/
GeneralizedHibiringsandHibiideals GeneralizedHibiringsandHibiideals

GeneralizedHibiringsandHibiideals - PDF document

valerie
valerie . @valerie
Follow
342 views
Uploaded On 2021-01-05

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "GeneralizedHibiringsandHibiideals" is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

GeneralizedHibiringsandHibiidealsJ¨urge
GeneralizedHibiringsandHibiidealsJ¨urgenHerzogUniversit¨atDuisburg-EssenEllwangen,March2011OutlineHibiringsHibiidealsGeneralizedHibiringsandHibiidealsOutlineHibiringsHibiidealsGeneralizedHibiringsandHibiidealsOutlineHibiringsHibiidealsGeneralizedHibiringsa

ndHibiidealsHibiringsIn1985Hibiintrodu
ndHibiidealsHibiringsIn1985HibiintroducedaclassofalgebraswhichnowadaysarecalledHibirings.Theyaresemigroupringsattachedtoniteposets,andmaybeviewedasnaturalgeneralizationsofpolynomialrings.HibiringsIn1985HibiintroducedaclassofalgebraswhichnowadaysarecalledHibi

rings.Theyaresemigroupringsattachedton
rings.Theyaresemigroupringsattachedtoniteposets,andmaybeviewedasnaturalgeneralizationsofpolynomialrings.Indeed,apolynomialringinnvariablesoveraeldKisjusttheHibiringoftheposet[n1]=f1;2;:::;n1g.HibiringsIn1985Hibiintroducedaclassofalgebraswhichnowadaysarecall

edHibirings.Theyaresemigroupringsattac
edHibirings.Theyaresemigroupringsattachedtoniteposets,andmaybeviewedasnaturalgeneralizationsofpolynomialrings.Indeed,apolynomialringinnvariablesoveraeldKisjusttheHibiringoftheposet[n1]=f1;2;:::;n1g.LetP=fp1;:::;pngbeaniteposet.AposetidealIofPisasubsetof

Pwhichsatisesthefollowingcondition:fore
Pwhichsatisesthefollowingcondition:foreveryp2I;andq2Pwithqp,itfollowsq2I.HibiringsIn1985HibiintroducedaclassofalgebraswhichnowadaysarecalledHibirings.Theyaresemigroupringsattachedtoniteposets,andmaybeviewedasnaturalgeneralizationsofpolynomialrings.Ind

eed,apolynomialringinnvariablesoveraeld
eed,apolynomialringinnvariablesoveraeldKisjusttheHibiringoftheposet[n1]=f1;2;:::;n1g.LetP=fp1;:::;pngbeaniteposet.AposetidealIofPisasubsetofPwhichsatisesthefollowingcondition:foreveryp2I;andq2Pwithqp,itfollowsq2I.LetI(P)bethesetoftheposetideals

ofP.ThenI(P)isasublatticeofthepowersetof
ofP.ThenI(P)isasublatticeofthepowersetofP;andhenceitisadistributivelattice.ByBirkhoff'stheoremanynitedistributivelatticearisesinthisway.ByBirkhoff'stheoremanynitedistributivelatticearisesinthisway.LetKbeaeld.ThentheHibiringoverKattachedtoPisthetoricringK[I(P)]

K[x1;:::;xn;y1;:::;yn]generatedbythese
K[x1;:::;xn;y1;:::;yn]generatedbythesetofmonomialsfuI:I2I(P)gwhereuI=Qpi2IxiQpi62Iyi.ByBirkhoff'stheoremanynitedistributivelatticearisesinthisway.LetKbeaeld.ThentheHibiringoverKattachedtoPisthetoricringK[I(P)]K[x1;:::;xn;y1;:::;yn]generatedbythesetofmono

mialsfuI:I2I(P)gwhereuI=Qpi2IxiQpi62I
mialsfuI:I2I(P)gwhereuI=Qpi2IxiQpi62Iyi.LetT=K[ftI:tI2I(P)g]bethepolynomialringinthevariablestIoverK,and'T!K[I(P)]theK-algebrahomomorphismwithtI7!uI.ByBirkhoff'stheoremanynitedistributivelatticearisesinthisway.LetKbeaeld.ThentheHibiringoverKattachedtoPist

