/
SpacingmeasurementsoflatticefringesinHRTEMimagesusingdigitaldarkeldde SpacingmeasurementsoflatticefringesinHRTEMimagesusingdigitaldarkeldde

SpacingmeasurementsoflatticefringesinHRTEMimagesusingdigitaldark eldde - PDF document

yoshiko-marsland
yoshiko-marsland . @yoshiko-marsland
Follow
368 views
Uploaded On 2016-04-17

SpacingmeasurementsoflatticefringesinHRTEMimagesusingdigitaldark eldde - PPT Presentation

AbstractInthisthesisIpresenttheprogressImadeinunderstandingimprovingandapplyingadigitalmethodforlatticefringespacingmeasurementsinHRTEMimagesThemethoduses lteringinFourierspacetoformcomplexvaluedda ID: 282263

AbstractInthisthesisIpresenttheprogressImadeinunderstanding improv-ingandapplyingadigitalmethodforlatticefringespacingmeasurementsinHRTEMimages.Themethoduses lteringinFourierspacetoformcomplexvaluedda

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "SpacingmeasurementsoflatticefringesinHRT..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

SpacingmeasurementsoflatticefringesinHRTEMimagesusingdigitaldark elddecompositionMartinRoseAThesisSubmittedtoTheGraduateSchoolattheUniversityofMissouri-St.Louisinpartialful llmentoftherequirementsforthedegreeMasterofScienceinPhysicsJuly2006AdvisoryCommittee:P.Fraundorf,Ph.D.ChairpersonB.Feldman,Ph.D.D.Leopold,Ph.D. AbstractInthisthesisIpresenttheprogressImadeinunderstanding,improv-ingandapplyingadigitalmethodforlatticefringespacingmeasurementsinHRTEMimages.Themethoduses lteringinFourierspacetoformcomplexvalueddark eldimages.Theseimagesarebrightwheretheim-agecontainstheselectedperiodicityanddarkotherwise.Theamplitudeandphaseinformationinthesedark eldimagescanbeusedtoanal-ysethedistributionofperiodicitiesandthechangeinlatticespacings.Itturnsoutthatthephasegradientcanbeinterpretedasapositiondepen-dentwavevector.Themethodhasbeenanalyzedindetailinordertoquantifythesystematicerrorandtheerrorintroducedbynoise.Win-dowingandWiener lteringtechniqueshavebeenappliedtoimprovethemeasurement.Anewapproachtoreducethee ectofnoiseusesmultipleperiodicitiestodeterminethebasevectorsineveryunitcellwhichleadstoareductionofnoise.Themethodhasbeenappliedtosimulatedimageswithknownnoiselevelstomeasuretheerror.Finallyithasbeenappliedtoexperimentalimagesofheterostructures.1 Contents1Introduction31.1Motivation..............................31.2Crystalsandtransmissionelectronmicroscopy...........41.3Thebasicassumptionforimageprocessing............61.4Di erentmethodsforspacingmeasurements............71.5TheDFmethod...........................92MathematicalfoundationoftheDFmethod112.1The2DDFT.............................112.2Formationofadark eldimage...................122.3MeasurementofspacingsfromtheDFimage...........122.4SimulationofTEMimages.....................142.5Datawindowing...........................212.6Errorbychangingwavevector...................243Thenatureofnoise293.1AmodelfornoiseinaHRTEMimage...............303.2EstimationoftheerrorinthephaseoftheDFimage.......343.3Measurementoftheerrorinspacingmeasurements........363.4Removalofnoise...........................403.5Multiplespotmeasurement.....................424ApplicationoftheDFmethod444.1computergeneratedimages.....................444.2experimentalimages.........................465Summary,conclusionsandoutlook606Acknowledgment62AImplementationoftheDFmethod63ListofFigures64References652 1IntroductionThisthesispresentstheresultsoftheworkIhavedoneattheCenterforMolec-ularElectronicsattheUniversityofMissouri-St.LouisbetweenNovember2005andJune2006inthegroupofProf.Dr.P.Fraundorf.Iworkedonamethodcalleddigitaldark eldimagingorsimplyDFmethodwhichisusedtoanalysedigitizedhighresolutiontransmissionelectronmicroscopy(HRTEM)images.ThemethodusesFourierspace lteringtoformsocalleddark eldimagesindirectspace.Thebrightnessandthephaseofthesecomplexvaluedimagescanbeusedtoanalyseperiodicitiesandchangestherein.Theselectionoffrequen-ciesinFourierspaceusedinthisdigitalmethodisanalogoustotheselectionofabeamofscatteredelectronsinaTEMinordertoformdark eldimages-thereforethename.1.1MotivationTransmissionelectronmicroscopyprovidesuswithhighresolutionTEM(HRTEM)imagesthatshowstructuresattheatomicscale.Thatmeansweareabletoidentifyfeaturesonthesizeof2A(21010m).Wecanusethistooltotakealookatthearrangementofatomsinacrystal.Asthestructureofcrystalsisknownthisprovidesnonewinformationat rstglance,butitgetsveryinter-estingwhenweexamineinterfacesbetweencrystalsordefectsinacrystal.Aninterfacecanbecreatedforexamplebyepitaxialgrowthwhereonesub-stanceisdepositedontopofanother,layerbylayer.Thetwosubstancesmustbeofthesamelatticetypeandhavesimilarlatticespacingsinorderto t.Thislayerwisedepositionwillresultinacrystallinestructure.Farawayfromtheinterfacebothsubstanceswillhavethesameproperties,i.e.latticeparameters,astheyhaveinaperfectcrystal.Butattheinterfacetheseparametershavetochange,asitconnectstwosimilarbutnotidenticallattices.Theresultisadeformationofthelatticecalledstrain.Formsofstrainareforexamplecom-pression,expansionandshear.WealsoexpectthesechangestobeverysmallsothattheycannotbeseeninadigitizedHRTEMimagewiththenakedeye.Let'ssaywewanttoexaminechangesofabouttwopercentina2.5Aspacing,whichcorrespondsto5picometers(pm).Thisiswaybelowtheresolutionofanymicroscopeavailable!TheheterostructuresImentionedbeforearethebasicmaterialindevicemanufacturingfromLEDsandtransistorstoverylargescaleintegratedcircuits.Asthepropertiesofasemiconductordependstronglyonlatticeparametersitiscrucialtoknowthemexactly.Anotherimportanttopicinmaterialsciencearedefects.Theyoftenoccuratinterfacesandchangetheelectricpropertieslocally.Insomeapplicationstheyareveryusefull,forexampletheyscatterelectronsinacrystalandallowanelectricalcurrentto\rowbutinotherstheyarejustadisturbingsidee ectofthemanufacturingprocess.Insolidstatephysicsdefectscanbetreatedasperturbations,soagaintheparameterstodescribeadefectareveryimportant.Sohowdoweobtainthespacingsatanatomicscaleandmoreimportanthowcanwemeasuretinychangesofspacingsifwearenotworkingwithaperfect3 singlecrystal?Onetheoreticalapproachiselastictheorywhichcalculatesatompositionfrombalancingforces.Thismethodisnotfurtherconsideredinthisthesis.AnexperimentalapproachistoextractthisinformationfromdigitizedHRTEMimages.Thecharacterization,improvementandapplicationoftheDFmethodisthemaintopicofthisthesis.Iwill rstdescribetheDFmethodmathematically,afterthatthee ectofnoiseandotherlimitingfactorswillbeconsidered.FinallythemethodwillbeappliedtosimulatedandexperimentalHRTEMimagesofdefectfreestructures,astheDFmethodturnsouttobemostpreciseinthiscase.Iwillfocusonmeasuringchangesinspacingsofabout15%inheterostructures.1.2CrystalsandtransmissionelectronmicroscopyAtthispointIwanttoreviewthebasicsofcrystallography,transmissionelectronmicroscopyandtheprocessofimageformationinaTEM.Anintroductiontocrystallographyanddi ractioncanbefoundin[2].Ifound[9]togivethebestintroductiontotransmissionelectronmicroscopy.crystallographyThemainpropertyofcrystalsistheperiodic,threedimensionalarrangementoftheatomstheyaremadeof.Crystalsarehighlyorderedcomparedtootherstatesofmatterlikegasesor\ruidswhichcontainonlylocalorderornoneatall.AtomsinacrystalarelocatedatpointsthatcanbedescribedasathrdimensionalgridcalledtheBravaislattice.Thisgridinturncanbeconstructfromthreebasisvectors.Duetoperiodicarrangement,somephysicalpropertiesarenotisotropicanymore,i.e.theydependontheorientationofthecrystal.Wethereforeneedawaytoidentifydirectionsandplanesinacrystal.Agroupofthreeatomsthatarenotononelinede neaplane.Allparallelplanesformasetofplanes,de nedbythreenumbers,theMillerindices.Theseindicesaredeterminedinthefollowingway:Theoriginofthelatticemustbeputinaneighboringplane.Thepointswheretheplaneintersectsthecoordinateaxesmustbedetermined.Theinverseofthesepointsmustbemultipliedinordertoobtainintegernumbers.IfaplanedoesnotintersectanaxisthecorrespondingMillerindexiszero.Directionsinacrystalarede