/
Application Report SLLA February  Considerations for PCB Layout and Impedance Matching Application Report SLLA February  Considerations for PCB Layout and Impedance Matching

Application Report SLLA February Considerations for PCB Layout and Impedance Matching - PDF document

trish-goza
trish-goza . @trish-goza
Follow
536 views
Uploaded On 2014-12-16

Application Report SLLA February Considerations for PCB Layout and Impedance Matching - PPT Presentation

HighPerformance Analog Applications ABSTRACT The optical module offers an effective highspeed solution for growing telecom market Data rates range from 155 Mbps to Gbps and even up to 10 Gbps Transmitter optical subassemblies TOSAs and laser drivers ID: 24888

HighPerformance Analog Applications ABSTRACT

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Application Report SLLA February Consid..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

ApplicationReport SLLA311–February2011 ConsiderationsforPCBLayoutandImpedanceMatching DesigninOpticalModules DanielLong................................................................................High-PerformanceAnalogApplications ABSTRACT Theopticalmoduleoffersaneffectivehigh-speedsolutionforagrowingtelecommarket.Dataratesrange from driversmayhavedifferentresistancesinagivenapplication,sothereflectioncouldbeworseifthe designerdoesnotuseanimpedancetransfercircuittoabsorbit.Additionaluncertainnoiseandreflection couldalsocomefrompoorprintedcircuitboard(PCB)layoutaswell.Thisreportdiscusses impedancetransfercircuitwhenweconnectamismatchedtraceandnon-terminatedTOSA,aswellas whatweshouldtakeintoconsiderationwhenwelayoutthePCBforopticaldesign.Thisdocument primarilyreferstotheONET8501VVCSELdriverandtheONET1101LDFBdriverasthedevicesunder consideration. Contents 2ImpedanceTransferCircuitConsiderations.............................................................................3 3ExamplesforImpedanceTransferAnalysis.............................................................................5 4TestResults.................................................................................................................7 5PCBLayoutConsiderationsforOpticalModules.......................................................................9 6Summary 7References.................................................................................................................11 ListofFigures 1ReflectionPointsonanOpticalModule..................................................................................2 2InternalStructureofTerminatedTOSA.................................................................................3 3OpticalModuleDriveModes..............................................................................................4 5ImpedanceTransferforMismatchedSourceandLoad...............................................................5 6EyeDiagramAftertheImpedanceTransferCircuit....................................................................6 7ImpedanceTransferCircuitforTOSAandDriver......................................................................6 8ONET1101LTestResults:PoorPerformance 9ONET1101LTestResults:ImprovedPerformance.....................................................................8 10LossvsLengthandFrequency...........................................................................................9 11PhysicalGeometriesofDifferentialTraces..............................................................................9 12PCBTraceStubsandDiscontinuities..................................................................................10 13DifferentialSignalPairLengthsonPCBs 14PCBTraceLayoutwithRadialBends..................................................................................11 Alltrademarksarethepropertyoftheirrespectiveowners. 