













c200 dLb4n842 0;倀nb63ML8n 0;怀 Lb2 1. 232.4 0;瀀67890. 5 0;퀀tyC 50n5acdL5 1;怀I7f.m5cm 0;䀀m. V28n 1. 23 45 1. 234567 0;ꀀ9309bt8y 1;bna 6 7789
KIPPUGOL ÑAWUUJI E CAƊEELE MOWNUGOL SUKAAƁESUKA MO DUUBI SAPPO (10) NATTI WAAWDE ÑALAWMAINNDE KILIYAAN E ADARES MUMINNDEDARANIIƊI KILIYAAN E ADARES MUMRE: HABRUDE SUKA MO DUUBI SAPPO (10) . Ho
An Interview of Hejo Feuerstein by Kara Hill Present Day Hejo (Heinz - Joachim) Feuerstein lives in the southwest part of t he Black Forest near the border of Germany and France. He is retired from
PANELISTS:. Sean Brinda DBHIDS. Skyler Deitrick Workabilities Clubhouse. Bill McHenry New Visions Fairweather Lodge. Roody McNair Horizon House . Valerie Walter PEACE . FACILITATOR:. Randy Loss OMHSAS.
weme. evening. gete. quebe. complete. glebe. theme. sprene. cheme. concrete. delete. sprede. sneme. Chinese. even. chebe. Eve. these. Japanese.
myanmar. Thant Sin . Lwin. Secretary, MIC. Director . General. Directorate of Investment and Company Administration. Outlines. 2. Effort for a good Investment Climate. OECD Investment Policy Review of Myanmar.
kēia. pule, e . nānā. . kākou. . i. …. 2. n. ā. . hua. . ʻōlelo. . hou. 8.1. k. a. . P. epeke. . ʻAike. He. kāu. . haʻawina. pili home. k. a. . hoʻomaʻamaʻa. . ʻaike. he.
April 1 6 , 2020 arta en espa
1
JOURNALOFTHEORETICALANDAPPLIEDMECHANICS5
JOURNALOFTHEORETICALANDAPPLIEDMECHANICS55,1,pp.55-68,Warsaw2017DOI:10.15632/jtam-pl.55.1.55CRACKANALYSISINBIMATERIALINTERFACESUSINGT-SPLINEBASEDXIGASadamHoucineHabib,IdirBelaidiUniversityofM'hamedBougara,DepartmentofMechanicalEngineering,Boumerdes,Algeriae-mail:hb
houcine@yahoo.fr;idir.belaidi@gmail.comAnalysis-suitableT-splinesareusedforthemodelingandanalyzingofcracksinbimaterialinterfaceswithintheframeworkofanextendedisogeometricanalysis(XIGA).Thecracktipenrichmentfunctionsofbimaterialinterfacecracksareimplementedtoreproducesingularelds,andthesigneddistancefunctionsareusedtotreatthecrackfaceandtheinterfaceinthemodels.Acompatiblelocalrenementalgorithmisappliedtorenelocationofthecrackandtheinterface,whichhelpsonetoavoidproduceexcessivepropagationofcontrolpoints.Themixedmodestressintensityfactors(SIFs)whichareevaluatedbytheinteractionintegral(M-integral)areusedasanalysisparameters.Numericalsimulationsareperformedtoanalyzetheproblemandtoexaminetheeciencyoftheproposedmethod.Theobtainedresultsarecomparedwithotheravailableresults.Keywords:extendedisogeometricanalysis,T-splines,bimaterialinterfacecracks,enrichmentfunctions,localrenement1.IntroductionAsitsnameindicates,acompositematerialismadeupoftwoormoredierentconstituents;ithaspropertiesthatcannotbeobtainedtogetherbyoneoftheindividualconstituents,suchashighspecicstrengthandstiness,gooddurabilityandgoodcorrosionresistance.Duetotheirproperties,compositeshavebeendevelopedandusedinvariousindustrialandengineeringap-plications,likethoseinaerospace,aircraft,automotiveindustries,etc.However,thesematerialsarenotimmunetomanufacturedefectsespeciallyfromthosewhicharecreatedasinterfacialcracks.Thisproblemgreatlyin\ruencesthebehaviorofstructuresandcancausebrutalfracture.Themechanicalbehaviorofcompositematerialsneedsmoreunderstanding,especiallyinthepresenceofstrongandweakdiscontinuities.ManyanalyticalstudieswereperformedbasedupontheworkofWilliams(1959)forunderstandingtheproblemofbimaterialinterfacecracks,suchas(Erdogan1963;RiceandSih,1965;S
