentationFeedback Copyright©1999–2013,TexasInstrumentsIncorporated ResonantElementOscillator—TuningForkwww.ti.com ATransistorsQ1throughQ5implementanegative-resistanceamplifier. BTheLM329,LF353combinationeliminatespower-supplydependence. Figure6.LCSineWaveSourcesOfferHighStabilityandReasonableDistortionLevels 6ResonantElementOscillator—TuningFork Alloftheaboveoscillatorsrelyoncombinationsofpassivecomponentstoachieveresonanceatthe oscillationfrequency.Somecircuitsutilizeinherentlyresonantelementstoachieveveryhighfrequency stability.InFigure7atuningforkisusedinafeedbacklooptoachieveastable1kHzoutput.Tuningfork oscillatorswillgeneratestablelowfrequencysineoutputsunderhighmechanicalshockconditionswhich wouldfractureaquartzcrystal. Becauseoftheirexcellentfrequencystability,smallsizeandlowpowerrequirements,theyhavebeen usedinairborneapplications,remoteinstrumentationandevenwatches.Thelowfrequenciesachievable withtuningforksarenotavailablefromcrystals.InFigure7,a1kHzforkisusedinafeedback configurationwithQ2,onetransistorofanLM3045array.Q1provideszenerdrivetotheoscillatorcircuit. Theneedforamplitudestabilizationiseliminatedbyallowingtheoscillatortogointolimit.Thisisa conventionaltechniqueinforkoscillatordesign.Q3andQ4provideedgespeed-upanda5Voutputfor TTLcompatibility.EmitterfollowerQ5isusedtodriveanLCfilterwhichprovidesasinewaveoutput. Figure8,traceAshowsthesquarewaveoutputwhiletraceBdepictsthesinewaveoutput.The0.7% distortioninthesinewaveoutputisshownintraceC,whichistheoutputofadistortionanalyzer. 8 AN-263SineWaveGenerationTechniques SNOA665C–October1999–RevisedApril2013 SubmitDocumentationFeedback Copyright©1999–2013,TexasInstrumentsIncorporated www.ti.comResonantElementOscillator—TuningFork AQ1–Q5=LM3045array Y1=1kHztuningfork,ForkStandardsInc. AllcapacitorsinF BTuningforkbasedoscillatorsdon'tinherentlyproducesinusoidaloutputs.Butwhenyoudousethemforthispurpose, youachievemaximumstabilitywhentheoscillatorstage(Q1,Q2)limits.Q3andQ4provideaTTLcompatiblesignal, whichQ5thenconvertstoasinewave. Figure7.TuningForkBasedOscillator AThisdesigneasilyproducesaTTLcompatiblesignal(toptrace)becausetheoscillatorisallowedtolimit. BLow-passfilteringthissquarewavegeneratesasinewave(middle). CTheoscillator's0.7%distortionlevelisindicated(bottom)byananalyzer'soutput. Figure8.OutputLevelsProvidedbytheTuningForkOscillator Trace Vertical Horizontal Top 5V/DIV Middle 50V/DIV 500s/DIV Bottom 0.2V/DIV 9 SNOA665C–October1999–RevisedApril2013 AN-263SineWaveGenerationTechniques SubmitDocumentationFeedback Copyright©1999–2013,TexasInstrumentsIncorporated ResonantElementOscillator—QuartzCrystalwww.ti.com 7ResonantElementOscillator—QuartzCrystal Quartzcrystalsallowhighfrequencystabilityinthefaceofchangingpowersupplyandtemperature parameters.Figure9showsasimple100kHzcrystaloscillator.ThisColpittsclasscircuitusesaJFETfor lowloadingofthecrystal,aidingstability.Regulationwilleliminatethesmalleffects(5ppmfor20%shift) thatsupplyvariationhasonthiscircuit.Shuntingthecrystalwithasmallamountofcapacitanceallows veryfinetrimmingoffrequency.Crystalstypicallydriftlessthan1ppm/°Candtemperaturecontrolled ovenscanbeusedtoeliminatethisterm(Figure10).TheRCfeedbackvalueswilldependuponthe thermaltimeconstantsoftheovenused.Thevaluesshownaretypical.Thetemperatureoftheoven shouldbesetsothatitcoincideswiththecrystal'szerotemperaturecoefficientor“turningpoint” temperaturewhichismanufacturerspecified.Analternativetotemperaturecontrolusesavaractordiode placedacrossthecrystal(Figure11).Thevaractorisbiasedbyatemperaturedependentvoltagefroma circuitwhichcouldbeverysimilartoFigure10withouttheoutputtransistor.Asambienttemperature variesthecircuitchangesthevoltageacrossthevaractor,whichinturnchangesitscapacitance.Thisshift incapacitancetrimstheoscillatorfrequency. 