1 SLLA311–February2011 ConsiderationsforPCBLayoutandImpedanceMatchingDesigninOptical Modules SubmitDocumentationFeedback ©2011,TexasInstrumentsIncorporated Introductionwww.ti.com 1Introduction Theopticalmoduleoffersanattractivehigh-speedsolutionforagrowingtelecommarket.Datarates rangefrom155Mbpsto6Gbpsandarenowapproaching10Gbps.Insuchultrahigh-speedfrequency areas,closeattentionmustbepaidtothePCBlayoutandimpedancematchingbecausetheseissuescan seriouslyaffecttheoutputperformanceanddestroytheresults. Generally,impedancematchingismodeledbysoftwaresimulationormanualcomputations.However, opticalmodulesareanapplicationwithseveralconstrainingfactors:frequencyoverGbps;variationsinthe laserdrivermodel;theactualtransmissionlines;and,mostimportantly,thelaserTOSA.Thesefactors oftenmakeitdifficulttosimulateimpedancematchingprecisely.Asaresult,evenwithgoodmodelsto predicttheoperatingconditionswithrelativeaccuracy,designersoftencannoteasilyobtainresultsthat matchwellwithactualmeasurements. Intheopticaldesignapproachdiscussedinthisdocument,impedancemismatchresultsinreflection.We willusea10-Gdirectmodulaterlaser(DML)moduleboardasourexample.Figure1showsthefour reflectionpointsthatoccurwhenusingthistypeofDMLboard. Figure1.ReflectionPointsonanOpticalModule Thetechniquediscussedhereincludesananalysisofthesignalpaththatcangeneratereflectionsfrom thedrivertothelaser(TOSA)infourareas: 1.TheICpintothetrace 2.ThePCBtraceonboard 3.ThePCBtracetotheflexcable 4.TheflexcabletoTOSA(ROSA)elements Atpoint2,thereflectionisprimarilygeneratedbythePCBlayout.Fortheotherpoints,thereflectionsare aresultofimpedancemismatching.Atanimpedancemismatch,aportionofthetransmittedsignalis reflectedbacktowardsthesignalsource,anditcanpropagatebackandforthinthetraceuntilitis attenuated.Thereflectedsignalscaninterferewiththeprimarytransmittedsignal,increasingthedatajitter andreducingtheSNR.ThereflectedenergycanbeterminatedbyadriverbasedontheSDD22 specification.Ifthereflectedenergyistoohigh,weneedanadditionalcircuittooptimizetheimpedance matchingsothatthereflectedenergycanbeabsorbed. 2 ConsiderationsforPCBLayoutandImpedanceMatchingDesigninOptical SLLA311–February2011 Modules SubmitDocumentationFeedback ©2011,TexasInstrumentsIncorporated www.ti.comImpedanceTransferCircuitConsiderations 2ImpedanceTransferCircuitConsiderations Itiswellknownthattheamountofreflectedsignalfromtheloaddependsonthedegreeofmismatch betweenthesourceimpedanceandtheloadimpedance.Thereflectioncoefficientexpressionisdefined asshowninEquation1: (1) Inthisequation,Z0isthetransmissionlineimpedance;thisfactorisusuallyaconstantwithanindustry normalizedvaluesuchas50\ror100\r.Inamatchedsystem,whentheloadimpedanceZLmatchesthe transmissionlineimpedance,+L=0andwehavezeroreflection.Thisobjectiveisthetargetofthecircuit design. Inthereceiverportionoftheopticaldesign,theinputandoutputofthelimitingamplifierandtheoutputof thetransimpedanceamplifierareall100-\rdifferentialimpedance;thus,thetransmissionlinesare100-\r differential,andmatchingisrelativelyeasy. However,thetransmitterpartisnotsosimpletodesign.Adistributedfeedback(DFB)orFabry-Perot(FP) laserisalow-resistancecomponent,typicallyrangingfrom7\rto10\r.TheflexiblePCBcableis commonlya25-\r,single-endedtrace.Thereisareflectionattheinterconnectionbetweentheflexcable andtheTOSAatpoint4;refertoFigure1.Forreducingsuchreflection,sometypesofTOSAsintegrate resistorstoincreasetheTOSAimpedance,asillustratedinFigure2. Figure2.InternalStructureofTerminatedTOSA SuchTOSAsareintendedforsingle-endedapplications.Thetotalinternalresistanceiscloseto25\rand thetransmissionlinecanbemoreeasilymatchedtotheTOSAwithaminimumamountofreflection. However,manyopticaldesignersprefertousedifferentialmoderatherthansingle-endedmodetoavoid issueswithcommon-modenoiseandelectromagneticinterference(EMI). 