nedsimplybythecomponentsofavectorpointinginthespeci cdirection.Thebasisofthisvectoristhebasisofthecrystal.di ractionofelectronsBraggdiscoveredin1913thatx-raysscatteredbycrystalscreatecharacteristicpatternscalleddi ractionpatterns.Thiscanbeexplainedbyinterferenceofraysscatteredbyneighboringplanes.ConstructiveinterferenceoccurswhentheBraggconditionisfull lled:n=2dsin()4 whereisthewavelengthofthex-rays,dthedistancebetweentheplanesandtheangleofincidence.nisanintegerdescribingtheorder.Thesameexperimentcanbeperformedwithelectronsduetotheirwavenature.Usually,whenacrystalisexaminedinaTEMthesampleisrotatedsothattheBraggconditionisfull lledsothatbrightanddark eldtechniquescanbeused.harmonicanalysisTheanalysisofperiodicstructurescanbesummarizedasharmonicanalysis.Bragg'slawconnectsscatteringanglesandspacingsoflatticeplanesinacrystal.Thereforeadi ractionpatterncanbeusedtodeterminelatticeplanespacings.Thisisanoptical,analogmethodwhichusesfrequencyspacedata.PeriodicitiescanalsobeanalyzedstartingfromdirectspacedataforexamplefromaHRTEMimagewhichisaprojectionofthecrystal.AFouriertransformcanbeusedtocalculatethePS.ThisPSisverysimilartothedi ractionpatternasitcontainsspotsinthesamedirectionforallperiodicitiesthatarevisibleasfringes.Wecanalsoanalyseperiodicitieslocallyusingselectedareaelectrondi raction(SAED).Afuturemethodintermediatebetweendirectandfrequencyspacemighttakeadvantageofwavelets.ThewindowedFouriertransformusedintheDFmethodcanberegardedasasimplewavelet.Usingmoreadvancedwindowfunctionsitshouldbepossibletoanalyseandlocateperiodicitiesmoreaccurately.[8]focusesonthistopicwhile[5]showsapplicationsofwaveletsinsignalprocessing.TEMandhighresolutionimagingInaTEMaverythinspecimenisirradiatedbyanelectronbeam.Magneticlenses,solenoids,areusedtomanipulatetheelectronbeam.Theelectronstravelalongthesymmetryaxisofthelenseswhereanaxialandtransversalmagnetic eldispresent.Theaxialcomponentmakestheelectronscirclearoundtheaxis.Thiscircularmotionandthetransversalcomponentofthemagnetic eldareresponsibleforaforcepointingtowardsthecenterofthelens.Thepointoffocuscanbecontrolledbythe eldstrength,i.ebytheelectriccurrent.Theabilitytofocuselectronsinatinyareaisthekeytoelectronmicroscopy.Tounderstandthedi erentimagingmodesitisnecessarytounderstandtheimagingsystemofaTEM.Itisassumedthatthespecimenisirradiatedbyanelectronbeam.The rstlensbelowthespecimeniscalledobjectivelens.Thislensformsanintermediateimagewithamagni cationof20to50timesinit'simageplane.Raysthatleavethespecimenatthesameanglearecollectedinthesamespotinthebackfocalplaneoftheobjectivelens.Eitheroftheseplanescanbeprojectedontheviewingscreenbyasecondlens.Toformarealimagetheimageplaneisprojected,toexaminethedi ractionpatternthebackfocalplaneisprojected.Thebackfocalplaneiswheretheobjectiveaperture,asmallholeinametallicplate,islocated.Thisapertureallowssinglespotsinthebackfocalplanetobeselectedforimageformation.Whentheunscatteredbeamisselectedtheresultingimageiscalledabright eldimage,whileadark eldimageisformedbyscatteredelectrons.Whennoobject5 apertureisusedallelectrons,scatteredandunscattered,areusedtoformtheimage.Theseimagesusuallyhavelittlecontrastcomparedtodarkorbright eldimagesifnoncrystallinespecimensareexamined.Inthiscasethecontrastoriginatesfrominelasticscatteringoftheelectronsbyatomsinthespecimen.Thiscontrastmechanismisreferredtoasmass-thicknessorsimplyZcontrast.WhencrystallinespecimensareimagedtheDFandBFimagesdescribedabovecanbeusedbecausecrystalsscatterelectronsasdescribedbyBragg'slaw.ThebackfocalplanerepresentstheFouriertransformofthedistributionofatomsinthespecimen,multipliedbythecontrasttransferfunction.Ingen-eralsmoothfunctionshaveonlyfewFouriercoecientsinasmallrange,whilerapidlyvaryingfunctionshaveFouriercomponentsinamuchwiderrange.Thedistributionofatomsisde nitelyarapidlyvaryingfunction.ThesmallaperturusedinDForBFmodetruncatestheFouriertransformsothatonlycoecientsinasmallrangecancontributetotheimage.Thereforetheseconventionalimag-ingmodescannotproducehighresolutionimages.EvenifnoaperturewouldbeusedinordertoincludeallFouriercoecientsthespacialresolutionislim-itedbythephasedistortionW(k)whichincreaseswithk.Thecontrasttransferfunctionmentionedbeforeisde nedbyexp(iW(k))AsW(k)increasesrapidlywithkhighfrequenciescannotbeusedforimageformation.ThislimitstheresolutionofastandardTEMtoabout2A.Toobtainhighresolutionimagescontaininglatticefringes,theinterferenceoftheunscatteredandthescatteredbeamisused.Theelectronscanbedescribedasawavefront.Thephaseofthiswavefrontisshiftedwhentheelectronspassthespecimen.Thephaseshiftdependsonthepotentialinthespecimen.Aquantummechanicalderivationoftheimageformationinthehighresolutiomodecanbefoundinchapter10of[9].1.3ThebasicassumptionforimageprocessingBeforeIwillexplaindi erentmeth-odstomeasurespacingsbetweenlatticefringes,IhavetoexplainwhyspacingsonanatomicscalecanbededucedfromHRTEMimages.Theimagetotherightisanexampleoftheimageswewanttoanalyse.Thebrightstripesarecalledlatticefringes,theycanappearinoneormoredirections.Ifthespecimenisverythin,thesefringescanbeinter-pretedastheprojectionoftunnelsbe-tweencolumnsofatoms,whilethedarklinesaretheatomsthemselves. 6 Thisinterpretationistruewhenthe rstzerointhecontrasttransferfunctionisathigherfrequenciesthantheperiodicityexamined.Whenthespecimengetsthickeraphaseshiftmightoccurandthemeaningofdarkandbrightfringesisinterchanged.Thisphaseshiftoccurswhenthe rstzerointhetransferfunctionisatlowerfrequenciesthantheexaminedfrequency.Article[11]analysestheextenttowhichthespacingsbetweenfringesinaHRTEMimagecorrespondtoatomicspacings.Lenstransfertheoryisusedtogivesomepracticalrulesfortapplicationofthegeometricphasemethod,whichissimilartotheDFmethod:Thethicknessofthespecimenandthedefocusshouldbechosensothatthelatticefringecontrastismaximal.Thisleadstolowererrorlevelswthespacingsaremeasured.Regionswherefringecontrastchangesrapidlyshouldnotbeused.Theanalysisofspacingsordisplacementsshouldbecon rmedusingdif-ferentre\rections,seemultispotmethodinchapter3.5.Theanalysisshouldbecarriedoutatdi erentdefocusvalues.Fromthispointonitisassumedthatthefringesrepresentcolumnsbetweenatomssothatthespacingsbetweenlatticefringescorrespondtoatomicspacings.Theunitforspacingsitthepixelfromnowon.Thescalefactorbetweenpixelspacingsandspacingsinnanometershastobedeterminedbytheuser.Thisisnotthateasybecausethemagni cationisnotknownwithhighaccuracy,buttherearevariousmethodstodothat:The rstpossibilityistousespacingmeasurementsinanundisturbedregionoftheimageasreference,assumingthematerialandthereforethelatticespacingsareknownatthisposition.Anotherpossibilityistodepositknownstructuresontopofthespecimenthatcanserveasareference.Forexampleathinlayerofpolycrystalinealuminumcanbeused.Becauseoftherandomorientationofthesinglecrystalsthislayerwillcreateringsinthepowerspectrumcorrespondingtothespacingsinthealuminumcrystals.Theseringsde neascalefromwhichspacingsofotherspotscanbededuced.Ifthemagni cationisknownwithincalibratedlimitsthescalefactorcanbecalculatedfromtheresolutionofthescannerandthemagni cation.Thismethodoftenyieldslargerabsolutespacinguncertainties.1.4Di erentmethodsforspacingmeasurementsNowthattheconnectionbetweentheimagesandtherealcrystalhasbeenmadewecanfocusonmethodstomeasurethespacingsbetweenlatticefringes.Anearlyreference-ausermanualofanimageprocessingunit-thatdescribesamethodinvolvingFouriertransformsgoesbackto1990[17].Ingeneralall7 methodsforspacingmeasurementscanbedividedintwogroups:thoseworkingindirectspaceonlyandthoseinterpretingFourierspacedata.The