hetoricringK[I(P)]K[x1;:::;xn;y1;:::;y
hetoricringK[I(P)]K[x1;:::;xn;y1;:::;yn]generatedbythesetofmonomialsfuI:I2I(P)gwhereuI=Qpi2IxiQpi62Iyi.LetT=K[ftI:tI2I(P)g]bethepolynomialringinthevariablestIoverK,and'T!K[I(P)]theK-algebrahomomorphismwithtI7!uI.OnefundamentalresultconcerningHibiringsisth

atthetoricidealLP=Ker'hasareducedGr¨obne
atthetoricidealLP=Ker'hasareducedGr¨obnerbasisconsistingoftheso-calledHibirelations:tItJtI\JtI[JwithI6JandJ6I:HibishowedthatanyHibiringisanormalCohen–Macaulaydomainofdimension1+jPj,andthatitisGorensteinifandonlyiftheattachedposetPisgraded,thatis,allmaximalc

hainsofPhavethesamecardinality.Hibishow
hainsofPhavethesamecardinality.HibishowedthatanyHibiringisanormalCohen–Macaulaydomainofdimension1+jPj,andthatitisGorensteinifandonlyiftheattachedposetPisgraded,thatis,allmaximalchainsofPhavethesamecardinality.Moregenerally,foranynitelatticeL,notnecessarilydist

ributive,onemayconsidertheKalgebraK[L]
ributive,onemayconsidertheKalgebraK[L]withgeneratorsy , 2L,andrelationsy y =y ^ y _ where^and_denotemeetandjoininL.HibishowedthatK[L]isadomainifandonlyifLisdistributive,inotherwords,ifLisanideallatticeofaposet.LetKbeaeldandX=(xij)i=1;:::;mj=1;:::;namatrixofi

ndeterminates.WedenotebyK[X]thepolynomia
ndeterminates.WedenotebyK[X]thepolynomialringoverKwiththeindeterminatesxij,andbyAtheK-subalgebraofK[X]generatedbyallmaximalminorsofX.LetKbeaeldandX=(xij)i=1;:::;mj=1;:::;namatrixofindeterminates.WedenotebyK[X]thepolynomialringoverKwiththeindeterminatesxij,andbyA

theK-subalgebraofK[X]generatedbyallmaxim
theK-subalgebraofK[X]generatedbyallmaximalminorsofX.TheK-algebraAK[X]isthecoordinateringoftheGrassmannianofthem-dimensionalvectorK-subspacesofKn.LetKbeaeldandX=(xij)i=1;:::;mj=1;:::;namatrixofindeterminates.WedenotebyK[X]thepolynomialringoverKwiththeindeter

minatesxij,andbyAtheK-subalgebraofK[X]ge
minatesxij,andbyAtheK-subalgebraofK[X]generatedbyallmaximalminorsofX.TheK-algebraAK[X]isthecoordinateringoftheGrassmannianofthem-dimensionalvectorK-subspacesofKn.LetbethelexicographicorderonK[X]inducedbyx11�x12��x1n�x21�x2

2��xm1�xm2�
2��xm1�xm2��xmn:Wedenoteby=[a1;a2;:::;am]themaximalminorofXwithcolumnsa1a2am.Thenin()=x1;a1x2;a2xm;amisthe`diagonal'of.LetS=K[x1;:::;xn]beapolynomialring,amonomialorderonSandASaK-subalgebra.LetS=K[x1;:::

;xn]beapolynomialring,amonomialorderonS
;xn]beapolynomialring,amonomialorderonSandASaK-subalgebra.ThentheK-algebrain(A)generatedbyallmonomialsin(f)withf2AiscalledtheinitialalgebraofAwithrespectto.LetS=K[x1;:::;xn]beapolynomialring,amonomialorderonSandASaK-subalgebra.ThentheK-algebrain(A

)generatedbyallmonomialsin(f)withf2A
)generatedbyallmonomialsin(f)withf2AiscalledtheinitialalgebraofAwithrespectto.Ingeneralin(A)isnotnitelygenerated.AsubsetSAiscalledaSagbibasesofAwithrespectto,iftheelementsf2SgenerateAoverK.ThisconcepthasbeenintroducedbyRobbianoandSweedlerandindependentl

ybyKapurandMadlener.LetS=K[x1;:::;xn]
ybyKapurandMadlener.LetS=K[x1;:::;xn]beapolynomialring,amonomialorderonSandASaK-subalgebra.ThentheK-algebrain(A)generatedbyallmonomialsin(f)withf2AiscalledtheinitialalgebraofAwithrespectto.Ingeneralin(A)isnotnitelygenerated.AsubsetSAiscalledaSagbi

basesofAwithrespectto,iftheelementsf2Sg
basesofAwithrespectto,iftheelementsf2SgenerateAoverK.ThisconcepthasbeenintroducedbyRobbianoandSweedlerandindependentlybyKapurandMadlener.TheoremThemaximalminorsofXformaSagbibasesoftheGrassmannianalgebraA.LetS=K[x1;:::;xn]beapolynomialring,amonomialorderonSandA

