roCKLsrBLoKLsrx000fKooOoAvLEJLrLJx000fsULvrsLRsrKsLuorLEJLrLJx000fsULv - PDF document

Download presentation
roCKLsrBLoKLsrx000fKooOoAvLEJLrLJx000fsULvrsLRsrKsLuorLEJLrLJx000fsULv
roCKLsrBLoKLsrx000fKooOoAvLEJLrLJx000fsULvrsLRsrKsLuorLEJLrLJx000fsULv

roCKLsrBLoKLsrx000fKooOoAvLEJLrLJx000fsULvrsLRsrKsLuorLEJLrLJx000fsULv - Description


Comment Reply JCPLssuJJsKKKosLsovOLovrOOrJLososKvousoKOoOLoKGussLuLosx000foKLKKorbLOrsroLOLKrLJLboroorLsossLbOoLKrossx000fJuOrx000fLrOoorLsuLuOorKrLJLboroorx000fTKusx000fKroLoOororKsbLTOorsrLsLKrsoKL ID: 871365 Download Pdf

Tags

x000c x000b

Embed / Share - roCKLsrBLoKLsrx000fKooOoAvLEJLrLJx000fsULvrsLRsrKsLuorLEJLrLJx000fsULv


Presentation on theme: "roCKLsrBLoKLsrx000fKooOoAvLEJLrLJx000fsULvrsLRsrKsLuorLEJLrLJx000fsULv"— Presentation transcript


1 r o CK
r o CKLsr  BLoKLsr KooO o Av L  EJLrLJsULvrsLRsrK ,sLu or L  EJLrLJ sULvrsLCRET - L  TKoOoJ AJ ToNo -.E,CB

2 Koo ULvrsL 
Koo ULvrsL Koo -.Nuclear Orbital plus Molecular Orbital (NOMO) Theory:Overview and Recent ProgressMKLO MKos or Ab ,LLo Quu CKLsr Pro. PrLN CssCKL boroLr-.A. Luoé CNR  ULvrsLé NL oKL ALoOLs45 -uO 2016 Comment & Reply @JCP …,

3 Ls suJJs K K
Ls suJJs K K Kos   Ls o vOL ovr OO rJLos o s.´… Kv ous o K OoOL o K GussL uLos o KLK K orbLO rs  ro[LO L K rLJLbo roor. , Ls ossLbO o L K r o 

4 ss .. JuOr&#x
ss .. JuOr  LrO oorLs uLuO or K rLJLbo roor …. TKus K roLoO oror Ks b [ L TOor srLs LK rs o K LsO bs o K rLJLbo roor….´ Seminar @WasedaUniversity TK 14Quu CK

5 Lsr Lr
Lsr LrsULvrsL Oobr 24 200TLO TK BorOKLr Aro[LLo ouLos  LLLos´urr Pro. BrL uOL 4 5 Congress @WasedaUniversity TK CoJrss o K ,rLoO oL o TKorLO CKLO PKsLs &

6 #x000b;,TCP,, s
#x000b;,TCP,, sULvrsL br 2 2011PrLLs 41 sLLss ro 2 ourLs/rJLosO rLLLo 1 sLLs Pro. BrL uOL 80-Year-Old Celebration 㸶⇒八㸯㸮⇒十㸶㸮⇒八十⇒⇒傘㸦0rOO CObrLo⇒傘寿CObrLo o Ub

7 rOOPrs o Pro.
rOOPrs o Pro. uOLsULv. OrLJLO 88-Year-Old Celebration 㸶⇒八㸯㸮⇒十㸶㸶⇒八十八⇒⇒米㸦rOO CObrLo⇒米寿CObrLo o RL 99-Year-Old Celebration 㸯㸮㸮⇒ⓒ㸷㸷㸦=㸯㸮㸮-㸧⇒「ⓒ」ー「rOO CObrLo⇒ⓑ寿CObrLo o KL Contents ,rouLo B