rstdirectspacemethodtomeasurethespacingsbetweenlatticefringesthatcomestomindissimplyusingsomekindofrulertomeasurespacingsbetweenadjacentfringes.Intheimageabovethespacingsareabout6pixels.Withthissimplemethodthespacingscanbedeterminedwithanaccuracyofabout0.5pixel.Thiscanbeimprovedwhenthemeasurementisaveragedovermorefringes,butatthesametimethisaveragingprocesslimitsthespacialresolutionsothatspacingchangesclosetoasharpinterfacecannotberesolved.Amoresophisticateddirectspacemethodhasbeendescribedin[4].ThismethodusestheoccurrenceofMoirestructureswhentwopatternsaresuper-imposed.Firstofallareferencelatticeiscalculatedfromanundisturbedareaoftheimage.Thispatterndescribesthepositionofbrightspotsinthisarea.Thenthisreferencepatternisextrapolatedoverthewholeimage.Nowthesep-arationbetweenthereferencelatticepointsandtheclosestexperimentalpointismeasured.ThismethodhasbeenimplementedinasoftwarepackagecalledLADIA,see[7].Thesedisplacementmeasurementsarethebasisforchemicalmappingandstrainanalysis.FourierspacemethodsanalysethepowerspectrumandtheFouriercoef- cientsofaHRTEMimage.AperfectunstrainedlatticegivesrisetoverysharplypeakedspotsinthePS.Thespacingandangleoflatticefringescanbecalculatedfromthepositionofthecorrespondingspotinthepowerspectrum,asshownin[6].InthisarticlethespacingsbetweenfringesinTiO2andTiNparticlesinacatalystaremeasured.AsthespacingisconstantwithinaparticlthespotinthePShasverylittlestructure,it'snearlyapoint.Byinterpolationtheexactcenterofaspotcanbefound.Thismethodcanbeusedtomeasureconstantspacingswithanaccuracyof0.001-0.05Adependingonthespecimenandimagingconditions.Howeverthismethodcannotspatiallyresolvetinychangesinspacings.Changesinspacingsandtheshapeoftheregioncontain-ingperiodicitieschangethepro leofthecorrespondingpeakinthePS,itgetswiderandsmoother.AnotherwellestablishedFourierspacemethodisthegeometricphasetech-nique,describedin[12]andappliedin[15]and[10].Ituses lteringinFourierspacetocalculateaDFimage.ThephasePg(~r)oftheDFimageisrelatedtothedisplacement eld~uby:Pg(~r)=2~g~uThephasesPg1(~r)andPg2(~r)ofDFimagescorrespondingtotwodi erentperiodicitiesatposition~g1and~g2areusedtocalculatethedisplacement eld:~u1 2(Pg1(~r)~a1Pg2(~r)~a2)where~a1and~a2arethecorrespondingdirectspacevectorsto~g1and~g2.Thismethodcanbeusedtomeasurethefringepositionwithanaccuracyof1%ofthespacing.8 1.5TheDFmethodTheDFmethodissimilartothegeometricphasetechniqueasitinterpretsthephaseofaDFimage.TheDFimageisintermediatebetweendirectandreciprocalspaceasitcontainslocalizedinformationaboutperiodicities,see[8].Usingthephasegradientitmeasuresthelocalspacingbetweenlatticefringes.TheamplitudeoftheDFimagecanbeusedtolocateareascontainingperiodicities.Fromthesefundamentalmeasurementsotherquantitieslikethedisplacement eldandthestraintensorcanbederived.Todothat,morethanonesetoffringesisrequiredofcourse.Figure1showsthestepsoftheDFmethodindetail.Firstofalltheinputimageisloaded,shiftedandscaled.TheshiftingisdonetodecreasethemagnitudeoftheDCpeakwhichleedstoabettervisibilityoftheperiodicitiesinthePS.Scalingisnotnecessarybutitincreasesthecontrastwhentheinputissavedagain.Theseoperationshavenoin\ruenceonthemeasurements,seechapter3.Awindowfunctionisappliedtotheinputinordertodecreasethee ectofleaking,seechapter2.5.NowtheFouriertransformiscalculatedusingtheFFTalgorithm.ThepowerspectrumcanbeexaminedtodeterminetheSNRwhichisameasureforthequalityoftheimage.ForadetaileddescriptionofthenoiseinaTEMimageandthee ectithasonthespacingmeasurementsseechapter3.Oncethenoisemodelhasbeenestablished,aWiener ltercanbeappliedinordertoreducethenoiselevel.Noisecanalsobeaddedwhensimulatedimagesareusedinordertounderstandthee ectofnoise.Acircularapertureisthencenteredaroundthebrightestpointofaspotinordertoselectaperiodicityi.e.asetoflatticefringes.Thee ectofthechoiceofcenterandradiusisdiscussedinchapter4.Anotherwindowisappliedtotheaperture.InamethodpreviouslyusedtheFouriercoecientswereshiftedsothatthecenteroftheaperturebecometheDCpeak.Thisstepisnotusedhere.NowtheDFimageiscalculatedusingtheinverseFouriertransform.FromtheDFimagethespacingsbetweenfringescanbemeasuredbythephasegradient,seechapter2.3.TheamplitudeoftheDFimagecanbeusedtolocateareascontainingtheperiodicityselectedbytheaperture.FinallymeasurementsfrommultipleDFimagescanbecombinedinordertoincreasetheaccuracyofthemeasurementswithoutloosingspacialresolution.Thismultispotmethodisdescribedinchapter3.5.9 Figure1:singlestepsoftheDFmethod10 2MathematicalfoundationoftheDFmethodThischapteroutlinesthemathematicsbehindtheDFmethodandthesimula-tionofHRTEMimages.Theunitforspacialcoordinatesisonepixel.Allpixelvaluesmustbeinterpretedtoconnectthemtophysicaldistanceswhichisdonewhenthemethodisappliedinchapter4.Therearesomeparametersusedtode netheinputandtocontrolspecialfunctions.Someoftheseparametershavealreadybeenmentionedinthedescriptionofthemethodandwillbede nedinthismathematicalcontext.AppendixAlistsallavailableparametersandthefunctionstheycontrol.FirstofallanimageofsizeNNcontaininglatticefringesisrequiredasinput.The rstparameteristhereforeN,apowerof2,usually512,1024or2048inordertotakeadvantageoftheFFTalgorithm.2.1The2DDFTThetwodimensionaldiscreteFouriertransform^(h;hy)=N1X=0;y=0exp2i(hxhyy) N(x;y)anditsinverse(x;y)=1 N2N1Xhx=0;hy=0exp2i(hxhyy) N^(h;hy)asde nedin[16]isusedtotranslatebetweendirectandreciprocalspace.TheunitoftheFouriercoecients^F(h;hy)ispixel1.Withthehelpofthesetwoquantities~k2hhyand~r1 Nxytheinversetransformcanberewritten:(~r)=1 N2X~kexpi~k~r^(~k)where~kisthediscretewavevectorandeach^(~k)correspondstoone^(h;hy).Thecomponentsof~r(randry)varybetween0and1.Thisformoftheinversetransformmakesitobviousthattheimageindirectspacecanberepresentedasasumofcomplexvaluedplanewaves.AstheinputisrealtheFouriercoecientsmusthaveconjugatesymmetrywhentheFouriertransform(FT)oftheinputiscalculated:^(~k)=^(~k).Thissymmetryisthereasonforthesymmetryofthepowerspectrum(PS)withrespecttotheDCpeak.ThevalueofthePSatagivenpointisde nedinanotsocommonwayastheabsolutevalueoftheFouriercoecientatthispoint.11 2.2Formationofadark eldimageIntransmissionelectronmicroscopyadark eldimage(DF)isformedbyal-lowingonlyelectronsthatwerescatteredatacertainangletoformtheimageaccordingtochapter2.3in[9].Acircularmechanicalaperturemadeoutofmetalcalledtheobjectiveapertureispositionedinthebackfocalplanetose-lectelectronsthatwerescatteredintothesameangle.Whenscatteredelectronsareallowedtopasstheaperturewecalltheresultingimageadark- eldimage.TheanalogousprocessintheDFmethodis lteringinFourierspacewheretheDCpeakcorrespondstotheunscatteredelectronsandthespotscorrespondtodi ractionspotsi.e.thescatteredelectrons.Thisisjustananalogy,thePSofaHRTEMimageshouldnotbeconfusedwiththedi ractionpatternwecanobserveintheTEM!ToapplyanapertureonepointinFourierspaceischosenasthecenteroftheaperture.AllFouriercoecientsoutsideacirclewithra-diusrAParesettozero.InsidetheapertureaHammwindowisapplied.Thechoiceofthecenterpointandthee ectoftheradiuswillbediscussedin4.1.This lteringprocessinFourierspacedestroystheconjugatesymmetryoftheFouriercoecients.Theresultoftheinversetransformoftheseasymmetriccoecientsiscalledthedark eldincloseanalogytoopticaldark eldimages.RegionsofthespecimenthatcontainnoperiodicitieswilllookdarkiftheDCpeakisoutsidetheaperturewhileregionscontainingperiodicitieslightup.ThevalueoftheDFimageDF(~r)ateachpointisgivenbythesuperpositionoftheplanewavescorrespondingtotheFouriercoecientsinsidetheapertureasdescribedintheprevioussection.DF(~r)=1 N2X~kexpi~k~r^(~k)=ARes(~r)exp(iRes(~r))whereARes(~r)istheresultingamplitudeandRes(~r)istheresultingphaseateachpoint.2.3MeasurementofspacingsfromtheDFimageLet'sassumeforamomentthatwewouldalsousetheFouriercoecientsat~kforeach~kinsidetheaperturetoformtheDFimage.Inthiscaseitwouldbearealimageshowingtheperiodicitieschosenbytheaperture:DFR(~r)=ARes(~r)cos(Res(~r))Res(~r)canbewritteninthefollowingway:Res(~r)=~kRes(~r)~r12 SotheDFimagecanbeinterpretedasaplanewavewithpositiondependentwavevector~kRes(~r).The