/
Adjacency Queries in Dynamic Sparse Graphs Lukasz Kowalik Abstract We deal with the problem Adjacency Queries in Dynamic Sparse Graphs Lukasz Kowalik Abstract We deal with the problem

Adjacency Queries in Dynamic Sparse Graphs Lukasz Kowalik Abstract We deal with the problem - PDF document

trish-goza
trish-goza . @trish-goza
Follow
578 views
Uploaded On 2014-12-11

Adjacency Queries in Dynamic Sparse Graphs Lukasz Kowalik Abstract We deal with the problem - PPT Presentation

We consider graphs of bounded arboricity ie graphs with no dense subgraphs l ike for example planar graphs Brodal and Fagerberg WADS99 described a very simple line arsize data structure which processes queries in constant worstcase time and performs ID: 22078

consider graphs

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Adjacency Queries in Dynamic Sparse Grap..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

AdjacencyQueriesinDynamicSparseGraphs LukaszKowalikAbstractWedealwiththeproblemofmaintainingadynamicgraphsothatqueriesoftheform\isthereanedgebetweenuandv?"areprocessedfast.Weconsidergraphsofboundedarboricity,i.e.,graphswithnodensesubgraphs,likeforexampleplanargraphs.BrodalandFagerberg[WADS'99]describedaverysimplelinear-sizedatastructurewhichprocessesqueriesinconstantworst-casetimeandperformsinsertionsanddeletionsinO(1)andO(logn)amortizedtime,respectively.WeshowacomplementaryresultthattheirdatastructurecanbeusedtogetO(logn)worst-casetimeforquery,O(1)amortizedtimeforinsertionsandO(1)worst-casetimefordeletions.Moreover,ouranalysisshowsthatbycombiningthedatastructureofBrodalandFagerbergwithecientdictionariesonegetsO(logloglogn)worst-casetimeboundforqueriesanddeletionsandO(logloglogn)amortizedtimeforinsertions,withsizeofthedatastructurestilllinear.ThislastresultholdsevenforgraphsofarboricityboundedbyO(logkn),forsomeconstantk.Keywords:datastructures,graphalgorithms,adjacency,orientation,dynamic1IntroductionInthepresentpaperwestudyfullydynamicgraphs,i.e.,graphswhichchangeintimebymeansofinsertingandremovingedges(itisstraightforwardtoextendourresultsforthesituationwhenalsoverticesmaybeinsertedandremoved).Suchasettingraisesanaturalquestion:howtostorethestructureofthegraphinmemorysothatsomekindofinformationcanberetrievedfast.Morespeci cally,wefocusonthemostbasicsortofinformationaboutgraph:adjacency.InotherwordsweallowforprocessingqueriesoftheformAreverticesuandvadjacent?.Whenthegraphunderconsiderationisdense,e.g.ithas\n(n2)edges1thereisatrivialandecientsolution:storeanadjacencymatrix.Thenboththeupdatesandthequeriestakeconstanttime.However,forbigsparsegraphs,likeplanargraphs,suchtheapproachmaybeconsideredasunacceptablebecauseofhugememoryrequirementscomparedtotheactualsizeofthegraphstored.Henceweconsideronlydatastructuresoflinearspace InstituteofInformatics,WarsawUniversity,Banacha2,02-097,Warsaw,Poland.ThisworkwaspartiallydonewhentheauthorwasapostdocinMax-Planck-InstitutefurInformatik,Saarbrucken,Germany.E-mail:lkowalik@mimuw.edu.pl.SupportedinpartbyKBNgrant4T11C04425.1Throughoutthepapernandmdenotethenumberofverticesandedges,respectively.1 complexity.Thenonecanuseanotherclassicdatastructure:adjacencylists.Unfortunately,inthiscasetimeneededtoprocessaquerymaybetoolarge,unlessthereissomeboundonthevertices'degreesinthegraph.Inorderto