3 SLLA311–February2011 ConsiderationsforPCBLayoutandImpedanceMatchingDesigninOptical Modules SubmitDocumentationFeedback ©2011,TexasInstrumentsIncorporated ImpedanceTransferCircuitConsiderationswww.ti.com Figure3comparesanopticalmoduledriverinbothsingle-ended(a)anddifferential(b)modes. Figure3.OpticalModuleDriveModes Inordertomatchthe50-\rdifferentialtransmissionlinesindifferentialmode,afully-matchedTOSAwith two20-\rinternalresistors,togetherwiththelaserresistance,resultsinaloadresistancecloseto50\r. Onepotentialproblemisthattheresistorsconsumecurrentandheatthelaser,whichreducestheoverall efficiencyofthelaser.Thedrivermustsupplymoremodulationandbiascurrenttomaintaintheextinction ratio(ER)andaverageopticalpower(PAV)settingbecauseofthehighertemperatureofthelaser.The greaterpowerconsumptionmakessuchfully-matchedTOSAsverydifficulttouse,especiallyforSFP+ modulesthatrequireatotalpowerdissipationoflessthan1W.Becauseofthispowerconsumptioneffect, manycustomershaveswitchedtounmatchedTOSAswithoutinternalresistors.TheTOSAreflectionis inevitableandreliesonthedriverorimpedancetransfercircuittoabsorbthereflectedenergy.Inrecent years,mostopticalcustomershavetransitionedtheirdesignstouseunmatchedTOSAs. 4 ConsiderationsforPCBLayoutandImpedanceMatchingDesigninOptical SLLA311–February2011 Modules SubmitDocumentationFeedback ©2011,TexasInstrumentsIncorporated www.ti.comExamplesforImpedanceTransferAnalysis 3ExamplesforImpedanceTransferAnalysis Thissectionreviewsseveralexamplesfortheimpedancetransferanalysis. 3.1Impedance-MatchedSystems Animpedance-matchedsystem,suchasthatillustratedinFigure4,doesnotneedanimpedancetransfer circuit. Figure4.MatchedSystem IntheONET8501Vapplicationpresentedhere,theoutputimpedanceis100-\rdifferential;the transmissionlineisalso100\r,andtheloadis100-\rVCSELTOSA.Theresistancematchesverywell andproducesminimumreflection. 3.2ImpedanceTransferforMismatchedSourceandLoad Figure5illustratestheimpedancetransferconfigurationforamismatchedsourceandload. Figure5.ImpedanceTransferforMismatchedSourceandLoad 5 SLLA311–February2011 ConsiderationsforPCBLayoutandImpedanceMatchingDesigninOptical Modules SubmitDocumentationFeedback ©2011,TexasInstrumentsIncorporated ExamplesforImpedanceTransferAnalysiswww.ti.com Thelaserdriveris50-\rdifferentialoutputandthetestloadimpedanceis100-\rdifferentialinorderto transfertheimpedancebetweenthesourceandload,usingtheŒresistornetworktobuildupthe impedancetransfercircuit.Groundingwith35-\rand220-\rresistorsanda50-\rseriesresistor,the greatestamountofreflectioncouldbeattenuatedbythiscircuit.Thetransferequationillustratedin Figure5isgiveninEquation2: (2) ZLOADis100-\rdifferential;therefore,wecalculateZOUTbyusinghalfofZLOAD.ThefinalZOUTvalueis27\r, whichisveryneartothefronttransmissionlineresistance.ThisZOUTcanevengeneratetheeyediagram showninFigure6. Figure6.EyeDiagramAftertheImpedanceTransferCircuit 3.3ImpedanceTransferforTOSAandLaserDriverMatching Figure7showstheONET1101LdrivinganunmatchedTOSAindifferentialmode. Figure7.ImpedanceTransferCircuitforTOSAandDriver