guretotherightshowsthefunctioncos(k(x)x).Theuppergraphisk(x),thewavevec-torwhichincreaseslogarithmicallywithx.Thee ectofthepositiondependentwavevectorcanbeseenbestattheleftsideoftheplot. k(x)cos(k(x))Nowitisassumedthatthewavevectorvariesonlyslightlywithinoneperiodsothatthespacingdbetweentwomaximaisgivenbyd(~r)=2 ~kRes(~r)Thedistancedisaboutsixpixelsinthesimulatedimagessoameasurementof~kwithinthisdistanceisassumedtogivethesamevalueford.HoweverthephaseRes(~r)cannotbemeasuredintherealDFimagewithhighaccuracy,becauseit'sdiculttodeterminetheintensitymaximawithhighaccuracy.Thesameproblemsetslimitsforthesimplerulermethoddescribedinchapter1.4.ThereforethecomplexDFimagedescribedinthesectionbeforeisused:DFC(~r)=ARes(~r)fcos(Res(~r))+isin(Res(~r))gNowthephaseisgivenateachpointbyRes(~r)=~kRes(~r)~rarctan=(DFC(~r)) (DFC(~r))FromthisthegradientofRes(~r)canbecalculated~r~k~r~k~r~r~r~r~kwhere~k~kRes(~r)=(k@ky@y)~r+(r@ry@y)~kk^xky^y+(r@ry@y)(k^xky^y)~k+^x(r@kry@yk)+^y(r@kyry@yky)Makingthesameassumptionasbefore,namelythat~kRes(~r)variesonlyslightlywithpositionthegradientofthephaseisapproximately~kRes(~r).There-forethelocalspacingdcanbecalculatedasa rstapproximationfromthephasegradientbyd(~r)=2 ~rRes(~r)Thisassumptionwillbecheckedandtheerrorinthespacingmeasurementsduetothechangeof~kwillbeexaminedinsection2.6.13 ThemagnitudeofavalueintheDFimage,jDFC(~r)j,canbeinterpretedaswellincloseanalogytotheDFimageintransmissionelectronmicroscopy.InaTEMDFimageareasofthespecimenwhichscatterelectronsappearbrightwhilethoseareaswhichdonot,appeardark.Forexampleinapolycrystalinesamplethiscontrastmechanismwouldrevealcrystalsinthesameorientation.IntheDFmethodthisvalueisusedasabinarymask,becausethevalueishighinareaswithlownoiselevelsandclearperiodicitieswhileittendstozeroinareaswherethespecimenisamorphousandnoperiodicitiesarepresent.TheDFmethodisatoolformeasuringspacingsbetweenlatticefringes.Themeasurementofdistancesisthemostbasicoperationingeometry.Fromdistancesbetweenatomsmorecomplicatedquantitieslikethedisplacement eld~uandthestraintensor,whichiscomposedofthepartialderivativesof~u,canbecalculated.Thestresstensorisconnectedtothestraintensorbymaterialrelations.Iwillthereforedescribeawaytoobtainthedisplacement eldfromthespacingmeasurements,asitmakestheconnectiontoothermethodsliketheoneusedbyHytchetal.(seesection1.4).Letsassumewewanttodeterminethedisplacement eldforastructureasshownin gure21wherethedarkdotscorrespondtocolumnsbetweenatoms.TheDFmethodsprovidesthewavevectorsatsomespotthatcanbechoosenarbitrarily,forexampleinanareawithoutdistortions.Fromthatwecancom-putethepositionsoftheneigbouringatomsortunnelsrespectively.Thenextstepistomeasurethewavevectorsatthenewpositionsinordertorepeatthepreviousstep.Thisprocedureyieldsthepositions~aiofallthespotsintheHRTEMimage.Asthedisplacement elddescribesthedistancefromsomeref-erencepositionweneedtointroduceareferencelattice.Thisreferencelatticecanbecalculatedforexamplefromthepositionsofspotsinanundistortedarea.2.4SimulationofTEMimagesAbasicmethodincrystallographyandmaterialscienceistocompareexper-imentalHRTEMimagestocomputersimulatedimagesinordertochecktheatomicmodels.AmajorpartofmyworkwastoapplytheDFmethodtosimu-latedimagesinordertoseehowaccurateitworksunderperfectconditionsandtodeterminetheerrorinthemeasurementsobtainedbytheDFmethod.Chap-ter10.4in[9]givesanintroductiontoasimulationmethodcalledmultislicemethod.Theinputtoanysimulationisthepositionofatomsinsidetheregioofinterest.Fromthistheelectronwavefunctionatthespecimenexitsurface,atthebackfocalplaneandattheimageplanecanbecalculated.Thesecondstepistomodifythecalculatedwavefunctionatthevariouspositionsinordertosimulatethecharacteristicsandde cienciesofthemicroscopee.g.sphericalaberration,astigmatismanddefocus.Iusedadi erentapproachtogeneratetestimagessimilartohighresolutionTEMimages.Intheintroductionof[18]itismentionedthatthetunnelsbetweencolumnsofatomsinaperiodicstructureappearasnearlygaussianshapeddotsinaHRTEMimage.Thedotsareeitherblackorwhitedependingonthe14 thicknessofthespecimenandthefocus.Thedistancebetweenthecentersofthesedotscorrespondstothelatticespacingasdescribedinchapter1.3.Thepro leofalatticefringecanbeexaminedusingthe3DvisualisationpluginiImageJandtheshapeofagaussianisrevealed.ThereforeGausspro lesatpositionsgivenbya2DBravaislatticeareusedtosimulateHRTEMimages.ImageslikethesecanbeobtainedfromamicroscopewithGaussianpointspreadbutnosphericalaberration.Anewlyimplementedtechniqueofaberrationcorrectionmightmakesuchmicroscopesavailable,see[3].Thissimulationdoesnottakede cienciesofthemicroscopeintoaccount.Thebrightnessatapositionx/yinthemicrographduetoatunnelatpositionp/qisthereforegivenbyexp((xp)2+(yq)2)TheimagetotherightshowsaGausspro le.Theconstantischosentobe0:5.Astheimageismadeoutofpixelsatdiscreteintegerpositionsitisneces-sarytointegratetheintensitythatcon-tributestoonepixelovertheareaofthepixel.Thepixelsarealignedtothemi-crographinsuchawaythatthecenterofapixelcorrespondstoanintegercoordi-nateinthemicrograph.ThebrightnessBxyofapixelisthenobtainedbyinte-gratingtheGausspro leovertheareaofonepixel. -5 -5 -4 -4 -3y x-3 -2 -2 -1 -1 00 0.0 0.1 1 1 0.2 2 0.3 2 0.4 3 3 0.5 4 0.6 4 0.7 5 0.8 5 0.9 1.0 Bxy+0:50:5y+0:5y0:5exp((xp)2+(yq)2) 4p (x0:5p)p (x+0:5p) p (y0:5q)p (y+0:5q) where=2 p 0expt2 2dtComparedtoamethodpreviouslyusedtosimulateimagesthisapproachallowsustoputtunnelsatarbitrarypositions.Thegrainsizeoftheparticlesonthe lmwhichdetecttheelectronsisverysmallandtheyarerandomlydistributed.Thereforeitisassumedthatthe lmcandetectelectronscontinouslyinspacewithoutintroducinganygrid.Thebrightnessisproportionaltothenumberofelectronshittingthe lmatacertainposition.Theintegrationovertheareaofapixelinthesimulatedmicrographcorrespondstotheprocessofdigitalizatiointhescanner.Asthesamepro leisusedforalltunnelstheintegrationensuresthatthebrightnessofallspotsisequal.Inthemicroscopethismeansthatthesamenumberofelectronswasdetectedinonespot.Figure2showsthebasicgeometryofthesimulatedimages.TheBravaislatticewiththebasisvectors~aand~bde nesthepositionwheretheGausspro les15 willbecentered.Thislatticecontainsanumberofperiodicitiesrunningindi erentdirectionsasindicatedbythevariouspairsofparallellines.ThespacingmarkedbydwillbeexaminedwhentheDFmethodisappliedtosimulatedimages.Thefollowingbasisisused:~a6 109103and~b7 3716 \rd~a~b90\rFigure2:BravaislatticeandtheexaminedspacingsThespacingdiscalculatedasfollows:dacos(90\r)=5:385326and\rarcos0@~a~b j~aj~b1ATointroduceachangeinthisspacingthebasevector~aismultipliedbyascalefactor,seeforexampled.ThesimulatedimagesdonotobeytheperiodicboundaryconditionassumedbytheDFT.Theimagecanberegardedasasquarewindowfunctionmultipliedbyanin niteimage.ThePSisthereforeaconvolututionoftheFTsofthe2Dsquarewindowandtheimage.LinesrunningperpendiculartotheboundaryoftheimageappearinthePS.BecauseofthisnoiseinthePStheexaminedperiodicityshouldnotrunperpendiculartoaboundary.TherearetwostructureswhichwillbeusedtotesttheDFmethod.Bothstructuresstartfromthelatticedescribedabove.Theydi erinthewaythespacingsarechanged.Figure3and4showthespacingbetweenacertainsetofparallelrowsofGaussianpeaks.Thespacingisde nedasthedistancebetweentwoneighboringrows.Thequestionthatarisesiswheretomeasureaspacing,orwhichpoint16 isthespacingassignedto.Byde nitionthespacingdoesnotchangebetweentwopeaks.Thereforethespacingisassignedtothecenterofthepeakasitislocatedinthemiddleofcolumnsofatoms.Thespacingsareanoutputoftheprogramwhichsimulatestheimages,andtheywillbeusedinchapter4.1asareferenceforthespacingmeasurements.SharpstepAlthoughtheabruptchangeofthespacinginthisgeometryissomehowunphysical,itisveryusefultounderstandthee ectofnoisewhichisoftenabundantinexperimentalimages. 