xthatprobleminthecaseofplanargraphs,ChrobakandEppstein[5]usedthefactthatedgesofanundirectedplanargraphcanbeorientedsothatatmost3edgesleaveeveryvertex.Theynoticedthatitsucestostoretheadjacencylistsoftheresultingdirectedgraph{thenuandvareadjacentintheoriginalgraphifandonlyifuisintheadjacencylistofvorviceversa.However,ChrobakandEppsteinconsideredonlystaticgraphs.ThedynamiccasewasstudiedbyBrodalandFagerberg[4].Theyconsidermoregeneralclassthanplanargraphs{graphswitharboricityboundedbysomeconstantc.ArboricityofgraphG,denotedasarb(G),isthesmallestnumberofforestsneededtocoveralledgesofG.AtheorembyNash-Williams[13]saysthatarboricityisequaltomaxJdjE(J)j=(jV(J)j1)ewhereJisanysubgraphofGwithjV(J)j2verticesandjE(J)jedges.Intuitively,graphsofboundedarboricityareuniformlysparse,i.e.,theydonothavedensesubgraphs.(Inparticular,planargraphshavearboricity3.)BrodalandFagerbergshowhowtomaintainaboundedoutdegreeorientationofsuchgraphs.Clearlythisallowsforprocessingadjacencyqueriesinconstanttime.Theyshowthattheirupdatealgorithmisasymptoticallyoptimal(seeSection2fordetails).However,tighttimecomplexityanalysisoftheirapproachstillremainsopen.Theauthorswereabletoshowthatwhenorientationwithoutdegreeismaintained,4c,theamortizedtimeperoperationisconstantforinsertionsandO(logn)fordeletions.AnotheranalysisgivesO(1)worst-casedeletiontimeandO(logn)amortizedinsertiontime.Theseresultshaveapplicationsinboundedlengthshortestpathoracles[10]and,moresurprisingly,graphcoloring[9].OurResultsInthispaperweextendtheworkofBrodalandFagerberg[4]byusingaslightlydi erentapproach.Insteadofmaintainingoutdegreesintheorientationboundedbyaconstantandtryingtoreducetheupdatetime,weaskhowonecanboundtheoutdegrees,whiletheamortizedupdatetimeisconstant.However,sincethealgorithmofBrodalandFagerbergisasymptoticallyoptimal,thereisnoneedfordesigninganewone.Weshowthatwhentheiralgorithmissupposedtomaintainorientationwithoutdegree,for4c(blogcnc+1),insertionstakeO(1)amortizedtimeanddeletionsO(1)worst-casetime(recallthatcistheboundonarboricity).Clearly,thisallowsforprocessingadjacencyqueriesinO(logn)worst-casetimewhenthearboricityisbounded.Notethatintheapplicationsinwhichweareinterestedinthetotaltimeofthewholesequenceofoperations,likeforexamplewhentheorientationisusedasadatastructureinsomealgorithm,thisisoptimalwhentheupdatesarefrequentcomparedtoqueries,i.e.,theratioofnumberofupdatestothenumberofqueriesis\n(logn).2 DictionaryApproachAnothernaturalapproachtoourproblemisstoringtheinformationabouttheedgesofthedynamicgraphinadictionary,i.e.,adatastructurewhichenablesadding,removingand ndingkeys(elements).Inourcasetheseelementsareedgesofthegraph.Forconvenience,wewillassumethatverticesofthegraphareenumeratedfrom1tonandthatapairofverticesdescribinganedgecanbestoredinonewordofmemory(itiscommoninanalysisofgraphalgorithmstoassumethateachvertexcanbestoredinO(1)wordsofmemory).Dietzfelbingeretal.[6]showalinear-sizerandomizeddictionarybasedonhashingwithO(1)worst-casetimelookupsandO(1)amortizedexpectedtimeupdates.Withoutrandomizationthedynamicdictionaryproblemseemstobeharder:Mehlhorn,NaherandRauch[11]showthat\n(mloglogm)timeisneededforminsertionsinsomedeterministicmodeloflinear-spacedictionarythatencompassesbothhashingstrategiesandsearchtrees,whicharethetwomostecientsolutionstothedictionaryproblem.However,inourcase,whenthesizeoftheuniverse(numberofpossibleedges)israthersmall,thereisasolutionveryclosetothislowerbound.Namely,thedynamizationtechniquebyAnderssonandThorup[2]appliedtotheexponentialsearchtreesbyBeameandFich[3],achievestheO(loglogmloglogU