SaK-subalgebra.ThentheK-algebrain(A)g
SaK-subalgebra.ThentheK-algebrain(A)generatedbyallmonomialsin(f)withf2AiscalledtheinitialalgebraofAwithrespectto.Ingeneralin(A)isnotnitelygenerated.AsubsetSAiscalledaSagbibasesofAwithrespectto,iftheelementsf2SgenerateAoverK.Thisconcepthasbeenintroduce

dbyRobbianoandSweedlerandindependentlyby
dbyRobbianoandSweedlerandindependentlybyKapurandMadlener.TheoremThemaximalminorsofXformaSagbibasesoftheGrassmannianalgebraA.Whatistheuseofthistheorem?WedeneapartialonthesetLofmaximalminorsofX:[a1;a2;:::;am][b1;b2;:::;bm],aibiforalliThesetLwiththispartialorderi

sadistributivelattice.Wedeneapartialon
sadistributivelattice.WedeneapartialonthesetLofmaximalminorsofX:[a1;a2;:::;am][b1;b2;:::;bm],aibiforalliThesetLwiththispartialorderisadistributivelattice.Theoremin(A)isisomorphictotheHibiringK[L]ofthelatticeL.WedeneapartialonthesetLofmaximalminorsofX:

[a1;a2;:::;am][b1;b2;:::;bm],aibiforal
[a1;a2;:::;am][b1;b2;:::;bm],aibiforalliThesetLwiththispartialorderisadistributivelattice.Theoremin(A)isisomorphictotheHibiringK[L]ofthelatticeL.Indeed,letTbethepolynomialringoverKinthevariablestwith2L,andlet :T!in(A)betheK-algebrahomomorphismwith (t)=in

().OneshowsthattheHibirelationst1t2
().OneshowsthattheHibirelationst1t2t1_2t1^2;1;12LgenerateKer .WedeneapartialonthesetLofmaximalminorsofX:[a1;a2;:::;am][b1;b2;:::;bm],aibiforalliThesetLwiththispartialorderisadistributivelattice.Theoremin(A)isisomorphictotheHibiringK[L]ofthelatt

iceL.Indeed,letTbethepolynomialringove
iceL.Indeed,letTbethepolynomialringoverKinthevariablestwith2L,andlet :T!in(A)betheK-algebrahomomorphismwith (t)=in().OneshowsthattheHibirelationst1t2t1_2t1^2;1;12LgenerateKer .CorollaryThecoordinateringAoftheGrassmannianofm-dimensionalK-subspacesofK

nisaGorensteinringofdimensionm(nm)+1.
nisaGorensteinringofdimensionm(nm)+1.HibiidealsLetPbeaniteposet.TheidealHPK[x1;:::;xn;y1;:::;yn]whichhisgeneratedbythemonomialsuI=Yp2IxpYp62Iyq;II(P)iscalledtheHibiidealofP.HibiidealsLetPbeaniteposet.TheidealHPK[x1;:::;xn;y1;:::;yn]whichhisgenera

tedbythemonomialsuI=Yp2IxpYp62Iyq;II(P
tedbythemonomialsuI=Yp2IxpYp62Iyq;II(P)iscalledtheHibiidealofP.Theorem(a)HPhasalinearresolution.(b)HP=Tpq(xp;yq).HibiidealsLetPbeaniteposet.TheidealHPK[x1;:::;xn;y1;:::;yn]whichhisgeneratedbythemonomialsuI=Yp2IxpYp62Iyq;II(P)iscalledtheHibiideal

ofP.Theorem(a)HPhasalinearresolution.(
ofP.Theorem(a)HPhasalinearresolution.(b)HP=Tpq(xp;yq).Application:LetGbeanitesimplegraphonthevertexset[n].OnedenestheedgeidealIGofGasthemonomialidealinK[x1;:::;xn]withsetofgeneratorsfxixj:fi;jg2E(G)g.HibiidealsLetPbeaniteposet.TheidealHPK[x1;:::;x