02004006008001000100080060040020005,385,405,425,445,465,48 y [pixel]spacing [pixel]x [pixel] Figure3:localspacingsforthesharpstepgeometryThegeometryisdividedintothreeregionsofequalspacings:inthelowerleftthespacingisthatofthestartinggeometryd0=5:385326.Atthe rststepthespacingismultipliedby1:012leadingtod1=5:44995.Atthesecondstepthespacingismultipliedby1:006resultinginaspacingofd3=5:48265.Thelineswhichdivideareasofconstantspacingintersectthex-axisatx1=259and17 x2=535.Widestep-interfaceThisgeometryisamodelforahomogeneousinterface-achangeinspacingsoverawiderrange. 020040060080010005,405,455,505,555,605,65 10008006004002000 spacing [pixel]y [pixel]x [pixel] Figure4:localspacingsforthewidestepgeometryThescalefactorisasteadyfunctionsimilartotheFermiDiracdistribution:(x)=1+a 1+exp(0 w)whereade nestheheightofthestepandwdeterminesthecharacteristiclengthonwhichthespacingchanges.Thepointwherethespacinghaschangedbya=2issetbyx0.Thewidthwsonwhich90%ofthespacingchangehappenscanbecalculatedtobews=2ln(19)w18 Thisenablesustoconnecttheparameterwtoawidthwsinpixels.Themaximumslopeisa=4watxx0.Withthisgeometryitwillbepossibletomeasuretheerrorintroducedbyachangingwavevector,asdescribedinchapter2.6.Wewillbeabletosetlimitsfortheaccuracyofthemethoddependingonthegeometry,inotherwordswecantellhowabruptandhowbigthechangeinaspacingcanbe,inordertobemeasuredwithacertainaccuracy.Thiswaythetwomajorsourcesoferror-noiseandachangingwavevector-canbecompared.19 ThepowerspectrumAsbothgeometriesareverysimilartheyhavenearlyequalpowerspectra.Theleftof gure5showsthepowerspectrumofthestepgeometryinlinearscale,wherethecolorhasbeeninvertedforbettervisualisa-tion.TherightshowsthesamePSinlogarithmicscale.ThePSissymmetrictotheDCpeak,thereforethepartofthePSthatisshowncontainsalltheinformation. DCDC111101010202101020201111222221211212~a~a~b~bFigure5:PSofthestepgeometry,rightlogscale,leftlinscaleThespotsinthePSappearveryfaintinthelinearlyscaledimage,itisusefulltoidentifythestrongestperiodicities.Inthelogarithmicallyscaledimagetheweakerperiodicitiesbutalsotheartifactsrunningperpendiculartotheedgesoftheimagebecomevisible.Thespotshavebeenindexedusingthearbitrarilychosenbasevectors~aand~b.Thespotsthatarehardlyvisibleintheleftimagecanbefoundeasilyintherightimage.20 2.5DatawindowingDatawindowingisamathematicalmethodusedtoimprovetheaccuracyoftheDFT.Anysignalisallwayssampledonalimitedintervalforexampleintimeorspace.Theprocessofmeasuringcanbethoughtofastakingalookatthesignalthroughawindowwhichisopenedwhenwestarttomeasureandclosedwhenthemeasurementis nished.Inmathematicaltermsthismeansthatthemeasureddataisequaltothesignalmultipliedwithawindowfunctionwhichvariesbetweenzeroandonewhilethemeasurementisinprogress.WindowingisallwayspresenteveniftheuseroftheDFTisnotawareofit:Thesquarewindowsmultiplieseverydatapointbyone,it'sthesimplestwindowandgivesthepoorestaccuracyofthePS.TheaccuracyofthePSislimitedbyaprocesscalledleakagewhichisdescribedindetailinchapter13.4in[16].Leakageisthein\ruenceonaFouriercoecientbynearbycoecients.Highleakagemeanscoecientsfarawayinthespectrumcontributetoacoecient,whilelowleakagemeansthatonlycoecientsclosebyhaveanin\ruence.Leakagecanbeminimizedbydatawindowingi.e.bymultiplyingtheinputwithawindowfunctionasdescribedin[16]wheresome1Dwindowfunctionsarede ned.The2Dwindowfunctionatposition(x,y)istheproductoftwo1Dfunctions,oneevaluatedatxtheotheroneaty.Thee ectofthefollowingwindowfunctionsonthexcomponentofthephasegradienthasbeencompared:rectanglewxywwy=1Bartlettwxy1xN 22 N1yN 22 NWelchwxy 1xN 22 N2! 1yN 22 N2!Hannwxy0:50:5cos2x N0:50:5cos2y NHammingwxy0:540:46cos2x N0:540:46cos2y NTheindicesxandyrunfrom0toN1.Figure6showsthedi erentwindowfunctions.Figure7andFigure8showastepinthex-componentofthephasegradientwithdi erentwindowsappliedtotheinputandtotheaperture.Thenamingconventioninthelegendisthefollowing:thewindowappliedtotheinputindirectspaceisontheleftwhilethewindowappliedtotheapertureinFourierspaceisontheright.Figure7clearlyshowstheimpactofwindowingonthephasegradient.Usingrectangularwindowsthephasegradientisnotverysmooth.Thewindowsthatareshowninthis gurehaveaverysimilare ectonthephasegradient.Themaindi erenceisattheborderoftheimagewheredi erentwindowsproducedi erentoscillations.Thisregionisnotshownhereasitisnotimportantforthe21 020040060080010000,00,51,0 wxX Axis Title rect Hamming Hann Bartlett Welch Figure6:thevarious1Dwindowfunctions.(N=1024)measurements.Withtheinformationinthis gureIdecidetouseaHammingwindowasthestandardwindowfortheinput.Figure8illustratesthechangeswhenawindowisappliedtotheaperture.AsacombinationofHammingwin-dowfortheinputandaHannwindowfortheapertureresultsinthesmoothestcurveandthelowestoszillationattheborder,thiscombinationofwindowsisusedbydefault.Alsonotehowtheslopeofthegraphgetssmallerwhenusingwindows.Thise ectcanbecompensatedbyabiggeraperture.22 2003004001,131,141,151,16 x component of the phase gradientPosition rect - rect Welch - rect Hann - rect Figure7:di erentwindowfunctionsfortheinput,nowindowonaperture.(N=1024) 2003004001,131,141,151,16 x component of the phase gradientPosition Hamming - rect Hamming - Hann Figure8:di erentwindowsappliedtotheaperture,Hammingwindowfortheinput.(N=1024)23 2.6ErrorbychangingwavevectorNowthatallthepartsoftheDFmethodareunderstoodtheerrorinherentinthemethodwillbeexamined.Insection2.3weassumedthatthephasegradientisthewavevectorifthewavevectorchangesonlyslightlywithposition.WewillcheckthisassumptionandquantifytheintroducederrorbyapplyingtheDFmethodtocomputergeneratedimagesandcomparingtheobtainedspacingstothecorrectvalues.Thewidestepgeometrydescribedin2.4isusedbecauseitallowsustogeneratesmoothlychangingspacings.Thegeometryisdescribedbytwoparameters,theheightofthestepanditswidth.Figure9showstwogeometrieswithextremeparameters,bothatthesamescale:(a)isanarrow(w=3)5%stepwhile(b)isawide(w=100)1%step.Themaximumoftherelativeerrorwillbemeasuredfordi erentcombina-tionsoftheparameters.Theheightofthestepvariesbetween1and5percentwhilewvariesbetween60and1.Figure10and11showexamplesofsuchmea-surements,themaximumerroroccurswherethespacingchangesmost.The guresinthissectionshowtheprojectionofthedatapointsontothex-zplanetomakeiteasierforthereadertoseethe3dimensionaldistribution.Table1showstheresultsoftheerrormeasurements.Eachrowcontainstherelativeerrormeasuredinforacertainstepheight.Di erentcolumnsrepresentdi erentvaluesofw,theparameterforthewidth. 60 40 20 10 5 3 1 1% 0.16 0.16 0.42 1.06 2.09 3.01 4.082% 0.24 0.37 0.87 2.17 4.42 5.67 8.553% 0.37 0.57 1.33 3.36 6.53 9.24 12.084% 0.51 0.78 1.81 4.40 8.82 11.82 16.565% 0.64 0.98 2.27 5.53 11.23 15.27 22.25Table1:relativeerror[]inspacingmeasurementsinsimulatedimages24 020040060080010005,405,455,505,555,605,65 10008006004002000 Spacing [pixel]Y AxisX Axis(a) 020040060080010005,405,455,505,555,605,65 10008006004002000 (b)Spacing [pixel]y [pixel]x [pixel] Figure9:(a)5%sharp(w=3)step(b)1%wide(w=100)step25 020040060080010000,00,20,40,60,81,0 10008006004002000 relative error [ ]y [pixel]x [pixel](a) 020040060080010000,00,20,40,60,81,0 10008006004002000 relative error [ ]y [pixel]x [pixel](b) Figure10:width:40(a)1%step(b)5%step26 0200400600800100005101520 10008006004002000 relative error [ ]y [pixel]x [pixel](a) 0200400600800100005101520 10008006004002000 relative error [ ]y [pixel]x [pixel](b) Figure11:width:1(a)1%step(b)5%step27 Fromtheerrorlevelswefoundwecandrawthefollowingconclusions:Besidesthenoiselevelthegeometryitselfmustbeconsideredasareason-ablesourceoferrorwhenthemethodisappliedtoexperimentalimages.Asharpstepthatcanbedescribedasa5%changeinspacingswithinabout3fringescanbedetectedwithanaccuracyofabout2:2%.Thiscorrespondstoanerrorofabout6pmina2.5Aspacing.Evensharperorhigherstepscanbemeasuredwithlessaccuracy,soothermethodsforspacingmeasurementsshouldbeconsideredforthesegeome-tries.28 3ThenatureofnoiseNoiseisafundamentalphenomenonpresentineveryphysicalmeasurement.Itisde nedinchapter13.3of[16]asarandomsignaln(t)thatisaddedtotheoriginalsignals(t).Itismostconvenienttodiscussthenatureofnoiseanditse ectsinreciprocal(frequency)space.Anysignals(t)canberepresentedbyitscomplexvaluedFouriercomponents^s()whichareobtainedbytheFTofs(t).Chapter12of[16]givesanoverviewofthepropertiesoftheFT.AveryimportantpropertyoftheFTwhichfollowsdirectlyfromthede nitionistadditivity:dsn=^s+^nWhiletheamplitudesofthesignals(t)andthenoisen(t)areaddedateveryinstantindirectspace,thecorrespondingFouriercomponents^s()and^n()areaddedinreciprocalspace.Thiswillallowuslaterto ndanoisemodelinordertoreducethee ectofnoise!Amoreprecisede nitionofnoisecanbegivenbythepropertiesofitsFouriercomponents^n():theyhaverandomphaseswithoutanycorrelationamongthemtheirabsolutevaluechangesrandomlybutitcanusuallybeapproximatedbyasteadyfunctionn()Theimagetotherightillustratestheadditiv-ityoftheFouriercoecients:Thearrowpoint-ingtothecenterofthecirclerepresentsthesignal^swhilethecirclerepresentstherandomFouriercomponents^nwithaconstantabsolutevaluethatareaddedto^s.