logloglogU)worst-casetimeboundforbothlookupsandupdates,wheremisthenumberofkeysstoredandUisthemaximalkeystoredindictionary(itisassumedthatthedictionarystoresintegers).NotethatinthecaseofstoringedgesUn2,whichgivesusaboundofO(loglogn)2 logloglognontheworst-timecomplexityofeachoperation.OurResultsCombinedWithDictionaryApproachThemainassetofourresultissimplicityofthealgorithmwithitsasymptoticoptimalityinsituationswhentheupdatesareveryfrequent.However,bycombiningourapproachwithdeterministicdictionariesoneobtainstheoreticallyextremelyecientsolution:O(logloglogn)worst-casetimeforqueryandedgedeletionandO(logloglogn)amortizedtimeforinsertion,whenthedynamicgraphunderconsiderationhasarboricityboundedbyO(logkn),forsomeconstantk.Hencewegetthebestknowndeterministicmethodforstoringadjacencyofsparsegraphsinthesitu-ationwhenqueriesandupdatesappearsimilarlyoften.Thisshouldbecomparedwiththealreadymentioned\n(loglogn)lowerbound[11]foramortizedinsertiontimeinthedynamicdeterministicdictionarywhichstoresalltheedgesofthegraph.AdjacencyLabelingSchemesKannanetal.[8]introducedtheideaofalabelingscheme,whereeachvertexofagraphisassignedalabelsothatadjacencyoftwoverticescanbedecidedbasedonlyontheirlabels.WenotethathavinganorientationofagraphGonegetsalabelingschemeforGinwhichthelabelofavertexvisthenumberofvtogetherwiththenumbersofendverticesoftheedgesleavingv.ItfollowsthattheperformanceboundsfromboththepaperofBrodalandFagerbergandthepresentpapermaybereformulatedastherelevantspaceandtimeboundsfordynamiclabelingschemeingraphsofboundedarboricity.Theproblem3 ofmaintainingdynamicadjacencylabelswasalsoconsideredrecentlybyMorgan[12],whofocusedonthecaseoflinegraphs.ComparisonTheabovediscussionshowsthattherearetwoleadingapproachesfortheproblemofmaintainingadjacencyofadynamicgraphofboundedarboricity:randomizeddynamichashingandboundedoutdegreeorientations.Wepointoutthefollowingassetsoftheorientationapproach:deterministicalgorithm,theinformationisdistributedevenlyoverthenodesofthegraph(labellingscheme).2TheAlgorithmofBrodalandFagerbergInthissectionwesketchtheapproachfromthepaper[4].Wewillusethefollowingnotions.OrientationofanundirectedgraphGisadirectedgraph~GobtainedfromGbyreplacingeachedge,sayuv,eitherbyarc(u;v)orbyarc(v;u).Wewillalsosaythat~Gisad-orientationwhentheoutdegreeofeveryvertexdoesnotexceedd.Let~G1;~G2;:::;~Gtbeasequenceoforientations.WesaythatedgeuvisreorientedingraphGiwhenuvhasdi erentorientationsinGi1andGi.Eachsuchpair(uv;i)iscalledareorientation.However,thetermreorientationwithrespecttoanalgorithmwillmeansimplyanoperationofreversingtheorientationofanedge.ThealgorithmofBrodalandFagerbergworksasfollows.Letbetheboundonvertices'outdegreesthathastobemaintained.Thenwhenanedgeisremovedfromthegraphthealgorithmsimplyremovesitsorientedcounterpart.Afteraddinganedgethealgorithmorientsitarbitrarily.Next,aslongastheorientationcontainsavertexofoutdegreelargerthansuchavertexxispickedandtheorientationofalltheedgesleavingxisreversed.Clearly,thetotaltimeusedbytheabovealgorithmtomaintain-orientationduringasequenceofupdatesislinearinthelengthofthesequenceaddedtothenumberofreorien-tationsperformed.Thefollowinglemmastatesthattheabovealgorithmisasymptoticallyoptimalwithrespecttothenumberofreorientationsperformed.Itfollowsthatitisalsooptimalinrunningtimesinceitstimecomplexityislinearinthenumberofreorientationsandanyalgorithmwhichmaintainsorientationhastomakereorientations.Lemma2.1(BrodalandFagerberg[4]).Letbeasequenceofinsertionsanddeletionsonaninitiallyemptygraph.LetGibethegraphafteri-thoperationandletkdenotethenumberofedgeinsertions.Ifthereexistsasequence~G0;~G1;:::;~Gjjof-orientationswithatmostredgereorienta-tionsintotal,thenthealgorithmperformsatmost(k+r)+1 +124 edgereorientationsintotalonthesequence,provided2. 