TheONET1101Llaserdiodedriverisoptimizedtodrivea50-\rdifferentialoutputtransmission impedance.Foralow-powerdesign,ithasa500-\rdifferentialbacktermination.BecausetheLRDFB TOSAhasonly10-\rimpedance(approximately),thereflectionismuchworseifthereisnotransfercircuit added.Thepurposeofthetransfercircuitistodrivetheloadimpedancecloseto50\rfromthedriver side.FromFigure7,wecanderiveEquation3: ZOUT=R1//(R3+R4+R2//RTOSA)(3) Withtheresistorvaluesshown,ZOUTisapproximately35\r. 6 ConsiderationsforPCBLayoutandImpedanceMatchingDesigninOptical SLLA311–February2011 Modules SubmitDocumentationFeedback ©2011,TexasInstrumentsIncorporated www.ti.comTestResults Wecanthenanalyzethetransfercircuitinthefollowingmanner: 1.R1combineswiththeinternaldriverdifferentialresistancetocreateanewbacktermination:ZS’, highlightedintheblueoutlinedarea(1)inFigure7.ThenewZS’willbe90\r.Forbestresults,R1 shouldconnectascloselyaspossiblewiththeICpins. 2.R2combineswiththeTOSAimpedancetoformanewZL’,shownintheblueoutlinedarea(2)in Figure7.ThenewZL’willbeverynear9\r.Withthetwoserial20-\rresistors,theimpedanceis approximately50\r,whichmatchesthetransmissionlineimpedance. 4TestResults Intheactualtest,thevaluesofresistorsR1andR2canbeadjustedtoachievethebesteyediagramwith thelowestpower.Smallerresistorvaluescansometimesimprovetheoutputperformance,but correspondinglyincreasethepowerconsumption. Figure8andFigure9showvarioustestresultswiththeONET1101LandNX8341TBTOSA(2×10-\r internalresistors). Figure8.ONET1101LTestResults:PoorPerformance 7 SLLA311–February2011 ConsiderationsforPCBLayoutandImpedanceMatchingDesigninOptical Modules SubmitDocumentationFeedback ©2011,TexasInstrumentsIncorporated TestResultswww.ti.com Figure9.ONET1101LTestResults:ImprovedPerformance Fromthesetests,wecanseethattheimpedancetransfercircuitworksquitewelltoimprovethemodule reflectionperformance,althoughthecircuitalsoincreasesthepowerconsumptionatthesametime.For differentTOSAsandpowerconsumptionrequirements,wecanadjusttheresistorsvaluestoachievethe bestperformance. 8 ConsiderationsforPCBLayoutandImpedanceMatchingDesigninOptical SLLA311–February2011 Modules SubmitDocumentationFeedback ©2011,TexasInstrumentsIncorporated www.ti.comPCBLayoutConsiderationsforOpticalModules 5PCBLayoutConsiderationsforOpticalModules Inanopticalmoduledesign,PCBlayoutmustbedoneverycarefullybecauseofthehigh-speedsystem. Severaladditionalfactorsmayaffectthehigh-speedsignalintegrity. 5.1TraceDimensions Inhigh-speedPCBtraces,transmissionlinelossesdependonthefrequencyandtheabsorptionof electricalenergybythedielectric.Figure10showsthesignallosswhenoperatiingwithdifferenttrace lengthsandatdifferentsignalfrequencies. Figure10.LossvsLengthandFrequency 5.2TypesofTrace(MicrostripvsStripline) Figure11showsthecomparisonbetweenthephysicalgeometriesofthemicrostripandthestripline differentialtracelayouts. Figure11.PhysicalGeometriesofDifferentialTraces 9 SLLA311–February2011 ConsiderationsforPCBLayoutandImpedanceMatchingDesigninOptical Modules SubmitDocumentationFeedback ©2011,TexasInstrumentsIncorporated PCBLayoutConsiderationsforOpticalModuleswww.ti.com Equationscanalsobeusedtocalculatethetransmissionlineimpedanceforadifferentialsignalpair;note thatsoftwaretoolsaremoreaccurate,however.Wecanwecalculatethetwotypesoftransmissionline impedancebasedontheformulasshowninTable1. Table1.ImpedanceEquationsforMicrostripandStriplineTraceTechniques Microstrip Stripline (4) (5) (6) (7) (8) (9) 5.3PCBRouting TherearealsoseveralcriticalaspectsofPCBroutingthatcanaffecttheimpedancematching. •Avoidstubsanddiscontinuities(similartothoseillustratedinFigure12)inthePCBtraces. Figure12.PCBTraceStubsandDiscontinuities •Thedifferentialsignalpairsshouldbethesamelength.Figure13comparesdifferentialsignalpairsof thesamelength(a)anddifferentlengths(b).Ifthedifferentialsignalpairsarenotthesamelength,the logicswitchestozeroatdifferenttimes.Consequently,asshowninFigure13(b),anoisepulsewill occuronthereceiver. Figure13.DifferentialSignalPairLengthsonPCBs 10 ConsiderationsforPCBLayoutandImpedanceMatchingDesigninOptical SLLA311–February2011 Modules SubmitDocumentationFeedback ©2011,TexasInstrumentsIncorporated www.ti.comSummary •Useradialbends,showninFigure14,ifpossible.AradialbendisthebestoptionforPCBlayoutina module. Figure14.PCBTraceLayoutwithRadialBends R�5Wisrequiredtokeepthetraceimpedanceunchanged.45-degreechamferedcornershavesmaller discontinuitythanright-anglebends. 6Summary Foropticalmoduletransmitterapplications,somereflectionisinevitablebecauseofthesmalllaser impedance.AtransfercircuitcanbeaddedbetweenthelaserdriverandtheTOSAtooptimizethe matchingandimprovetheoverallmoduleperformance. ParticularattentionmustalsobepaidtothePCBlayoutforopticaldesigns.Improvementstothetrace designandlayoutcansignificantlyincreasethesystemsensitivityandeyediagramoutputquality. 7References Unlessotherwisenoted,thesedocumentsareavailablefordownloadfromtheTIwebsite(www.ti.com). •ONET8501PBproductdatasheet,TexasInstrumentsliteraturenumberSLLS910. •ONET8501Vproductdatasheet,TexasInstrumentsliteraturenumberSLLS837B. •ONET1101Lproductdatasheet,TexasInstrumentsliteraturenumberSLLS883. •OKI10-GDFBOL3356l_z25productdatasheet. •NECNX8346TB,NX8341,ADN2526,ADN2525seriesproductdatasheet. •Weiler,A.andPakosta,A.(1996).ApplicationandDesignConsiderationsfortheCDC5XXPlatformof Phase-LockLoopClockDrivers.TexasInstrumentsapplicationreport,literaturenumberSCAA028. •PCBLayoutGuidelinesforDesigningwithAvagoSFP+Transceivers.Applicationreportfrom www.avago.com. •ConsiderationsforHigh-SpeedPCBTrackDesignin10-Gb/sSerialDataTransmission.Application reportfromwww.agilent.com. •High-speedPCBdesignconsiderations.Technicalnotefromwww.latticesemi.com. 11 SLLA311–February2011 ConsiderationsforPCBLayoutandImpedanceMatchingDesigninOptical Modules SubmitDocumentationFeedback ©2011,TexasInstrumentsIncorporated IMPORTANTNOTICE TexasInstrumentsIncorporatedanditssubsidiaries(TI)reservetherighttomakecorrections,modifications,enhancements,improvements, andotherchangestoitsproductsandservicesatanytimeandtodiscontinueanyproductorservicewithoutnotice.Customersshould obtainthelatestrelevantinformationbeforeplacingordersandshouldverifythatsuchinformationiscurrentandcomplete.Allproductsare soldsubjecttoTI’stermsandconditionsofsalesuppliedatthetimeoforderacknowledgment. TIwarrantsperformanceofitshardwareproductstothespecificationsapplicableatthetimeofsaleinaccordancewithTI’sstandard warranty.TestingandotherqualitycontroltechniquesareusedtotheextentTIdeemsnecessarytosupportthiswarranty.Exceptwhere mandatedbygovernmentrequirements,testingofallparametersofeachproductisnotnecessarilyperformed. TIassumesnoliabilityforapplicationsassistanceorcustomerproductdesign.Customersareresponsiblefortheirproductsand applicationsusingTIcomponents.Tominimizetherisksassociatedwithcustomerproductsandapplications,customersshouldprovide adequatedesignandoperatingsafeguards. TIdoesnotwarrantorrepresentthatanylicense,eitherexpressorimplied,isgrantedunderanyTIpatentright,copyright,maskworkright, orotherTIintellectualpropertyrightrelatingtoanycombination,machine,orprocessinwhichTIproductsorservicesareused.Information