8 orOKLr A
orOKLr Aro[LLour  PrsLv Development of Quantum Theory Quu MKLs125+LsbrJ; rL[ oruO126KröLJr; v oruOQuu CKLsr12BorOKLr; 12+LOroo; vO bo  B  Ko12+u

9 MuOOLN; oOuOr 
MuOOLN; oOuOr orbLO  MO  Ko10+rroNuLo11+üNOKo AdiabaticApproximationTime-dependent KröLJr . E ToO +LOoLTime-independentE[LJ oO v uLo             L rs o LJuLos o  A s o ouO Lr

10 LO s.CouOLJ os
LO s.CouOLJ osALbL ro[LLoTime-dependentToO v uLo Rr H mcmn RRmmmmmUTc �

11 00c; �
00c; Born-OppenheimerApproximation Time-dependent KröLJr . E ToO +LOoLTime-independentE[LJ oO v uLo             L rs o LJuLos o  A s o ouO LrLO s.CouOLJ osBorO

12 KLr ro[LLo
KLr ro[LLoTime-dependentToO vuLo Rr H &

13 #x000c;   PE Wave p
#x000c;   PE Wave packet, IeR Molecular Dynamics SimulationTime-dependent KröLJr . E ToO +LOoLTime-independentE[LJ oO v uLo             L rs o LJuLos o  A s o ouO LrLO s.CouOLJ osBorOKLr ro[LLoN

14 o’s uLoo
o’s uLoooLo  EOM H   PE tMEPPPmRRR IeRXx MO & MD EOM o PE o obL PE Molecular Dynamics S

15 imulationTime-dependent KröL
imulationTime-dependent KröLJr . E ToO +LOoLTime-independentE[LJ oO v uLo             L rs o LJuLos o  A s o ouO LrLO s.CouOLJ osBorOKLr ro[LLoNo’s uLoooLo  EOM

16
H   PE AbInitio tMEPPPmRRRon the fly CrPrrLOOo CP  M  15 Potential Energy Surface (PES)EuLOLbrLu

17  sruur TrsL
 sruur TrsLLo s  T ,rLsL rLo oorL  ,RC LbrLoOorO o RLo KALvLo brrLr LssoLLo ErJ  ALbL sur Schrdinger Equation of H Atom +roJOLN oKröLJr uLoErJ OvORbrJos

18 BO Ru 
BO Ru ssRbrJos  oBO nemEnR MmMm mMMmR xz Contents ,rouLo BorOKLr Aro[LLour  PrsLv What is NOMO? rbLO Ous rbLO MKooOvLJ KröLJr uLo o oOuOr sss LKou BorO

19 KLr ro[L
KLr ro[LLouOr  OroL v uLos oLbL uOr uu  NOMO/HF Theory ToO v uLoEOroL oNoror NNNNN

20 N RRRXXXXrrrxxxx CouOLJ r
N RRRXXXXrrrxxxx CouOLJ r NOMO/+  sLsLs Koos Kor  BrLOOouLKor.rLous orrO Kos vOo LKL BOA r OLbO  NOMO/HFR Method BsLs s [sLoMoOuOr orbLO  MO NuOr orbLO  NO GussL bsLs uLo PppicRrr PPPIPIcRRRPPssnPPmPPlPPssPPsssZZYYXXNdRRRRPps

21 snPpmPplPpssPpsssZzYyXxNdRrRrECSCFECSCF
snPpmPplPpssPpsssZzYyXxNdRrRrECSCFECSCF fF fF OrbLO r NOMO/FCI(exact) Theory CrLo/ALKLOLo oror CCCaiiaaiAIIAAIaaCaaCC bajiiajbabijIAAiaAaIiBAJIIAJBABIJaaaaCaaaaCaaaaCC baaa jiaa BAaa JIaa C, MBPT  CC Kv b vOo bs o NOMO. Computational Cost of NOMO s  AOOrsrLOBsLs uLo  orN sLo  P