n;y1;:::;yn]whichhisgeneratedbythemonom
n;y1;:::;yn]whichhisgeneratedbythemonomialsuI=Yp2IxpYp62Iyq;II(P)iscalledtheHibiidealofP.Theorem(a)HPhasalinearresolution.(b)HP=Tpq(xp;yq).Application:LetGbeanitesimplegraphonthevertexset[n].OnedenestheedgeidealIGofGasthemonomialidealinK[x1;:::;xn]

withsetofgeneratorsfxixj:fi;jg2E(G)g.F
withsetofgeneratorsfxixj:fi;jg2E(G)g.ForwhichgraphsisIGCohen–Macaulay?Theorem(H-Hibi)LetGbeabipartitegraphwithvertexpartitionV[V0.Thenthefollowingconditionsareequivalent:(a)GisaCohen–Macaulaygraph;(b)jVj=jV0jandtheverticesV=fx1;:::;xngandV0=fy1;:::;yngcanbela

belledsuchthat:(i)fxi;yigareedgesfori=
belledsuchthat:(i)fxi;yigareedgesfori=1;:::;n;(ii)iffxi;yjgisanedge,thenij;(iii)iffxi;yjgandfxj;ykgareedges,thenfxi;ykgisanedge.P1234y1y2y3y4x1x2x3x4G(P)TheAlexanderdual:letIbeasquarefreemonomialideal.ThenI=r\j=1PFj;whereforasubsetF[n]weset

PF=(fxi:i2Fg).TheAlexanderdual:letIbea
PF=(fxi:i2Fg).TheAlexanderdual:letIbeasquarefreemonomialideal.ThenI=r\j=1PFj;whereforasubsetF[n]wesetPF=(fxi:i2Fg).TheidealI_=(xF1;:::;xFr)iscalledtheAlexanderdualofI.HereforasubsetF[n]wesetxF=Qi2Fxi.TheAlexanderdual:letIbeasquarefreemonomialideal.The

nI=r\j=1PFj;whereforasubsetF[n]weset
nI=r\j=1PFj;whereforasubsetF[n]wesetPF=(fxi:i2Fg).TheidealI_=(xF1;:::;xFr)iscalledtheAlexanderdualofI.HereforasubsetF[n]wesetxF=Qi2Fxi.Example:I=(x1x4;x1x5;x2x5;x3x5)=(x1;x2;x3)\(x1;x5)\(x4;x5).TheAlexanderdual:letIbeasquarefreemonomialideal.ThenI=r\

j=1PFj;whereforasubsetF[n]wesetPF=(fx
j=1PFj;whereforasubsetF[n]wesetPF=(fxi:i2Fg).TheidealI_=(xF1;:::;xFr)iscalledtheAlexanderdualofI.HereforasubsetF[n]wesetxF=Qi2Fxi.Example:I=(x1x4;x1x5;x2x5;x3x5)=(x1;x2;x3)\(x1;x5)\(x4;x5).ThereforeI_=(x1x2x3;x1x5;x4x5).Theorem(Eagon-Reiner)LetISbea

squarefreemonomialideal.ThenI_isCohen-Ma
squarefreemonomialideal.ThenI_isCohen-Macaulay,ifandonlyifIhasalinearresolution.Theorem(Eagon-Reiner)LetISbeasquarefreemonomialideal.ThenI_isCohen-Macaulay,ifandonlyifIhasalinearresolution.SinceHP=Tpq(xp;yq)andhasalinearresolution,theAlexanderdualH_PisCohen–M

acaulaybytheEagon–ReinerTheorem.Theorem
acaulaybytheEagon–ReinerTheorem.Theorem(Eagon-Reiner)LetISbeasquarefreemonomialideal.ThenI_isCohen-Macaulay,ifandonlyifIhasalinearresolution.SinceHP=Tpq(xp;yq)andhasalinearresolution,theAlexanderdualH_PisCohen–MacaulaybytheEagon–ReinerTheorem.ButH_P=(fxpyq:p

qg)istheedgeidealofabipartitegraphsati
qg)istheedgeidealofabipartitegraphsatisfyingtheconditions(i),(ii)and(ii).ThisprovesonedirectionoftheclassicationtheoremofCohen-Macaulaybipartitegraphs.GeneralizedHibiidealsandHibiringsLetPbeaniteposetandI(P)thesetofposetidealsofP.Anr-multichainofI(P)isachain

ofposetidealsoflengthr,I:I1I2Ir=P
ofposetidealsoflengthr,I:I1I2Ir=P:GeneralizedHibiidealsandHibiringsLetPbeaniteposetandI(P)thesetofposetidealsofP.Anr-multichainofI(P)isachainofposetidealsoflengthr,I:I1I2Ir=P:WedeneapartialorderonthesetIr(P)ofallr-multichainsofI(P)bysettingI