3AnalysisforLogarithmicOutdegreesLemma2.1impliesthatinordertoboundtheamortizedtimeofinsertoperationsinBrodal-Fagerbergalgorithmitsucestoconstructforanarbitrarysequenceofedgedeletionsandinsertions,asequenceoforientationsoftherelevantgraphswithasmallnumberofedgereorientations.However,inwhatfollowsweshowthatwhentheboundonoutdegreeislogarithmicinthelengthofthesequence,thenthereexistsasequenceoforientationswithnosinglereorientation.Lemma3.1.Anygraphwitharboricityccanbec-oriented.Proof.Theorientationcanbefoundbydecomposingthegraphintocforests,choosingarootineachtreeandorientingedgesofeachtreetowardsitsroot. Lemma3.2.LetG1;:::;Gtbeanysequenceofgraphswitharboricityboundedbyc.Thenthereexistsasequence~G1;:::;~Gtofc(blogtc+1)-orientationswithnoedgereorientations.Proof.Theproofisbytheinductionont.Fort=1thelemmaisequivalenttoLemma3.1.Nowassumet�1andletk=bt=2c.Let~G01;:::;~G0kbeasequenceofc(blogkc+1)-orientationsofgraphsG1;:::;Gkwithnoreorientations,whichexistsbytheinductionhypothesis.Sim-ilarly,whenk+2t,fromtheinductionhypothesisweget~G0k+2;:::;~G0t|asequenceofc(blogkc+1)-orientationsofgraphsGk+2;:::;Gtwithnoreorientations.Weset~Gk+1tobeac-orientationofgraphGk+1obtainedbyLemma3.1.Nowconsideranyi=k+1andanedgeuv2Gi.Ifuv2Gk+1,weorientuvin~Githesameasin~Gk+1.Otherwiseweorientuvin~Githesameasin~G0i.Clearly,foranyvertexv2~Giwehaveoutdeg~Gi(v)outdeg~G0i(v)+outdeg~Gk+1(v)c(blogkc+1)+cc(blogtc+1).Finally,weconsideranyedgeuvwhichispresentintwosuccessivegraphsGi,Gi+1andwewillshowthatitsorientationisthesame.Ifuv2Gk+1theorientationofuvinboth~Giand~Gi+1isthesameasin~Gk+1.Otherwisetheorientationsofuvin~Giand~Gi+1arethesameasin~G0iand~G0i+1,hencetheyarethesame. Inthefollowinglemmaweshowthatwhenoneallowsreorientations,theboundonout-degreesbecomesindependentfromthelengthofthesequence.Lemma3.3.LetG1;:::;Gtbeanysequenceofgraphswitharboricityboundedbycandlet beanyinteger.Thenthereexistsasequence~G1;:::;~Gtofc(blog nc+1)-orientationswithatmostct= reorientations.Proof.WepartitionthesequenceG1;:::;Gtintoblocksoflength n.Foreachi=0;:::;bt=( n)cgraphsinblockGi n+1;Gi n+2;:::;G(i+1) narec(blog nc+1)-orientedusingLemma3.2.5 Clearly,reorientationsmayappearonlyimmediatelyaftertheendofablock,i.e.,ingraphs~Gi n+1fori�0.Sincetherearebt=( n)csuchgraphsandeachofthemcontainsatmostc(n1)edges,hencethetotalnumberofreorientationsdoesnotexceedct= . Corollary3.4.Considerasequenceofedgeinsertionsanddeletionsperformedonaninitiallyemptygraphsuchthataftereachoperationtheresultinggraphhasarboricityboundedbyc.Letkbethenumberofinsertionsandlet beaninteger.WhenthealgorithmofBrodalandFagerbergissettomaintainorientationwithoutdegreeatmost=4c(blog nc+1)thenitperformsatmost2(k+2kc= )edgereorientations.Proof.Sincethenumberofdeletionsdoesnotexceedthenumberofinsertions,thesequenceofoperationshaslengthatmost2k.Thenthecorollaryfollowsimmediatelyfromlemmas2.1and3.3. Bysetting equaltotheboundonarboricitycwegetthefollowingtheorem.Theorem3.5.ThealgorithmofBrodalandFagerbergcanmaintainO(clogn)-orientationofaninitiallyemptydynamicgraphwitharboricityboundedbycwithconstantamortizedinsertiontimeandconstantworst-casedeletiontime. 