8ApproximationMethods Alloftheprecedingcircuitsareinherentsinewavegenerators.Theirnormalmodeofoperationsupports andmaintainsasinusoidalcharacteristic.Anotherclassofoscillatorismadeupofcircuitswhich approximatethesinefunctionthroughavarietyoftechniques.Thisapproachisusuallymorecomplexbut offersincreasedflexibilityincontrollingamplitudeandfrequencyofoscillation.Thecapabilityofthistypeof circuitforadigitallycontrolledinterfacehasmarkedlyincreasedthepopularityoftheapproach. Figure9.StableQuartz-CrystalOscillatorsCanOperatewithaSingleActiveDevice Figure10.AchieveMaximumFrequencyStabilitybyMountingtheOscillatorinanOvenandUsinga Temperature-ControllingCircuit 10 AN-263SineWaveGenerationTechniques SNOA665C–October1999–RevisedApril2013 SubmitDocumentationFeedback Copyright©1999–2013,TexasInstrumentsIncorporated www.ti.comSineApproximation—BreakpointShaper AHere,thevaractorreplacestheovenandretunesthecrystalbychangingitsloadcapacitances. Figure11.AVaractorNetworkCanFineTuneaCrystal 9SineApproximation—BreakpointShaper Figure12diagramsacircuitwhichwill“shape”a20Vp-pwaveinputintoasinewaveoutput.The amplifiersservetoestablishstablebiaspotentialsforthediodeshapingnetwork.Theshaperoperatesby havingindividualdiodesturnonoroffdependingupontheamplitudeoftheinputtriangle.Thischanges thegainoftheoutputamplifierandgivesthecircuititscharacteristicnon-linear,shapedoutputresponse. Thevaluesoftheresistorsassociatedwiththediodesdeterminetheshapedwaveform'sappearance. IndividualdiodesintheDCbiascircuitryprovidefirstordertemperaturecompensationfortheshaper diodes.Figure13showsthecircuit'sperformance.TraceAisthefilteredoutput(note1000pFcapacitor acrosstheoutputamplifier).TraceBshowsthewaveformwithnofiltering(1000pFcapacitorremoved) andtraceCistheoutputofadistortionanalyzer.IntraceBthebreakpointactionisjustdetectableatthe topandbottomofthewaveform,butallthebreakpointsareclearlyidentifiableinthedistortionanalyzer outputoftraceC.Inthiscircuit,iftheamplitudeorsymmetryoftheinputtrianglewaveshifts,theoutput waveformwilldegradebadly.Typically,aD/Aconverterwillbeusedtoprovideinputdrive.Distortionin thiscircuitislessthan1.5%forafilteredoutput.Ifnofilterisused,thisfigurerisestoabout2.7%. AAlldiodes=1N4148 Allopamps=¼LF347 BThisactionchangestheoutputamplifier'sgaintoproducethesinefunction. Figure12.BreakpointShapingNetworksEmployDiodesThatConductinDirectProportiontoanInput TriangleWaveAmplitude 11 SNOA665C–October1999–RevisedApril2013 AN-263SineWaveGenerationTechniques SubmitDocumentationFeedback Copyright©1999–2013,TexasInstrumentsIncorporated SineApproximation—LogarithmicShapingwww.ti.com AAcleansinewaveresults(traceA)whenFigure12circuit'soutputincludesa1000pFcapacitor.Whenthecapacitor isn'tused,thediodenetwork'sbreakpointactionbecomesapparent(traceB).Thedistortionanalyzer'soutput(trace C)clearlyshowsallthebreakpoints. Figure13.BreakpointShapingNetworkWaveforms Trace Vertical Horizontal A 5V/DIV B 5V/DIV 20s/DIV C 0.5V/DIV 10SineApproximation—LogarithmicShaping Figure14showsacompletesinewaveoscillatorwhichmaybetunedfrom1Hzto10kHzwithasingle variableresistor.Amplitudestabilityisinside0.02%/°Canddistortionis0.35%.Inaddition,desired frequencyshiftsoccurinstantaneouslybecausenocontrollooptimeconstantsareemployed.Thecircuit worksbyplacinganintegratorinsidethepositivefeedbackloopofacomparator.TheLM311drives symmetrical,temperature-compensatedclamparrangement.TheoutputoftheclampbiasestheLF356 integrator.TheLF356integratesthiscurrentintoalinearrampatitsoutput.Thisrampissummedwiththe clampoutputattheLM311input.Whentherampvoltagenullsouttheboundvoltage,thecomparator changesstateandtheintegratoroutputreverses.Theresultant,repetitivetrianglewaveformisappliedto thesineshaperconfiguration.Thesineshaperutilizesthenon-linear,logarithmicrelationshipbetweenVbe andcollectorcurrentintransistorstosmooththetrianglewave.TheLM394dualtransistorisusedto generatetheactualshapingwhilethe2N3810providescurrentdrive.TheLF351allowsadjustable,low impedance,outputamplitudecontrol.WaveformsofoperationareshowninFigure17. 