publishedbyTIregardingthird-partyproductsorservicesdoesnotconstitutealicensefromTItousesuchproductsorservicesora warrantyorendorsementthereof.Useofsuchinformationmayrequirealicensefromathirdpartyunderthepatentsorotherintellectual propertyofthethirdparty,oralicensefromTIunderthepatentsorotherintellectualpropertyofTI. ReproductionofTIinformationinTIdatabooksordatasheetsispermissibleonlyifreproductioniswithoutalterationandisaccompanied byallassociatedwarranties,conditions,limitations,andnotices.Reproductionofthisinformationwithalterationisanunfairanddeceptive businesspractice.TIisnotresponsibleorliableforsuchaltereddocumentation.Informationofthirdpartiesmaybesubjecttoadditional restrictions. ResaleofTIproductsorserviceswithstatementsdifferentfromorbeyondtheparametersstatedbyTIforthatproductorservicevoidsall expressandanyimpliedwarrantiesfortheassociatedTIproductorserviceandisanunfairanddeceptivebusinesspractice.TIisnot responsibleorliableforanysuchstatements. TIproductsarenotauthorizedforuseinsafety-criticalapplications(suchaslifesupport)whereafailureoftheTIproductwouldreasonably beexpectedtocauseseverepersonalinjuryordeath,unlessofficersofthepartieshaveexecutedanagreementspecificallygoverning suchuse.Buyersrepresentthattheyhaveallnecessaryexpertiseinthesafetyandregulatoryramificationsoftheirapplications,and acknowledgeandagreethattheyaresolelyresponsibleforalllegal,regulatoryandsafety-relatedrequirementsconcerningtheirproducts andanyuseofTIproductsinsuchsafety-criticalapplications,notwithstandinganyapplications-relatedinformationorsupportthatmaybe providedbyTI.Further,BuyersmustfullyindemnifyTIanditsrepresentativesagainstanydamagesarisingoutoftheuseofTIproductsin suchsafety-criticalapplications. TIproductsareneitherdesignednorintendedforuseinmilitary/aerospaceapplicationsorenvironmentsunlesstheTIproductsare specificallydesignatedbyTIasmilitary-gradeor"enhancedplastic."OnlyproductsdesignatedbyTIasmilitary-grademeetmilitary specifications.BuyersacknowledgeandagreethatanysuchuseofTIproductswhichTIhasnotdesignatedasmilitary-gradeissolelyat theBuyer'srisk,andthattheyaresolelyresponsibleforcompliancewithalllegalandregulatoryrequirementsinconnectionwithsuchuse. TIproductsareneitherdesignednorintendedforuseinautomotiveapplicationsorenvironmentsunlessthespecificTIproductsare designatedbyTIascompliantwithISO/TS16949requirements.Buyersacknowledgeandagreethat,iftheyuseanynon-designated productsinautomotiveapplications,TIwillnotberesponsibleforanyfailuretomeetsuchrequirements. FollowingareURLswhereyoucanobtaininformationonotherTexasInstrumentsproductsandapplicationsolutions: Products Applications Audio www.ti.com/audio CommunicationsandTelecom www.ti.com/communications Amplifiers amplifier.ti.com ComputersandPeripherals www.ti.com/computers DataConverters dataconverter.ti.com ConsumerElectronics www.ti.com/consumer-apps DLP®Products www.dlp.com EnergyandLighting www.ti.com/energy DSP dsp.ti.com Industrial www.ti.com/industrial ClocksandTimers www.ti.com/clocks Medical www.ti.com/medical Interface interface.ti.com Security www.ti.com/security Logic logic.ti.com Space,AvionicsandDefense www.ti.com/space-avionics-defense PowerMgmt power.ti.com Transportationand www.ti.com/automotive Automotive Microcontrollers microcontroller.ti.com VideoandImaging www.ti.com/video RFID www.ti-rfid.com Wireless www.ti.com/wireless-apps RF/IFandZigBee®Solutions www.ti.com/lprf TIE2ECommunityHomePage e2e.ti.com MailingAddress:TexasInstruments,PostOfficeBox655303,Dallas,Texas75265 Copyright©2011,TexasInstrumentsIncorporated