22 Lu4/2.G+] L[
Lu4/2.G+] L[sLv L ouLoO os.osO uOLLsLoO PE L v uLo.  MO/+NOMO/+2P ,JrO151151C LrCPU s111.4  What is NOMO? rbLO Ous rbLO MKooOvLJ KröLJr uLo o oOuOr sss LKou BorO

23 KLr ro[LL
KLr ro[LLouOr  OroL v uLos oLbL uOr uu u …,rouLJ  robOsEOrouOus     uOusuOus    orrOLosCoLLos o rsOLoO 

24  roLoO oLo
 roLoO oLos Translation & Rotation Tr o rsOLoO  roLoO oLosLbrLoTrsOLo poorpoor NuOr oLo TF-& TRF-NOMO Theory TrsOLoO +LOoLTrsOLor  T  +LOoLRoLoO +LOoLTrsOLoroLor  TR&

25 #x000c; +LOoL PPPPPMM
#x000c; +LOoL PPPPPMMTRRRTHH ROTTLLLITZYXQPQPPPTHTHH Total Energy by NOMO ToO rJLs o + & Tb TRC T & TRNOMO 1.041.061.01.101.121.141.16TRCTRTRCTR+MP Accuracy of NOMO ToO ErJ o +TRCNOMO/+ MO1so   CP 1  0.654 uTRCNOMO/+ B1so�

26 00c;  ,-QC 2002
00c;  ,-QC 2002  1.042012 uTRCNOMO/+  ,-QC 2002  1.0521 uTNOMO/+  ,-QC 2002 1.0415 uTNOMO/MP2  -CP 200 1.11626 uTRNOMO/+  -CP 2005 1.1040 uTRNOMO/MP2  -CP 2006 1.14040 u NOMO/MP2  -CTC 2006  1.1444 uECG &#x

27 000b;AoL] 200
000b;AoL] 200  1.164025 u ECG Theory ECG v uLoECGBsLsuLo ECG-NOMO Theory NOMO v uLoECGNOMO v uLo PppicRrr PPPIPIcRRR PpPpicRrRr PPPIPIcRRR ECG-NOMO/HF Theory oNororoNoror XXxXxXxXpiipipf IiiiiIIIjjIJJIaaaUaJJtfPPpjejjjjjPPPPPvKJttf ECG-NOMO/HFR Method 33

28 ECSCFECSCF fF fFECSCFECSCF PPIPfFRRR XRr
ECSCFECSCF fF fFECSCFECSCF PPIPfFRRR XRrRrRrXpppfF ECG-NOMO/MP2 & CCSD Methods ECGNOMO/MP2 rJ bajibajibajiE aibajibajiabijbajibajittHEE Accuracy of NOMO ToO ErJ o +TRCNOMO/+ MO1so   CP 1  0.654 uTRCNOMO/+ B1so   ,-QC 2002  1.042012 uTRCNOMO/+  ,-QC 2002  1.052&#

29 x001a;1 uTNOMO/+  ,
x001a;1 uTNOMO/+  ,-QC 2002 1.0415 uTNOMO/MP2  -CP 200 1.11626 uTRNOMO/+  -CP 2005 1.1040 uTRNOMO/MP2  -CP 2006 1.14040 u NOMO/MP2  -CTC 2006  1.1444 uECGNOMO/+ -CP 2011  1.11254 uECGNOMO/MP2  CP 2012  1.1

30 5540 uECGNOMO/CC &
5540 uECGNOMO/CC  CP 2012  1.16001 uECG  AoL] 200  1.164025 u Approach of ECG-NOMO 36 Non-BO Theory 37 AJuLrr LOOrrO MLrusKKNov rCsOOs  1411  201 . O]NL Ko Int. J. Quantum Chem.  TNKsKL N ML

31 L NJo 
L NJo JuKL Int. J. Quantum  65  1 . NJo NLsKLN JuKL Int. J. Quantum  5  1 . NJo NLsKLN JuKL  611  1 .Phys. Rev.  24  2001 .Bo

32 Kvrov Ov&#x
Kvrov Ov    111  2004 . r CoO  C  MKo oOvLJ K OrouOr KroLJr uLos o KOLu o  Ls LsoOroLLos LK K r LrLvoOLrLo Ko´  NNsKL NN