^s(u;v)issimply^n,theamplitudeofthenoisecoecient,while'^s(u;v)=arcsin^n ^s. Re Im ^s^n^s'^s+^nAsthecoecientsareaddedthearrowspointingtotheedgeofthecirclerep-resenttheFouriercoecientsofthemeasuredsignal^s+^n.Notehoweverthattheerrorinthephaseofthecoecientisabout 10whiletheerrorintheabsolutevalueisabout24%inthisexample.Theerrorinthephaseissmalliftheamplitudeofthenoiseissmallerthantheamplitudeoftheoriginalsignalbuttheerrorincreaseswithincreasingnoiselevel.Theratioofthesignalandthenoiseamplitudesdeterminesthequalityofmeasureddata.Acommonwaytoquantifythequalityisthesignaltonoiseratio(SNR)de nedinthiscontextas:SNR=20logj^sj j^nj29 wherej^sjandj^njaretheabsolutevaluesoftheFouriercomponents.UsuallytheSNRisusedindirectspacebutitisasusefulinreciprocalspace.DoesimageprocessingchangetheSNR?No,itcanbeshownthatshiftingandscalingtheinputimageindirectspacedoesnotchangetheSNRinreciprocalspace.Acommonmethodiscontrastenhancementwhichisacombinationofshiftingandscaling.Shiftingindirectspaceaddsaconstantatotheinputimage.Thisconstanthasane ectontheDCcoecientonly,thustheSNRinreciprocalspaceisnota ected.Scalingtheinputindirectspaceisamultiplicationwithaconstant.TheFouriercoecientsaremultipliedbythisconstant,sotheycanceloutintheSNR.Neverthelessattentionmustbepaidwhentheinputimageisconvertedtoorfromanotherimageformat.ThecurrentimplementationoftheDFmethodrequires16bitTIFFimagesasinput.TheTIFFformato erslosslessLZWcompression.JPEGimages,forexample,cannotbeusedbecausetheJPEGalgorithmachievescompressionbynotsavinghighfrequencyFouriercompo-nents!TheSNRwillbeusedlatertomeasurethelevelofsimulatednoiseandasaquantityfromwhichtheerrorofspacingmeasurementscanbedeterminedinexperimentalimages.3.1AmodelfornoiseinaHRTEMimageInthepreviouschaptertheSNRwasde ned.NowthepowerspectrumofaregioninanexperimentalHRTEMimagewillbeexaminedinordertoobtainvaluesforj^sjandj^nj.Figure12showsthePSofanexperimentalimagecontain-inglatticefringes.Incomparison gure13showsthePSofasimulatedimage.The3DvisualisationpluginofImageJwasusedtocreatethesegraphics.In gure12thenoisebackgroundandthepeakwhichcorrespondstotheex-aminedperiodicitycanbeseenclearly.Thepluginallowstorotatethegraphic.Doingso,onenoticesthatthePSisazimuthallysymmetricexceptforthesig-nalofcourse.Thisistrueforimagesiftheastigmatismhasbeencorrected.Ifastigmatismwerepresentthecontourlineswouldbeellipsesinsteadofcircles.BecauseofthesymmetrytheazimuthalaverageofthePSwiththeDCpeakascenterwillbecalculated.Thishastheadvantagethataonedimensionalnoisemodelcanbemadewhichismuchsimplerthanatwodimensionalmodel.Figure14and15showexamplesofazimuthallyaveragedpowerspectra.Nowthesignalandthenoiselevelscanbemeasuredfromthesegraphs.Thesignallevelj^sjisde nedasthemaximumvalueinsidetheaperture.Thisvalueandit'sposition0ismeasuredbytheprogram.Tomeasurej^njthefollowingnoisemodelismade:Weassumethattheintensityofthenoisebackgrounddecreaseslinearlytotheleftofthepeakinthislogarithmicgraph.Figure14isaniceexampleforthatlineardependence.Ifasignalispresent-asin gure1530 Figure12:experimentalPS Figure13:theoreticalPS-thislinearrelationisnotvalidanymore.Thereforeweapproximatetheregiontotheleftofthesignalwhereit'se ectisnegligiblebylinearinterpolation.Whentheparametersforthislinehavebeenfoundwede neit'svalueat0asthenoiselevelj^nj.FromheretheSNRcanbecalculated.Table2showstheparametersfortheinterpolationofthepowerspectrashownin gure15andtheresultingsignaltonoiseratios.j^njisapproximatedbyj^n()jm.negative m[int/pix] c[int] j^sj[int]@0 0[1/pix] SNR[dB]@0 5001 -5.26 7.069 8.81 0.1346 495001 -3.35 6.576 8.65 0.1338 505209 -3.93 6.795 8.1938 0.1641 415209 -3.68 7.07 8.3212 0.1638 37Table2:SNR'sofexperimentalimagesNowthatweknowthequalityofourexperimentalimagesweneedtoexaminethee ectthenoisehasonthespacingmeasurement.31 0,00,10,20,30,40,556789 magnitude - log10 scalespatial frequency500152095374 Figure14:azimuthallyaveragedPSofimagesshowingaholeinthespecimen32 0,00,10,20,30,40,556789 0,060,080,100,120,140,166,06,57,0 (a)intensity - log10 scalespatial frequency 0,00,10,20,30,40,556789 0,100,120,140,160,180,206,06,57,0 intensity - log10 scalespatial frequency(b) Figure15:(a)negative5001,fringes(b)negative5029,fringesandamorphousmaterial33 3.2EstimationoftheerrorinthephaseoftheDFimageTheerrorinthephasegradientwillbeapproximatedusingGauss'serrorprop-agation.Eachpoints(x;y)S(x;y)exp(i's(u;v))intheDFimageisgivenbytheinverseFToftheFouriercoecients^s(u;v)^S(u;v)exp(i'^S(u;v))bys(x;y)=1 N2u;v=N1Xu;v=0expi2uxvy N^s(u;v)1 N2u;v=N1Xu;v=0^S(u;v)expi2uxvy Ni'^S(u;v)Capitallettersdenotetheabsolutevalueofacomplexnumberwhilelowercaselettersdenotecomplexnumbers,thehatdenotesquantitiesinFourierspace.WithEuler'sformulawegets(x;y)=1 N2Xu;v^S(u;v)cos2uxvy N'^S(u;v)isin2uxvy N'^S(u;v)1 N2Xu;v^Scos2uxvy N'^SiXu;v^Ssin2uxvy N'^S1 N2(p(x;y)+iq(x;y))wherep(x;y)isthe rstsumintheequationaboveandq(x;y)isthesecond.Nowthephase'scanbecalculated's(x;y)=arg((x;y))=arctanq(x;y) p(x;y)Gauss'serrorestimationisusedtoquantifytheerrorin's.The(x,y)depen-dencyisnotwritten.'2s@'s @p2(p)2@'s @q2(q)2Withthede nitionof'sfollows'2sq2 (p2q2)2(p)2p2 (p2q2)2(q)2q2(p)2p2(q)2 (p2q2)2Thenextstepisto ndpandq.AgainGauss'sestimationisappliedtopandq.p2Xu;v @p @^S(u;v)!2(^S(u;v))2@p @'^S(u;v)2('^S(u;v))2q2Xu;v @q @^S(u;v)!2(^S(u;v))2@q @'^S(u;v)2('^S(u;v))2Fromthispointonthefollowingsimpli cationsandassumptionsaremade:34 ^S(u;v)^Nwhere^Ndoesnotdependonuandvwhichmeansthatwhitenoiseisassumedhere.Thisisareasonableassumptionastheradiusoftheapertureissmallcomparedtothefrequencyrangeonwhichthenoiselevelchanges.Thisassumptionisusedonlyhere,itdoesnotapplytothenoisemodelusedforWiener ltering.^Nhastobemeasuredintheimagebythemethoddescribedintheprevioussection.^N=0outsidetheaperturesothenumberofvaluescontributingtothesumisthenumberofpixelsinsidetheaperture:#APTheTaylorexpansionofarcsin^n ^sisusedtoapproximate'^S^N ^SO^N ^S2.Thisisaverygoodapproximationforanexperimentalimage,becausethetypicalSNRisabout40dBwhichcorrespondsto^N ^S=102.Nowp2andq2takethefollowingformp2Xu;v(cos22uxvy N'^S^N2^S2sin22uxvy N'^S ^N2 ^S2!)