/
Introduction to Coding Theory CMU Spring  Notes  GilbertVarshamov bound January  Lecturer Introduction to Coding Theory CMU Spring  Notes  GilbertVarshamov bound January  Lecturer

Introduction to Coding Theory CMU Spring Notes GilbertVarshamov bound January Lecturer - PDF document

test
test . @test
Follow
503 views
Uploaded On 2015-02-26

Introduction to Coding Theory CMU Spring Notes GilbertVarshamov bound January Lecturer - PPT Presentation

Suppose we are interested in ary codes not necessarily linear of block length and minimum distance that have many codewords What is the largest size such a code can have This is a fundamental quantity for which we de64257ne a notation below De64257n ID: 39545

Suppose are interested

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Introduction to Coding Theory CMU Spring..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

TherealsoexistlinearcodesofsizegivenbytheGilbert-Varshamovbound:Exercise1Byasuitableadaptationofthegreedyprocedure,provethattherealsoexistsalinearcodeoverFqofdimensionatleastn�blogqVolq(n;d�1)c.TheGilbert-Varshamovboundwasactuallyprovedintwoindependentworks(Gilbert,1952)and(Varshamov,1957).Thelatteractuallyprovedtheexistenceoflinearcodesandinfactgotaslightlysharperboundstatedbelow.(YoucanverifythattheHammingcodeinfactattainsthisboundford=3.)Exercise2Foreveryprimepowerq,andintegersn;k;d,provethatthereexistsan[n;k;d]qlinearcodewithkn�blogqd�2Xj=0n�1j(q�1)jc�1:Infact,onecanprovethatarandomlinearcodealmostmatchestheGilbert-Varshamovboundwithhighprobability,sosuchlinearcodesexistinabundance.Butbeforestatingthis,wewillswitchtotheasymptoticviewpoint,expressingthelowerboundintermsoftheratevs.relativedistancetrade-o .1.1EntropyfunctionandvolumeofHammingballsWenowgiveanasymptoticestimateofthevolumeVolq(n;d)whend=pnforp2[0;1�1=q]held xedandngrowing.Thisvolumeturnsouttobeverywellapproximatedbytheexponentialqhq(p)nwherehq()isthe\entropyfunction"de nedbelow.De nition4(Entropyfunction)Forapositiveintegerq2,de netheq-aryentropyfunctionhq:[0;1]!Rasfollows:hq(x)=xlogq(q�1)�xlogqx�(1�x)logq(1�x):Ofspecialinterestisthebinaryentropyfunctionh(x)=xlog1 x+(1�x)log1 1�xwhereweusethenotationalconventionthatlog=log2.IfXisthef0;1g-valuedrandomvariablesuchthatP[X=1]=pandP[X=0]=1�p,thentheShannonentropyofX,H(X),equalsh(p).Inotherwords,h(p)istheuncertaintyintheoutcomeofap-biasedcointoss(whichlandsheadswithprobabilitypandtailswithprobability1�p).Thefunctionhqiscontinuousandincreasingintheinterval[0;1�1=q]withhq(0)=0andhq(1�1=q)=1.Thebinaryentropyfunctionissymmetricaroundthex=1=2line:h(1�x)=h(x).Wecande netheinverseoftheentropyfunctionasfollows.Fory2[0;1],theinverseh�1q(y)isequaltotheuniquex2[0;1�1=q]satisfyinghq(x)=y.2 1.4Somecommentsonattaining/beatingtheGVboundWehaveseenthatthereexistbinarylinearcodesthatmeettheGilbert-Varshamovbound,andthushaverateapproaching1�h()foratargetrelativedistanceof,01=2.Theproofofthiswasnon-constructive,basedonanexponentialtimealgorithmtoconstructsuchacode(byagreedyalgorithm),orbypickingageneratormatrix(oraparitycheckmatrix)atrandom.ThelatterleadstoapolynomialtimerandomizedMonteCarloconstruction.Iftherewereawaytoascertainifarandomlychosenlinearcodehastheclaimedrelativedistance,thenthiswouldbeapracticalmethodtoconstructcodesofgooddistance;wewillhaveaLasVegasconstructionthatpicksarandomlinearcodeandthenchecksthatithasgoodminimumdistance.Unfortunately,givenalinearcode,computing(orevenapproximating)thevalueofitsminimumdistanceisNP-hard.Anaturalchallengethereforeistogiveanexplicit(i.e.,deterministicpolynomialtime)constructionofacodethatmeetstheGilbert-Varshamovbound(i.e.,hasrateRandrelativedistanceclosetoh�1q(1�R)).Givingsuchaconstructionofbinarycodes(evennon-linearones)remainsanoutstandingopenquestion.Forprimepowersq=p2kforq49,explicitconstructionsofq-arylinearcodesthatnotonlyattainbutsurpasstheGVboundareknown!Thesearebasedonalgebraicgeometryandabeautifulconstructionofalgebraiccurveswithmanyrationalpointsandsmallgenus.Thisisalsooneoftherareexamplesincombinatoricswhereweknowanexplicitconstructionthatbeatstheparametersobtainedbytheprobabilisticmethod.(AnothernotableexampleistheLubotzky-Phillips-SarnakconstructionofRamanujangraphswhosegirthsurpassestheprobabilisticbound.)Whataboutcodesoversmalleralphabets,andinparticularbinarycodes?TheHammingupperboundonsizeofcodes(Lemma13inNotes1)leadstotheasymptoticupperboundR1�h(=2)ontherate.Thisiso byafactorof2inthecoecientofcomparedtotheachievable1�h()rate.WewilllaterseeimprovementstotheHammingbound,butthebestboundwillstillbefarfromtheGilbert-Varshamovbound.Determiningthelargestratepossibleforbinarycodesofrelativedistance2(0;1=2)isanotherfundamentalopenprobleminthesubject.ThepopularconjectureseemstobethattheGilbert-Varshamovboundonrateisasymptoticallytight(i.e.,abinarycodeofrelativedistancemusthaverate1�h()+o(1)),butarguablythereisnostrongevidencethatthismustbethecase.WhilewedonotknowexplicitconstructionsofbinarycodesapproachingtheGVbound,itisstillinterestingtoconstructcodeswhichachievegoodtrade-o s.Thisleadstothefollowingquestions,whicharethecentralquestionsincodingtheoryforanynoisemodel(oncesomeexistentialboundsareestablishedonthetrade-o s,thequestionsbelowpertainingtotheworst-caseoradversarialnoisemodelwhereweimposenorestrictiononthechannelotherthanalimitonthetotalnumberoferrorscaused):1.Canoneexplicitlyconstructanasymptoticallygoodfamilyofbinarycodeswitha\good"ratevs.relativedistancetrade-o ?2.Canoneconstructsuchcodestogetherwithanecientalgorithmtocorrectafractionoferrorsapproachinghalf-the-relativedistance(orevenbeyond)?Wewillanswerboththequestionsinthearmativeinthiscourse.5