33 suL  15410�
suL  15410  200 .oOvLJ K Oro  OrouOr KroLJr uLoKOLu o LK K r LrLvoOLrLo Ko´ NNsKL +LLN NNsuL  15410  200 .oOvLJ oB

34 orOKLr 
orOKLr KroLJr uLo or KroJ oOuOr Lo +LLN NNsKL NNsuL  024102  200 .Aur soOuLos o K KröLJr  Lr uLos o LK  LKou Bor–OKLr ro[LLo  ur J,sKLN

35  NNsKL�
 NNsKL NNsuL oOvLJ K oBorOKLr KröLJr uLo or KroJ oOuOr LK K r oO Ko ,, +LJKOur OroLNNsKL +LLN NNsuL NoBorOKLr oLO

36  rJ urv +
 rJ urv +roJ oOuOr Lo  04105  201 .Exact Theory for Non-BO Problem 38  +LLN NNsKL NNsuL J. Chem. Phys.Free Complement (FC) Method 39 J. Chem. Phys. 024102  200 .Free Complement (FC) Method 40 Full-CIbyQuantumComputing ,PEA  Accuracy of NOMO ToO ErJ o +TRCNOMO/+ MO1s

37 o   CP
o   CP 1  0.654 uTRCNOMO/+ B1so   ,-QC 2002  1.042012 uTRCNOMO/+  ,-QC 2002  1.0521 uTNOMO/+  ,-QC 2002 1.0415 uTNOMO/MP2  -CP 200 1.11626 uTRNOMO/+  -CP 2005 1.1040

38 ; uTRNOMO/MP2  -CP�
; uTRNOMO/MP2  -CP 2006 1.14040 u NOMO/MP2  -CTC 2006  1.1444 uECGNOMO/+ -CP 2011  1.11254 uECGNOMO/MP2  CP 2012  1.15540 uECGNOMO/CC  CP 2012  1.16001 uTRNOMO/C, 2016 1.1046 u  ? ECG  AoL] 200

39 1.164025 u Contents ,ro
1.164025 u Contents ,rouLo BorOKLr Aro[LLour  PrsLv How to use NOMO? oLbL LJoO BorOKLrorrLo  BOC NoLbL rsLLouOr uu =ro oL vLbrLoGorL Lsoo 

40 KLL Lsoo 
KLL Lsoo Proo uOLJ Geometric Isotope Effect Bo Lss o +b TRC T & TRNOMOBo Lss o + & Tb TRNOMO 1.1 1.101.051.00 COE[OMO0.44  0.000  0.414 TRCNOMO0.64  0.0254  0.510 TNOMO0.641  0.011 TRNOMO0.5

41 2  0.001  CO
2  0.001  COE[OTRNOMO0.52  0.001  0.510 TRNOMO0.45  0.000  0.4 TRNOMO0.45  0.0016  0.46  TRNOMO  OO srLb GorL Lsoo   G,E   Geometric Isotope Effect G,E or KroJ bo X―+   &#x

42 000b;X…+   UbbOoK
000b;X…+   UbbOoKG,E or LKroJbo L+C+22.LCC+ N+B+42.B+ sBo+,roOuOr+OX···O+0.650.612 0.0045 +OX···N+0.10.666 0.004 CNX···O+1.0221.01 0.004 CNX···N+1.0251.0206 0.0051 +X···O+1.461.4 0.011

43 4 +X···N+1.521.40&
4 +X···N+1.521.40 0.0115 CX···O+1.01.005 0.00 CX···N+1.011.00 0.00 ,roOuOr+OX···O+ X···O 1.511.604 0.006 +OX···N+ X···N 1.11.1 0.00 CNX···O+ X···O 2.22542.200&