^N2Xu;v1=^N2#AP=q2Sop2=q2^N2#AP2andp2q2N4S2leadsto'2s22 p2q2=2#AP^N2 N4S2'sdependsonN,thenumberofpointsoftheFFTandonthenumberofpointsintheaperture.HoweverSismeasuredindirectspacewhile^NismeasuredinFourierspace!SoaconnectionbetweenSand^Smustbemade.ThemaximumsignalSisobtainedwhenallwavesinsidetheapertureareaddedinphase.TheupperlimitforSisthesumofallFouriercoecientsinsidetheaperture.Thissumiswrittenasamultipleof^S:S^Sm N2wheremisaunknownconstant.The nalexpressionfortheerrorinthephaseistherefore:'sp 2#AP m^N ^Swhere#APr2APThespacingdisthequantityweareinterestedin.Itiscalculatedfromthephasegradientwhichisobtainedbysubtractingnearbyphases,dependingonwhichnumericalexpressionisused.Theerrorinthephasegradientis'swhiledependsonthenumericalexpression.p 2fortheforwardorbackwardderivativeand 1=2forthecentralderivativewhichismoreaccurate.Usingthede nitionofthespacingandGauss'serrorpropagationtherelativeerrorinaspacingmeasurementisfoundtobed drAP^N ^Sp 2 mk35 ItincreaseslinearlywiththeradiusoftheaperturerAPandthenoisetosignalratio~N=~S.Asd=2=ktheerrorinkhasabiggerimpactondifkissmall.Thereforetherelativeerrorincreaseswiththespacingd.Theconstantmisknownapproximatelyonly.3.3MeasurementoftheerrorinspacingmeasurementsInthissectiontheerrorinspacingmeasurementswillbemeasuredinordertocheckthedependenciesonapertureradiusandnoiselevel.Todosothespacingsmustbeknownofcourse,sothespacingsincomputergeneratedimageswillbemeasured.Evenifwehadaperfectsampleandaperfectmicrographwewouldstillnotknowthespacingsbetweenlatticefringesinthemicrographwithhighspacialresolutionbecausethemagni cationofthemicroscopeisnotknowwithhighaccuracy.Asindicatedbeforethesemeasurementswillbeusedtoestimatetheerrorinthemeasurementofaspacinginanexperimentalimage.Arelationbetweentheerrorandthequalityoftheimageisrequiredtodothat.Thisrelationhasbeenderivedintheprevioussectionbuttheconstantmisjustapproximatelyknown.Tomeasurethisrelationacertainamountofwhitenoiseisaddedtotheimageandthespacingmeasurementisperformed.Atthispointitisassumedthatthesimulatedimagescontainnonoise.Thisisareasonableassumptionastheperiodicityisnotrunningparalleltoanedgeoftheimage,sotheartifactsduetononperiodicboundariesdonotoverlapwiththepeakwhichcorrespondstotheperiodicity.TheonlynoisepresentinthewholePSisduetoroundo errorsthatoccurduringtheFFT,butweexpectthemtobenegligible.ThenoisewillbeaddeddirectlyinFourierspacesowedonotneedtocalculatetheimageofthenoiseindirectspace.Anoiselevel^NissetandeachFouriercoecientinsidetheapertureismodi edinthefollowingway:^(u;v)=^(u;v)+^N(1+r)exp(i')whererisarandomnumberbetween0:1and0:1and'isarandomphasebetween0and2.rcreatesamplitudenoie,while'createsphasenoise.Whenthenoisehasbeenaddedthemeasurementisperformedasusually.500measurementswiththesamenoiselevelaremadeatacertainlocationinordertohaveenoughvaluesforastatisticalanalysis.Asthenoisecoecientsthemselvesaredi erenteachtimetheresultofthemeasurementisdi erenteverytime.Toexaminethedistributionofthemeasurementsthenumberofmeasure-mentsthatlieinacertainintervaliscounted.ThefrequencycountfeatureofOriginPro[1]isusedtodothat.Theobtaineddistributioncanbeinterpolatedbyagaussianpro le.TheFWHMofthisgaussianpro leisde nedastheerrorinthemeasurement.Figure16(a)showsanexampleofsuchdistributions.Thespacinghasbeenmeasuredat500/500withanapertureof20inthesharpstepgeometrydescribedin2.4.Theregionswherethespacinghasbeenmeasuredhaveaconstantspacing.Thereforetheerrorinthemeasurementsisexclusivelyduetothenoise.Thee ectofthechangein~kwillbeexaminedinchapter4.1.36 Figure16(b)showsthelinearincreaseoftheerrorwithincreasingN=S.Eachpointinthis gurehasbeenobtainedfromadistributionof500measure-ments.Theyaxisshowstherelativeerrorinthemeasuredspacing.37 5,4445,4465,4485,4505,4525,4540,00,20,40,60,81,0 number of measurements in intervalspacing [pixels](a) 0,0000,0010,0020,0030,0040,0050,0060,007012345 @500/500 aperture 30 @500/500 aperture 15 @200/600 aperture 30 @200/600 aperture 15Error [ ] N/S(b) Figure16:(a)statisticaldistributionofmeasurements(b)linearincreaseoferrorwithN/S38 Nowthein\ruenceoftheapertureontheerrorwillbeexamined.Figure17showstherelativeerrorinspacingmeasurementsandthecenterofthedistribu-tionofmeasurementsfordi erentradiioftheaperture.Thenoiselevelisthesameforallmeasurements.Again500measurementsweremadeateachpoint.Thesameanalysisofthedistributionasdescribedbeforeisused.ThelinearincreaseoftheerrorwithincreasingapertureradiusrAPcanbeseenclearly.Wecanalsoseethatthedistributionofmeasurementsisnotcenteredaroundthecorrectvalue(horizontalline)forsmallradii. 510152025300,20,40,60,81,01,21,41,6 5,4465,4485,4505,4525,454 relative error - width of distribution center of distributionrelative Error [ ]radius of aperture [pixel]center of distribution [pixel] Figure17:linearincreaseoferrorwithaperture,N=S0:006SNR=44bBWecanconcludethattheremustbeanidealradiusfortheaperture.Theerrordecreasesaslongasdecreasingtheapertureexcludespointscontainingmostlynoise.Iftheaperturegetstoosmallpointscontainingthesignalwillbeexcluded.Theerrorresultingfromthatishardtopredict.Astheaperturegetssmallerthepositionofthecenteroftheaperturebecomesmoreimportant.Thesee ectswillbestudiedmoreaccuratelyinchapter4.1.Fromthelinearinterpolationsin gure16band17valuesformcanbedetermined.Todothis,theerrorislinearlyinterpolated:d dB^N ^Sord dBrAPdependingonwhichquantityisvaried.Bistheslopeofthelinearinterpolation.39 missimplygivenbymrApp 2 kBorm^N ^Sp 2 kBwhererAP( gure16(b))and^N=^S( gure17)isconstantrespectively.InthecasewhererAPiskept xedand^N=^Sisvariedthefollowingvaluesformarefound:B rAp Position k m 0.681 30 200/600 1,1529 660.361 15 200/600 1,1529 630.228 30 500/500 1,1668 2010.100 15 500/500 1,1668 228Table3:mobtainedfrom gure16(b)InthecasewhererAPisvariedwe ndaslopeofB=0:05whichleadstom=185wherethe^N=^Sratiois0:006.Thevaluesthathavebeendeterminedformaremuchbiggerthanexpected.Thereforetheerrorneedstobemeasuredwhenbothsourcesoferrorarepresent.Thiswillbedoneinsection4.1.3.4RemovalofnoiseNowthatanoisemodelforexperimentalandsimulatedimageshasbeenes-tablishedandthee ectofnoiseontheFouriercoecientsisunderstood,itsuggestsitselftoremovethenoiseoratleasttoreduceitse ect.ThenoisemodelsdescribedabovemodeltheamplitudeoftheFouriercoecientsofthenoise,notthephase!Amodelforthephaseiswaymorecomplicatedorevenimpossibletocomeupwith,becausetheprocessescreatingthenoisearenotknownindetail.Forthesimulatedwhitenoiseit'sde nitelyimpossiblebecausthephaseisrandom.Thesimplestwaytoreducethee ectofnoiseistosubstracttheabsolutevalueofthenoisecoecientfromtheabsolutevalueofthesignalcoecient.Thiswouldcorrecttheerrorifbothcoecientshadthesamephase,whichisingeneralnotthecase.AmoresophisticatedmethodisWiener lteringwhichisderivedinchap-ter13.3of[16].Thistechniquerequiresthenoisysignalandanoisemodeltocalculatea lterfactor.EachnoisyFouriercoecientismultipliedbythecorrespondingfactor()whichyieldsacoecient^U0()thatisascloseaspos-sibletotheuncorruptedcoecient^U().Thatmeanstheobtainedcoecientsminimizethesumofthesquareddeviations:11^U0()^U()2min40 isfoundtobe:()=^S()2 ^S()2^N()2j^S()jandj^N()jaretheFouriercoecientsofthesignalandthenoiseatfrequency,bothcanbedeterminedfromthePS.j^S()jissimplygivenbythenoisyFouriercoecientminusj^N()j,see gure3.4(a)foranexampleofanoisemodeland(b)fortheextractedsignal.()iscloseto1wherethenoiseisnegligibleand0wherethenoisedominates.Figure3.4(c)showsthefactorand(d)showsthe lteredsignal.Becausethefactor()resultsfromaminimizationproblemtheobtainedresult^U0()di ersfrom^U()byanamountthatissecondorderintheprecisiontowhich()hasbeendetermined.ThismeansthatthenoisemodelweestablishedforexperimentalimagescanbeusedforWiener ltering,althoughitisjusta rstorderapproximation.Inchapter4this lteringtechniquewillbeappliedtosimulatedimagesafterwhitenoisehasbeenaddedandtoexperimentalimagesusingthe(inlog10scale)linearnoisemodel. 