12 AN-263SineWaveGenerationTechniques SNOA665C–October1999–RevisedApril2013 SubmitDocumentationFeedback Copyright©1999–2013,TexasInstrumentsIncorporated www.ti.comSineApproximation—VoltageControlledSineOscillator AAlldiodes=1N4148 Adjustsymmetryandwave- shapecontrolsforminimumdistortion *LM311GroundPin(Pin1)atí15V BLogarithmicshapingschemesproduceasinewaveoscillatorthatyoucantunefrom1Hzto10kHzwithasingle control.Additionally,youcanshiftfrequenciesrapidlybecausethecircuitcontainsnocontrol-looptimeconstants. Figure14.LogarithmicShapingScheme 11SineApproximation—VoltageControlledSineOscillator Figure15detailsamodifiedbutextremelypowerfulversionofFigure14.Here,theinputvoltagetothe LF356integratorisfurnishedfromacontrolvoltageinputinsteadofthezenerdiodebridge.Thecontrol inputisinvertedbytheLF351.Thetwocomplementaryvoltagesareeachgatedbythe2N4393FET switches,whicharecontrolledbytheLM311output.Thefrequencyofoscillationwillnowvaryindirect proportiontothecontrolinput.Inaddition,becausetheamplitudeofthiscircuitiscontrolledbylimiting, ratherthanaservoloop,responsetoacontrolsteporrampinputisalmostinstantaneous.Fora0V–10V inputtheoutputwillrunover1Hzto30kHzwithlessthan0.4%distortion.Inaddition,linearityofcontrol voltagevsoutputfrequencywillbewithin0.25%.Figure16showstheresponseofthiscircuit(waveform B)toa10Vramp(waveformA). 13 SNOA665C–October1999–RevisedApril2013 AN-263SineWaveGenerationTechniques SubmitDocumentationFeedback Copyright©1999–2013,TexasInstrumentsIncorporated SineApproximation—DigitalMethodswww.ti.com AAdjustdistortionfor minimumat1Hzto10Hz Adjustfull-scalefor30kHz at10Vinput Alldiodes=1N4148 *Matchto0.1% BAvoltage-tunableoscillatorresultswhenFigure14'sdesignismodifiedtoincludesignal-level-controlledfeedback. Here,FETsswitchtheintegrator'sinputsothattheresultingsumming-junctioncurrentisafunctionoftheinputcontrol voltage.Thisschemerealizesafrequencyrangeof1Hzto30kHzfora0Vto10Vinput. Figure15.Voltage-TunableOscillator ARapidfrequencysweepingisaninherentfeatureofFigure15'svoltage-controlledsinewaveoscillator.Youcan sweepthisVCOfrom1Hzto30kHzwitha10Vinputsignal;theoutputsettlesquickly. Figure16.Voltage-TunableOscillatorWaveforms 12SineApproximation—DigitalMethods Digitalmethodsmaybeusedtoapproximatesinewaveoperationandofferthegreatestflexibilityatsome increaseincomplexity.Figure18showsa10-bitICD/Aconverterdrivenfromup/downcountersto produceanamplitude-stabletrianglecurrentintotheLF357FETamplifier.TheLF357isusedtodrivea shapercircuitofthetypeshowninFigure14.Theoutputamplitudeofthesinewaveisstableandthe frequencyissolelydependentontheclockusedtodrivethecounters.Iftheclockiscrystalcontrolled,the outputsinewavewillreflectthehighfrequencystabilityofthecrystal.Inthisexample,10binarybitsare usedtodrivetheDACsotheoutputfrequencywillbe1/1024oftheclockfrequency.Ifasinecodedread- 14 AN-263SineWaveGenerationTechniques SNOA665C–October1999–RevisedApril2013 SubmitDocumentationFeedback Copyright©1999–2013,TexasInstrumentsIncorporated www.ti.comSineApproximation—DigitalMethods only-memoryisplacedbetweenthecounteroutputsandtheDAC,thesineshapermaybeeliminatedand thesinewaveoutputtakendirectlyfromtheLF357.Thisconstitutesanextremelypowerfuldigital techniqueforgeneratingsinewaves.Theamplitudemaybevoltagecontrolledbydrivingthereference terminaloftheDAC.Thefrequencyisagainestablishedbytheclockspeedusedandbothmaybevaried