44 #x000b;0.0046 CNX···N+
#x000b;0.0046 CNX···N+ X···N 2.12.21 0.0155 +X···O+ X···O 2.12.2060 0.006 +X···N+ X···N 2.102.12 0.006 CX···O+ X···O 2.6002.60 0.000 CX···N+ X···N 2.4642.5 0.004 TRNOMO/MP2  rrou

45  K G,E!Geometric Isotope Effect
 K G,E!Geometric Isotope EffectG,E or KroJ bo +oouoou  KP 122216  RP 1421Cs+   CP 1526114AsO  KA 616165AsO  RA 1001Cs+AsO  CA 142126 N+  AP 142425 N+AsO  AA 21604T

46 K T  K
K T  K UbbelohdeEffectEOoJLo o KroJ bo b subsLuLo s Ks rsLLo rur L rroOrL rLOs  .J. KP  K+ Kinetic Isotope Effect KroJ bsr rLo+O  +OR → +O+  OR RTEEkkaaaa RLo BrrLrR CosE[o2

47 a;.4 2.0 12.0 2
a;.4 2.0 12.0 2.0 21.2 4.66 0. +2.61 0.4 4.4  6.0 2.0 2.1 20. 4.55 0.20 CN.54 40.01 2.6 21. 1. 2.2 2.24  KLL Lsoo  sKouO b ruOO  1.1 1.101.051.00 1.0511.041.121.1041.1 TKLN How to use NOMO? o

48 LbL 
LbL LJoO BorOKLrorrLo  BOC uOr uu =ro oL vLbrLoGorL Lsoo KLL Lsoo LbrLoOv uLoLKLOLo o uOL  osLLvO KrJ rLOs Nuclear Orbital Energy CorrO

49 Lo ErJ COuO
Lo ErJ COuOLoLbrLoO  NuOr  E[L  COuOLo NOMO/MP2NOMO/+ijabijabijabiIaAIJabiaIAIJABiIaAIJAB ¦¦¦¦NOMO/C,aaAAiiIIiaIA KoopmansTheorem EOroL OrbLOErJErJLrbsLKro]orbLO

50 ro[LLoNuOr
ro[LLoNuOr OrbLO ErJErJLrbsLKro]orbLOro[LLo oooo Proton Annihilation? roo LLA JrOL] rLO roJor Kor PrLLo o rLLLs  LL rorLs LK K roo roJ

51 or´í]TLoo Ro
or´í]TLoo Roro OrL]  OorsMoro J. Chem. Phys. Proton Propagator Gr uLo iaaa aIII IAAA A 01210122    rrrrrr 01210122    rrrrrr 

52 GGGG Proton Propagator
GGGG Proton Propagator so uLo or uOus  roo  NOMO/PP2 Kooorr ro[LLo or sOrJLJoO ro[LLo  npnnpnpnnpnpnpEEE  2 IaIiIiAaIIPiaAPiaPaIiPiAa ¦¦¦¦¦  2 IA

53 IJIJABIIPJPAPJPAPBPPAIJPJAB
IJIJABIIPJPAPJPAPBPPAIJPJAB ¦¦¦¦¦ Proton Propagator 22.5 6. 2.02 6.6 24.16 .0 2.56 .42 2.64 .51 24.44 .0 2.26 .4 2.0 . 24.55 10.1 2.1 .4�

54 00c;2.6 .4�
00c;2.6 .4 24.4 10. 2.1 .65 2.6 .0 24.04 . 25.26 10.0 25.0 10.12 26.12 10.4 MA.5AX → A Proton Propagator MoO.TRCNOMO/PP2TNOMO/PP2TRNOMO/PP2E[O.16.05 −0.01 16.0 −0.01 16.2 0.2�

55 0c;16.21 0.0 16.2
0c;16.21 0.0 16.2 0.0 16. 0.26 14.01 −0.41 14.02 −0.40 14.2 −0.14 14.1 −0.1 14.1 −0.2 14. −0.11 15.0 −0.0 15.0 −0.0 15.1 −0.02 15.54 0.5 15.55 0.6 15.4 0.56 MA0.21AX → 