0,050,100,150,206,006,256,506,757,00 intensity - log10 scalefrequency power spectrum noise model 0,050,100,150,200,00,20,40,60,81,0 frequency Wiener filter 0,050,100,150,201,01,52,02,53,03,54,04,55,05,56,06,57,0 intensity - log10 scalefrequency signal 0,050,100,150,201,01,52,02,53,03,54,04,55,05,56,06,57,0 intensity - log10 scalefrequency filtered signal Figure18:(a)azimuthallyaveragedPSandnoisemodel(b)extractedsignal(c) lterfactor()(d) lteredsignal41 3.5MultiplespotmeasurementInsection3.3thestatisticaldistributionofspacingmeasurementshasbeenexamined.Ifameasurementofanoisyquantityisperformeditisnaturaltorepeatthemeasurementinordertoobtainmoredataandto ndthe nalanswerbysomekindofaveragingoveralldatapoints.Figure16(a)showsadistributionofmeasurements.Themaximumofthedistributionisattheaveragevalueifagaussiandistributionisassumed.Theaveragevalueisveryclosetotheexactvalue,asweexpected!HowcanwemakeuseoftheideatoaveragemultiplemeasurementsintheDFmethod?Well,therearebasicallytwodi erentpossibilities:The rstoneistocollectmeasurementsfromdi erentimagestakeninsequence.Thiswouldbeagoodsolutioniftheimagescouldbeobtainedeasilyfromadigitalcameraconnectedtothemicroscopeaswecouldassumethen,thatthenoiselevelandthecorrespondingnoisemodelisidenticalineveryimage.Weuseananalogcameratorecordtheimageonamicrographwhichisdevelopedand nallydigitized.Wedonotexpecttohavethesamenoisemodelintwodi erentmicrographsbecausetherearetoomanyprocessesinvolvedinobtainingtheimage.Thereforeweuseamethodthatcollectsdi erentmeasurementsfromthesamemicrograph.IntheorywecanmeasureaspacingatagivenpositionintheimageforeveryspotthatappearsinthePS.In gure5abasiswasintroducedandthespotswereindexedusingthisbasis,sothatitispossibletorelatethemeasurede ectivewavevector~keff~kitothebasisvectors.Foreachspotweobtainavector~kiandalinearequation:~kii~adi~bwhereianddiaretheindicesassignedtothespoti.WeendupwithasetofNequationscontainingwavevectorsandindicesfromNdi erentspots.Thislinearsystemneedstobesolvedforthebasisvectorsfromwhichallspacingsatacertainpositioncanbecalculated.Ncanbelargerthan2sotherecanbemoreequationsthanvariableswhichisassumedtobethecase.Forexamplethesetofequationsforthexcomponentsofthebasisvectorscanbewrittenlikethis:0BB@1d12d2::::::::::::1CCAab0BB@k1k2::::::1CCAA~x~bWearelookingforthesolution~xwhichminimizesthenormA~x~bWiththehelpofthesingularvaluedecompositionthematrixAcanbewrittenasAUSVT,asdescribedinchapter2.6of[16].UandVareorthogonalandSisdiagonalcontainingthesingularvaluesofA.Thesolutionisgivenby~xA1~bwhereA1VS1UT42 iscalledthepseudoinverseofA.Thesolution~xisdeterminedfrommultiplepoints.Thisminimizationpro-cessisnottobeconfusedwithspatialaveraging.ThespatialresolutionoftDFmethodisnotreducedbythemultispotmethodbecauseeachspotprovidesanadditionaldatapoint.Itisexpectedthatthismethodreducesthee ectofnoisebecausenoisetendstocancelinanaveragingprocess,howeveritcannotreducetheerrorintroducedbythechangein~k.Thenoisemodelintroducedinsection2ofthischapterassumesalinear(inlogscale)decreaseofthenoiseamplitudewithfrequency,sousingspotsathigherfrequenciesautomaticallyhastheadvantageoflowernoiselevels!Howeverthesignalamplitudeisweakerforhigherfrequenciesaswell.TheSNRofeachspotcanthereforebeusedtoweigththevaluesobtainedfromdi erentspots.MeasurementsobtainedfromaspotwithahigherSNRaretobetrustedmorethanmeasurementsobtainedfromnoiserspots.Iftheimagesweretakenbyadigitalcamera,bothaveragingtechniquesdescribedabovecouldbeusedinparallel.43 4ApplicationoftheDFmethodInthischaptertheDFmethodwillbeappliedtosimulatedandexperimentalimages.Firstitwillbeappliedtosimulatedimagesinordertolearnmoreabouttheerrorwhenbothsourcesoferror,namelynoiseandchangingspacingsarepresent.Wealsowanttounderstandthein\ruenceofthecenterandtheradiusoftheaperture.Examplesfornoiseremovalandmultispotmeasurementsinsimulatedandexperimentalimageswillbeshown.4.1computergeneratedimagesunstrainedgeometrywithnoiseThe rstimagethatwillbeexaminedhereisaunstrainedgeometrywithanoiselevelof40bB.Weusethebasicgeometrydescribedin2.4andaddnoise.Themaximumintheapertureis109:148whichisthesignalstrength.Weaddnoisewithanamplitudeof107whichcorrespondstoaSNRof43bB.Thetablebelowshowstheresultsforvarioussettings.Aperturecenter rAp Error[] 697/481 25 10697/481 20 6697/481 15 2699/480 10 1.2Weseethatevenwithoutnoiseremovalthespacingscanbemeasuredeasilywithanaccuracyof1intheunstrainedgeometry.ThisisnottoosuprisingthoughbecausethespotinthePShaslittlestructure,sotheaperturecanbeverysmall.widestepgeometrywithnoiseThemostinterestingsimulatedimageisprobablythewidestepgeometrywithextremeparametersasshownin gure9(a)withnoise.Againweaddnoisewithanamplitudeof107,thesignallevelisthesameasbefore.Theparametersforthegeometryarew=1anda=5%.Thetablebelowshowstheresultsofthemeasurements.Aperturecenter rAp Error[] comment 690/482 25 25 690/482 20 22 690/482 20 20 nonoise690/482 10 - stepisdarkinDFimage695/482 10 22 695/482 10 32 SNR23dB44 Thethirdmeasurementshowsaninterestinge ect:Theradiusoftheaper-turehasbeendecreasedandonesideofthestepappearsdarkintheDFimage,see gure19middle.ThismeanssomeimportantFouriercoecientswerenotincluded.Whentheapertureisshiftedtotherightby5pixels,bothsidesofthestepappearbrightagain, gure19left.Thise ecttellsustopositiontheaperturesothatthewholespotisinsidetheaperture.Inanexperimentalimagethisishardertodobecausethespotisspreadoutmore,buttheDFimagecanbeusedtoseewhetherenoughdatawasincludedintheaperturefortheregionofinterest.Therightimagein gure19showsaDFimagewithhighnoiselevels. Figure19:DFimagesfordi erentsettingsandnoiselevelsTheimagetotherightshowstheposition,thesizeandthecontentoftheapertureforthedi erentmeasurements.Thebrightnesschangesbecauseofdi erentscalefactors,thisandthewhitedotsareduetovisualization.Intheimageonthetoptheradiusis25pixels,thewholespotisinsidetheaperture.Wecanrecognizetwobrightareascon-nectedbyadimmerarea.Inthesecondimagetheradiusisde-creasedto20pixelsandtheaperturestillcontainsbothbrightareas.Thenumberofpointscontainingnoiseonlyhasbeenre-duced.ThethirdimageexplainswhythesideofthestepwhichcontainsthesmallerspacingsappearsdarkintheDFimage:TheDCpeakistothelowerleftintheseimages,sothebrightareafurtherawayfromtheDCpeak(tothetopright)corre-spondstohigherfrequenciesorsmallerspacingsrespectively.AsthisareaisnotincludedintheaperturetheDFimageisdarkinregionscontainingthesmallerspacing.Thefourthimageshowstheapertureshiftedalittletotheright.Thewholespotisinsidetheapertureagain,theDFimageisbrightinbothareas. Werealizethatresultofthemeasurementisnotverysensitivetothechoiceofthecenteroftheaperture.Whenplacingtheaperturecareshouldbetakensothatthewholespotisinsidetheaperture.Thentheradiusshouldbeminimizedinordertoreducethenumberofpointscontainingnoiseonly.45 4.2experimentalimages3buriedquantumdotsInthissectiontheDFmethodwillbeappliedtoaGaInP/InPheterostructuregrownonGaAs(001)substrate.Asdescribedin[14]thesamplewasgrownbymolecularbeamepitaxywhichallowstodepositsinglelayersofatomsoasubstrate.Firstofalla200nmbu erGaAslayerwasgrown,followedbya45nmGaInPlayer.ThelatticeconstantofthislayerwasmatchedtoGaAs.ThismatchingisdonebychangingtheGa/Inratio,hereGa0:52In0:48Pisused.NowthreemonolayersofInParedepositedfollowedbyaGaInPspacinglayer.ThisInP/GaInPsequenceisrepeatedthreetimeswithspacinglayerwidthsbetween2and16nm.Finallythestructurewascappedbya45nmGaInPlayer.ThelatticemismatchbetweenGaInPandInPis3:7%whichmakesitanidealteststructurebecausetheerrorinherentinthemethodisexpectedtobesmallerthan2%.DuetothislatticemismatchtheatomshavetorearrangeclosetoeveryInP/GaInPinterfacewhichleadstosocalledburiedquantumdots.Theelectricalandopticalpropertiesofthesequantumdotsdependontheirsizeandtheirshapewhichinturncanbederivedfromspacingmeasurements. ~a~b001011121320212223010211 0,00,10,20,30,40,56789 0,030,040,050,060,070,080,090,100,110,126,46,66,87,07,27,4 intensity - log10 scalefrequency Figure20:PSandazimuthalaverageofPS46 Figure21showsaHRTEMimageoftheregioncontainingthestructuredescribedabove,thisimageandimage25waskindlyprovidedbyDr.N.Y.Jin-Phillipp,Max-Planck-InstitutfurMetallforschungatStuttgart.Figure20showsthepowerspectrumanditsazimuthalaverage.ThePSshowsmanyhighfrequencyspotswhichindicatesthatonlyslightchangesinspacingsarepresent.Thespotshavebeenindexedusingthebasisvectors~aand~b. Figure21:HRTEMimageof3buriedInPquantumdots47

Related Contents


Next Show more