athighratesofspeedwithoutintroducingsignificantlagordistortion.Distortionislowandisrelatedtothe numberofbitsofresolutionused.Atthe8-bitlevelonly0.5%distortionisseen(waveforms,Figure19; graph,Figure20)andfilteringwilldropthisbelow0.1%.InthephotoofFigure19theROMdirectedsteps areclearlyvisibleinthesinewaveformandtheDAClevelsandglitchingshowupinthedistortionanalyzer output.Filteringattheoutputamplifierdoesaneffectivejobofreducingdistortionbytakingoutthesehigh frequencycomponents. ALogarithmicshaperscanutilizeavarietyofcircuitwaveforms.TheinputtotheLF356integrator(Figure14)appears hereastraceA.TheLM311'sinput(traceB)isthesummedresultoftheintegrator'striangleoutput(C)andthe LM329'sclampedwaveform.Afterpassingthroughthe2N3810/LM394shaperstage,theresultingsinewaveis amplifiedbytheLF351(D).Adistortionanalyzer'soutput(E)representsa0.35%totalharmonicdistortion. Figure17.LogarithmicShaperWaveforms Trace Vertical Horizontal A 20V/DIV B 20V/DIV 20s/DIV C 10V/DIV D 10V/DIV E 0.5V/DIV 15 SNOA665C–October1999–RevisedApril2013 AN-263SineWaveGenerationTechniques SubmitDocumentationFeedback Copyright©1999–2013,TexasInstrumentsIncorporated SineApproximation—DigitalMethodswww.ti.com AMM74C00=NAND MM74C32=OR MM74C74=Dflip-flop MM74193=counters BDigitaltechniquesproducetriangularwaveformsthatmethodsemployedinFigure14cantheneasilyconverttosine waves.Thisdigitalapproachdividestheinputclockfrequencyby1024andusestheresultant10bitstodriveaDAC. TheDAC'striangularoutput—amplifiedbytheLF357—drivesthelogshaperstage.Youcouldalsoeliminatethelog shaperandplaceasine-codedROMbetweenthecounters'outputsandtheDAC,thenrecoverthesinewaveatpoint A. Figure18.LogShaper 16 AN-263SineWaveGenerationTechniques SNOA665C–October1999–RevisedApril2013 SubmitDocumentationFeedback Copyright©1999–2013,TexasInstrumentsIncorporated www.ti.comSineApproximation—DigitalMethods AAn8-bitsinecodedROMversionofFigure18'scircuitproducesadistortionlevellessthan0.5%.Filteringthesine output—shownherewithadistortionanalyzer'strace—canreducethedistortiontobelow0.1%. Figure19.FilteredSineOutput Trace Vertical Horizontal SineWave 1V/DIV 200s/DIV Analyzer 0.2V/DIV ADistortionlevelsdecreasewithincreasingdigitalwordlength.Althoughadditionalfilteringcanconsiderablyimprove thedistortionlevels(to0.1%from0.5%forthe8-bitcase),you'rebetteroffusingalongdigitalword. Figure20.DistortionLevels 17 SNOA665C–October1999–RevisedApril2013 AN-263SineWaveGenerationTechniques SubmitDocumentationFeedback Copyright©1999–2013,TexasInstrumentsIncorporated IMPORTANTNOTICE TexasInstrumentsIncorporatedanditssubsidiaries(TI)reservetherighttomakecorrections,enhancements,improvementsandother changestoitssemiconductorproductsandservicesperJESD46,latestissue,andtodiscontinueanyproductorserviceperJESD48,latest issue.Buyersshouldobtainthelatestrelevantinformationbeforeplacingordersandshouldverifythatsuchinformationiscurrentand complete.Allsemiconductorproducts(alsoreferredtohereinas“components”)aresoldsubjecttoTI’stermsandconditionsofsale suppliedatthetimeoforderacknowledgment. TIwarrantsperformanceofitscomponentstothespecificationsapplicableatthetimeofsale,inaccordancewiththewarrantyinTI’sterms andconditionsofsaleofsemiconductorproducts.TestingandotherqualitycontroltechniquesareusedtotheextentTIdeemsnecessary tosupportthiswarranty.Exceptwheremandatedbyapplicablelaw,testingofallparametersofeachcomponentisnotnecessarily performed. TIassumesnoliabilityforapplicationsassistanceorthedesignofBuyers’products.Buyersareresponsiblefortheirproductsand applicationsusingTIcomponents.TominimizetherisksassociatedwithBuyers’productsandapplications,Buyersshouldprovide