2
unandJih,1987;Hutchinsonetal.,1987;Ri-ce
unandJih,1987;Hutchinsonetal.,1987;Ri-ce,1988;Evansetal.,1990).However,thecomplexityofanalyticalsolutionsevenforsimplecasesrequiresthemodellingofmechanicalbehaviorofthisproblemusingeectivenumericalmethods.Severalinvestigationshavebeendevelopedinthisdomain,viatheboundaryelementmethod(BEM)(LeeandChoi,1988;YuukiandXu,1994;Miyazakietal.,1993),niteelementmethod(FEM)(Ikedaetal.,2006),elementfreeGalerkinmethod(EFGM)(Pantetal.,2011),extendedniteelementmethod(XFEM)(Nagashimaetal.,2003;Liuetal.,2004;BelytschkoandGracie,2007)andothermethods(Zhouetal.,2013,2014;Anetal.,2013).Recently,alargeeldwasopenedbyHughesetal.(2005)oeringthepossibilityofintroducingcomputeraideddesign(CAD)toolsintheanalysismethodsusingtheisoparametricconcept.Theba-sicideaofthisnovelalternativemethod,calledisogeometricanalysis(IGA),istoexploitthetechnologiesofcomputationalgeometryasshapebasestodescribethegeometryexactly,alsofortheapproximationofunknownelds.Followingthisdiscovery,severalresearchesinvarious
56S.H.Habib,I.Belaidi
eldshavebeenconductedbythismethod,including:\ruid-structureinteraction(Bazilevsetal.,2006),compositematerials(Pekovietal.,2015),elastic-plasticanalysis(Kalalietal.,2016),electromagneticproblems(Buaetal.,2010),turbulent\row(BazilevsandAkkerman,2010),contactproblems(Temizeretal.,2011),aero-dynamics(Hsuetal.,2011),heattransfer(Andersetal.,2012)and\ruidmechanics(EvanandHudhes,2013).FormoredetailsaboutIGA,arecentreviewhasbeenpublished,seeNguyenetal.(2015).Infracturemechanicsproblems,IGAhasbeenalsoappliedindierentstudies(Verhooseletal.,2011;Bordenetal.,2012;NguyenandNguen-Xuan,2013;Nguyenetal.,2014;Pengetal.,2014),howeverBensonetal.(2010)andDeLuyckeretal.(2011)proposedextendedisogeometricanalysis(XIGA)formodellingcracks.InthismethodthegeneralprincipleoftheXFEMisusedinIGAbyincludingtheasymptoticandsigneddistanceenrichmentfunctions.Therefore,thismethodhastheadvantagesofbothXFEMandIGA,whicharesummarizedbytheabilitytorepresentcomplexgeometriesinde-pendentlyofanydiscontinuitiesandwithoutexplicitmeshi
3
ngtoobtainsolutionswithhigherorders.Some
ngtoobtainsolutionswithhigherorders.SomeapplicationsinfracturemechanicshavebeencheckedbytheXIGA,suchasinthecasesofhomogeneousmaterials(Ghorashietal.,2012;BhardwajandSingh,2015),functionallygradedmaterial(Bhardwajetal.,2015a,c)andbimaterialinterfaces(Bhardwajetal.,2015b;Jiaetal.,2015),wherethenon-uniformrationalB-splines(NURBS)areused.Also,orthotropicmediahavebeenstudiedusingT-splinebasedXIGA(Ghorashietal.,2015).TherearemanyCADbasisfunctionsthatcanbeusedinIGA,wheretheNonUniformRationalB-splines(NURBS)arewidelyusedduetotheirproperties,likecontinuity,smoothness,variationdiminishing,convexhullandpossibilityofusingknotinsertionanddegreeelevationrenements.Theyhavetheabilitytodescribeexactlyallconicsectionsbuttheyhavedicultiesincertaincomplexgeometrieswhichcannotbeavoidedevenbyusingmultiplepatches,whereNURBSgenerateacomplicatedmeshwhichleadstoproducesuper\ruouscontrolpoints.Inordertohandlethesedisadvantages,Sederbergetal.