I0ifIkI0kfork=1;:::;r.GeneralizedHi
I0ifIkI0kfork=1;:::;r.GeneralizedHibiidealsandHibiringsLetPbeaniteposetandI(P)thesetofposetidealsofP.Anr-multichainofI(P)isachainofposetidealsoflengthr,I:I1I2Ir=P:WedeneapartialorderonthesetIr(P)ofallr-multichainsofI(P)bysettingII0ifIkI0kfo

rk=1;:::;r.ThepartiallyorderedsetIr(P)is
rk=1;:::;r.ThepartiallyorderedsetIr(P)isadistributivelattice,ifwedenethemeetofI:I1IrandI0:I01I0rasI\I0where(I\I0)k=Ik\I0kfork=1;:::;r,andthejoinasI[I0where(I[I0)k=Ik[I0kfork=1;:::;r.Witheachr-multichainIofIr(P)weassociateamonomialuIinthepol

ynomialringS=K[fxij:1ir;1jng]inrni
ynomialringS=K[fxij:1ir;1jng]inrnindeterminateswhichisdenedasuI=x1J1x2J2xrJr;wherexkJk=Qp`2Jkxk`andJk=IknIk1fork=1;:::;r.Witheachr-multichainIofIr(P)weassociateamonomialuIinthepolynomialringS=K[fxij:1ir;1jng]inrnindeterminateswhichisdeneda

suI=x1J1x2J2xrJr;wherexkJk=Qp`2Jkx
suI=x1J1x2J2xrJr;wherexkJk=Qp`2Jkxk`andJk=IknIk1fork=1;:::;r.WedenotebyHr;PthemonomialidealinSgeneratedbythesemonomialsandbyRr(P)theK-subalgebrageneratedbythemonomialgeneratorsofHr;P.Witheachr-multichainIofIr(P)weassociateamonomialuIinthepolynomialr

ingS=K[fxij:1ir;1jng]inrnindetermi
ingS=K[fxij:1ir;1jng]inrnindeterminateswhichisdenedasuI=x1J1x2J2xrJr;wherexkJk=Qp`2Jkxk`andJk=IknIk1fork=1;:::;r.WedenotebyHr;PthemonomialidealinSgeneratedbythesemonomialsandbyRr(P)theK-subalgebrageneratedbythemonomialgeneratorsofHr;P.Forr=2thei

dealHr;PisjusttheclassicalHibiideal,andR
dealHr;PisjusttheclassicalHibiideal,andRr(P)theHibiringoftheideallatticeI(P)ofP.LetTbethepolynomialringoverKinthesetofindeterminatesftI:I2Ir(P)g.LetTbethepolynomialringoverKinthesetofindeterminatesftI:I2Ir(P)g.Furthermorelet':T!Rr(P)bethesurjectiveK-alge

brahomomorphismwith'(tI)=uIforallI2Ir
brahomomorphismwith'(tI)=uIforallI2Ir(P).LetTbethepolynomialringoverKinthesetofindeterminatesftI:I2Ir(P)g.Furthermorelet':T!Rr(P)bethesurjectiveK-algebrahomomorphismwith'(tI)=uIforallI2Ir(P).TheoremTheset=ftItI0tI[I0tI\I02T:I;I02Ir(P)incomparableg

isareducedGr¨obnerbasisoftheidealLr=Ker
isareducedGr¨obnerbasisoftheidealLr=Ker'withrespecttothereverselexicographicorder.LetTbethepolynomialringoverKinthesetofindeterminatesftI:I2Ir(P)g.Furthermorelet':T!Rr(P)bethesurjectiveK-algebrahomomorphismwith'(tI)=uIforallI2Ir(P).TheoremTheset=ftItI