adequatedesignandoperatingsafeguards. TIdoesnotwarrantorrepresentthatanylicense,eitherexpressorimplied,isgrantedunderanypatentright,copyright,maskworkright,or otherintellectualpropertyrightrelatingtoanycombination,machine,orprocessinwhichTIcomponentsorservicesareused.Information publishedbyTIregardingthird-partyproductsorservicesdoesnotconstitutealicensetousesuchproductsorservicesorawarrantyor endorsementthereof.Useofsuchinformationmayrequirealicensefromathirdpartyunderthepatentsorotherintellectualpropertyofthe thirdparty,oralicensefromTIunderthepatentsorotherintellectualpropertyofTI. ReproductionofsignificantportionsofTIinformationinTIdatabooksordatasheetsispermissibleonlyifreproductioniswithoutalteration andisaccompaniedbyallassociatedwarranties,conditions,limitations,andnotices.TIisnotresponsibleorliableforsuchaltered documentation.Informationofthirdpartiesmaybesubjecttoadditionalrestrictions. ResaleofTIcomponentsorserviceswithstatementsdifferentfromorbeyondtheparametersstatedbyTIforthatcomponentorservice voidsallexpressandanyimpliedwarrantiesfortheassociatedTIcomponentorserviceandisanunfairanddeceptivebusinesspractice. TIisnotresponsibleorliableforanysuchstatements. Buyeracknowledgesandagreesthatitissolelyresponsibleforcompliancewithalllegal,regulatoryandsafety-relatedrequirements concerningitsproducts,andanyuseofTIcomponentsinitsapplications,notwithstandinganyapplications-relatedinformationorsupport thatmaybeprovidedbyTI.Buyerrepresentsandagreesthatithasallthenecessaryexpertisetocreateandimplementsafeguardswhich anticipatedangerousconsequencesoffailures,monitorfailuresandtheirconsequences,lessenthelikelihoodoffailuresthatmightcause harmandtakeappropriateremedialactions.BuyerwillfullyindemnifyTIanditsrepresentativesagainstanydamagesarisingoutoftheuse ofanyTIcomponentsinsafety-criticalapplications. Insomecases,TIcomponentsmaybepromotedspecificallytofacilitatesafety-relatedapplications.Withsuchcomponents,TI’sgoalisto helpenablecustomerstodesignandcreatetheirownend-productsolutionsthatmeetapplicablefunctionalsafetystandardsand requirements.Nonetheless,suchcomponentsaresubjecttotheseterms. NoTIcomponentsareauthorizedforuseinFDAClassIII(orsimilarlife-criticalmedicalequipment)unlessauthorizedofficersoftheparties haveexecutedaspecialagreementspecificallygoverningsuchuse. OnlythoseTIcomponentswhichTIhasspecificallydesignatedasmilitarygradeor“enhancedplastic”aredesignedandintendedforusein military/aerospaceapplicationsorenvironments.BuyeracknowledgesandagreesthatanymilitaryoraerospaceuseofTIcomponents whichhavenotbeensodesignatedissolelyattheBuyer'srisk,andthatBuyerissolelyresponsibleforcompliancewithalllegaland regulatoryrequirementsinconnectionwithsuchuse. TIhasspecificallydesignatedcertaincomponentsasmeetingISO/TS16949requirements,mainlyforautomotiveuse.Inanycaseofuseof non-designatedproducts,TIwillnotberesponsibleforanyfailuretomeetISO/TS16949. Products Applications Audio www.ti.com/audio AutomotiveandTransportation www.ti.com/automotive Amplifiers amplifier.ti.com CommunicationsandTelecom www.ti.com/communications DataConverters dataconverter.ti.com ComputersandPeripherals www.ti.com/computers DLP®Products www.dlp.com ConsumerElectronics www.ti.com/consumer-apps DSP dsp.ti.com EnergyandLighting www.ti.com/energy ClocksandTimers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security PowerMgmt power.ti.com Space,AvionicsandDefense www.ti.com/space-avionics-defense Microcontrollers microcontroller.ti.com VideoandImaging www.ti.com/video RFID www.ti-rfid.com OMAPApplicationsProcessors www.ti.com/omap TIE2ECommunity e2e.ti.com WirelessConnectivity www.ti.com/wirelessconnectivity MailingAddress:TexasInstruments,PostOfficeBox655303,Dallas,Texas75265 Copyright©2013,TexasInstrumentsIncorporated