56 A Proton Propagator NOMO/PP2E[O.+
A Proton Propagator NOMO/PP2E[O.+16. 0.2 1.6 −2. 22. .55 16.06 0.00 16.061.06 0. 1.5 −2.1 2.5 .11 16.21 0.0 16.1+CO14.5 0.1 16.0 1.6 2.2 .22 14.02 −0.40�

57 0c;14.42CO14.65 0.1&#x
0c;14.42CO14.65 0.1 16. 1.2 2.2 . 14.1 −0.0 14.4+CN15.2 0.12 16.0 0. 2.1 .65 15.0 −0.0 15.1615.51 0. 14.4 −0.0 25.2 10.0 15.54 0.6 15.1MA0.44.5&#

58 x001a;0.21AX → A Divde-and-Conquer C
x001a;0.21AX → A Divde-and-Conquer Correlation 59 Bur rJLo oOL]Lo rJLosubssorrorr subssorrorr o vLr orro 2iijabijbaijabEwCjabtt¦¦¦ o vLr orro 2iijabijbaijabEwCjabtt¦¦¦ ijababijabij 

59  ijababijabij 
 ijababijabij  ijabiajbijabttttijabiajbijabtttt ToO CorrOLo ErJ ubss CorrOLo ErJ sL ErJ sL AOsLs EA 1 +. NNL    2002 .2 M. KobsKL . ,ur +. NNL&

60 #x000f;  0410 �
#x000f;  0410  200 .  M. KobsKL  +. NNL  04410  200 .  Combination of DC and PP2 60 NOMO/CPP2 MKo IaIiIiAaiaAPia aIiPiAa  ¦¦¦¦¦ NOMO/DC-PP2 Calculation 61 PP2CPP2415.6.164.1.110.620.1021.02.1240.

61 4.4 ELL NOMO/DC-
4.4 ELL NOMO/DC-PP2 Calculation 62 NrLO  CrLO  Summary & Perspective 63 ErJv uLoCouLoOTRCNOMObKsLOO orrTNOMOoJoo uKsLOL[sLvTRNOMOJoouKsLOL[sLvECGNOMOurJoo[sLv~[~[~[~[ Summary & Perspective +o 

62 o To srLb o
o To srLb oLbL suK s BOC  oLbL ouOLJ   srosoLur Kos.r roLsLJ. LJK b OLbO.To srLb uOr uu suK s ]ro oL vLbrLo JorL & NLL Lsoo 

63 s  vLbr
s  vLbrLoOv uLo   Ls roLsLJ u o Ls ur  sLbLOL.or OrJ sss L KLK oLLos o rsOLo  roLo r Ls roLsLJ o srLb K uOr v uLo.  To srLb LKLOLo o u

64 OL  osLLvO 
OL  osLLvO KrJ rLOs  LL  osLro LKLOLo    KLOur NOMO/CPP2 Ls roLsLJ u o Ls ur  sLbLOL. NOMO v uLo Ls  o srLb K osLro bLLJ s Colleague Pro. Ars Rs �

65 b;ULvrsL NLo
b;ULvrsL NLoO CoOobL Mr. -oK Roro  ULvrsL NLoO CoOobL Pro. JJ  Lbur ULvrsL o TKoOoJ Pro. KLNL +oo  +oJo PrurO ULvrsL Pro. MsorL TKLN oNoK CL ULvrsL r. KLroo

66  N,M r.
 N,M r. MLoru +osKLo  NLss CKLOs  r. uN ,ur  R,KEN r. +LroNL NLsKL] sULvrsL ,M r. suKLro ,Nb sULvrsL r. Mso KobsKL  sULvrsL Mr. KLoMLoo Mr. +LroosKLKLruMr. suKLro TsuNo

Shom More....
By: eddey
Views: 0
Type: Public

Download Section

Please download the presentation after appearing the download area.


Download Pdf - The PPT/PDF document "roCKLsrBLoKLsrx000fKooOoAvLEJLrLJx000fsU..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.

Try DocSlides online tool for compressing your PDF Files Try Now

Related Documents