4ApplyingDeterministicDictionariesIntheprevioussectionweanalyzedthetimecomplexityofthealgorithmofBrodalandFagerbergmaintainingO(clogn)-orientationofadynamicgraphwitharboricityboundedbyc.Nowconsideranimplementationofthisalgorithm,inwhichforeachvertexvthereisaseparatedictionarystoringtheendsoftheedgesleavingv.Moreover,lettheboundonarboricitybec=O(logkn),forsomeconstantk.Theorem3.5impliesthateachdictio-narystoresO(logk+1n)keysandeachedgeinsertioncausesamortizedconstantnumberofdictionaryinsertionsandworst-caseconstantnumberofdictionarydeletions(namely2).Inordertogetthebestbounds,wewillusethedictionaryobtainedbyapplyingthedynamizationtechniquebyAnderssonandThorup[2]tofusiontreesbyAndersson[1]andFredmanandWillard[7].Let!denotethememorywordlength(inbits)and#keysbethenumberofkeysstored.Then,asstatedin[2],thisdictionaryperformsboththelookupsandupdatesinworst-casetimeO(loglog#keys+log#keys log!).Sinceinourcasethewordlengthis!=O(logn)and#keys=O(logk+1n),wegettheboundofO(logloglogn)forallthethreeoperationsperformedonasingledictionary.ThisgivesusO(logloglogn)worst-casetimeforqueryandedgedeletionandO(logloglogn)amortizedtimeforinsertion.Finally,wenotethatinpracticalsituationsitmaybesucienttousedictionarieswhicharesimplerandeasierinimplementation,likesplaytreesforwhichwegetO(loglogn)amor-tizedtimebounds.Similarly,whenoneconsidersweakermodelthanthewordRAM,red-6 blacktreescanbeusedasdictionaries,givingO(loglogn)worst-casetimeforqueryandedgedeletionandO(loglogn)amortizedtimeforinsertion.References[1]A.Andersson.Fasterdeterministicsortingandsearchinginlinearspace.InProc.ofthe37thAnnualSymposiumonFoundationsofComputerScience(FOCS'96),pages135{141,1996.[2]A.AnderssonandM.Thorup.Tight(er)worst-caseboundsondynamicsearchingandpriorityqueues.InProc.ofthe32ndAnnualACMSymposiumonTheoryofComputing(STOC'00),pages335{342.ACMPress,2000.[3]P.BeameandF.F.Fich.Optimalboundsforthepredecessorproblemandrelatedproblems.J.Comput.SystemSci.,65:38{72,2002.[4]G.S.BrodalandR.Fagerberg.Dynamicrepresentationsofsparsegraphs.InProc.6thInt.WorkshoponAlgorithmsandDataStructures(WADS'99),volume1663ofLNCS,pages342{351,1999.[5]M.ChrobakandD.Eppstein.Planarorientationswithlowout-degreeandcompactionofadjacencymatrices.TheoreticalComputerScience,86(2):243{266,1991.[6]M.Dietzfelbinger,A.Karlin,K.Mehlhorn,andF.MeyeraufderHeide.Dynamicperfecthashing:Upperandlowerbounds.SIAMJ.Comput.,23(4):738{761,1994.[7]M.L.FredmanandD.E.Willard.Surpassingtheinformationtheoreticboundwithfusiontrees.J.Comput.SystemSci.,47:424{436,1993.[8]S.Kannan,M.Naor,andS.Rudich.Implicitrepresentationofgraphs.InProc.ofthe20thAnnualACMSymposiumonTheoryofComputing(STOC'88),pages334{343,NewYork,NY,USA,1988.ACMPress.[9] L.Kowalik.Fast3-coloringtriangle-freeplanargraphs.InS.AlbersandT.Radzik,editors,Proc.12thAnnualEuropeanSymposiumonAlgorithms(ESA2004),volume3221ofLectureNotesinComputerScience,pages436{447.Springer-Verlag,2004.[10] L.KowalikandM.Kurowski.Oraclesforboundedlengthshortestpathsinplanargraphs.ACMTrans.Algorithms,2(3):335{363,2006.[11]K.Mehlhorn,S.Naher,andM.Rauch.Onthecomplexityofagamerelatedtothedictionaryproblem.SIAMJ.Comput.,19(5):902{906,1990.7 [12]D.Morgan.Adynamicimplicitadjacencylabellingschemeforlinegraphs.InProc.9thInt.WorkshoponAlgorithmsandDataStructures(WADS'05),volume3608ofLNCS,pages294{305,2005.[13]C.S.J.A.Nash-Williams.Decompositionof nitegraphsintoforests.JournaloftheLondonMathematicalSociety,39:12,1964.8