0tI[I0tI\I02T:I;I02Ir(P)incomparablegi
0tI[I0tI\I02T:I;I02Ir(P)incomparablegisareducedGr¨obnerbasisoftheidealLr=Ker'withrespecttothereverselexicographicorder.CorollaryRr(P)isanormalCohen–Macaulaydomainofdimensionn(r1)+1CorollaryLetPbeaniteposet.Thefollowingconditionsareequivalent:IRr(P)isGorens

tein.IR2(P)isGorenstein.IPisgraded.
tein.IR2(P)isGorenstein.IPisgraded.CorollaryLetPbeaniteposet.Thefollowingconditionsareequivalent:IRr(P)isGorenstein.IR2(P)isGorenstein.IPisgraded.Proof:OneshowsthatRr(P)=R2(P[r1]).CorollaryLetPbeaniteposet.Thefollowingconditionsareequivalent:IRr

(P)isGorenstein.IR2(P)isGorenstein.I
(P)isGorenstein.IR2(P)isGorenstein.IPisgraded.Proof:OneshowsthatRr(P)=R2(P[r1]).FinallyweconsiderthegeneralizedHibiidealHr;PanditsAlexanderdual.LetCPamultichainoflengthr,i.e.,C=fp1;p2;:::;prgwithp1p2pr.LetCbethesetofallmultichainsoflengthrof

P.LetCPamultichainoflengthr,i.e.,C=
P.LetCPamultichainoflengthr,i.e.,C=fp1;p2;:::;prgwithp1p2pr.LetCbethesetofallmultichainsoflengthrofP.WedenethemonomialuC=Qri=1xi;piandletIr;P=(fuC:C2Cg).LetCPamultichainoflengthr,i.e.,C=fp1;p2;:::;prgwithp1p2pr.LetCbethesetofallm

ultichainsoflengthrofP.Wedenethemonomia
ultichainsoflengthrofP.WedenethemonomialuC=Qri=1xi;piandletIr;P=(fuC:C2Cg).TheidealsIr;Pmaybeinterpretedasfacetidealsofacompletelybalancedsimplicialcomplexes,asintroducedbyStanley.LetCPamultichainoflengthr,i.e.,C=fp1;p2;:::;prgwithp1p2pr.LetCbet

hesetofallmultichainsoflengthrofP.Weden
hesetofallmultichainsoflengthrofP.WedenethemonomialuC=Qri=1xi;piandletIr;P=(fuC:C2Cg).TheidealsIr;Pmaybeinterpretedasfacetidealsofacompletelybalancedsimplicialcomplexes,asintroducedbyStanley.Theorem(a)Hr;Phasalinearresolution.(b)H_r;P=Ir;P.LetCPamultich

ainoflengthr,i.e.,C=fp1;p2;:::;prgwith
ainoflengthr,i.e.,C=fp1;p2;:::;prgwithp1p2pr.LetCbethesetofallmultichainsoflengthrofP.WedenethemonomialuC=Qri=1xi;piandletIr;P=(fuC:C2Cg).TheidealsIr;Pmaybeinterpretedasfacetidealsofacompletelybalancedsimplicialcomplexes,asintroducedbyStanley.Theore

m(a)Hr;Phasalinearresolution.(b)H_r;P
m(a)Hr;Phasalinearresolution.(b)H_r;P=Ir;P.CorollaryThefacetidealofacompletelybalancedsimplicialcomplexarisingfromaposetisCohen–Macaulay.J.A.EagonandV.Reiner,ResolutionsofStanley-ReisnerringsandAlexanderduality.J.ofPureandAppl.Algebra,130,265–275(1998).V.Ene,J

.Herzog,F.Mohammadi,Monomialidealsandtor
.Herzog,F.Mohammadi,MonomialidealsandtoricringsofHibitypearisingformaniteposet,Europ.J.Comb.32,404–421,(2011)J.HerzogandT.Hibi,Distributivelattices,bipartitegraphsandAlexanderduality.J.AlgebraicCombin.22,289–302(2005).J.HerzogandT.Hibi,MonomialIdeals.Springer(201

0).T.Hibi,Distributivelattices,afnesem
0).T.Hibi,Distributivelattices,afnesemigroupringsandalgebraswithstraighteninglaws,in“CommutativeAlgebraandCombinatorics”(M.NagataandH.Matsumura,eds.)Adv.Stud.PureMath.11,North-Holland,Amsterdam,93–109(1987).R.Stanley,BalancedCohen-Macaulaycomplexes.Trans.Amer.Mat

Related Contents


Next Show more