(2003)proposedaT-splineasageneralizedtoolofNURBS,inwhichtheindexspace(T-mesh)locallyrenedusingT-junctions(Sederbergetal.,2004).Therefore,themajoradvantagesofthistechniquearethelocalrenementandtheabilitytorepresentcomplexgeometrieswithaminimalnumberofcontrolpointscomparedwiththoseusedinNURBS.Accordingtotheirabilityinengineeringdesign,T-splineshavebeenusedbyanalysistoserveasbasisfunctionsforIGAinmanyadvancedsearches.HoweverT-splinebasesarenotalwaysvalidtobeusedinanalysisfordierentgeometriccongurations,becausethelinearindependenceandpartitionunitypropertiesarenotalwaysensured.Lietal.(2012)introducedanalysis-suitableT-splines,whereforanychoiceofknotvectorstheblendingfunctionsarelinearlyindependent.LikeNURBSbases,analysis-suitableT-splinebaseshavethepropertiesoftheanalysisbasisfunctions.Moreover,theyprovideanecientalgorithmwhichallowsmakinghighlylocalizedrenement(Scottetal.,2012).Inthispaper,theinterfacecrackinthecaseof2DcompositesisanalyzedusingT-splinebasedXIGA;theaccuracyofthisapproachisrsttestedinisotropicmaterials.Theanalysis-suitableT-splineanditsrenementalgo
4
rithmarehighlighted.2.Analysis-suitableT
rithmarehighlighted.2.Analysis-suitableT-splinesAnanalysis-suitableT-splineisfoundedwhentheT-mesh(T-meshisameshofrectangularelementsthatisdenedbythelinescorrespondingtoknotvaluesoftheparametricvectors)providesarestrictedtopologythathasnointersectingT-junctionextensions.TheT-junctionextensionisdenedineachT-junctionvertexbyanintervalwhichincludestwodistances.TherstdistanceisbetweentheT-junctionandthetwonextadjoiningedgesorverticesinthedirectionofmissingedge,whiletheseconddistanceisbetweentheT-junctionandoneedge
CrackanalysisinbimaterialinterfacesusingT-splinebasedXIGA57
orvertexintheotherdirection,asshowninFig.1b.TheT-meshthatshowsallT-junctionextensionscanbecalledextendedT-mesh.AnemptyextendedT-meshmeanstherearenointersectionsbetweenT-junctionextensions(seeFig.1c),whichmeanstheT-meshisanalysis--suitable.
Fig.1.Anexampledepicts:(a)T-mesh,(b)extendedT-meshand(c)emptyextendedT-meshInordertomakelocalrenementofanalysis-suitableT-splinespaces,Scottetal.(2012)introducedanalgorithmconsistingofthefollowingsteps:createtherenedT-meshT2fromtheoriginalanalysis-suitableT-meshTs1,formtheextendedT-meshofT2.iftheextendedT-meshofT2hasintersectingT-junctionextensions,oneedgemustbeinsertedintoT2insuchawaythatreducesthenumberoftheintersections,repeatstep3untiltheextendedT-meshhasnointersectingT-junctionextensions,computetherenementmatrixM.Formoredetails,see(Scottetal.,2012).3.Extendedisogeometricanalysis(XIGA)XIGA(Bensonetal.,2010;DeLuyckeretal.,2011)usesthesamemethodologyoftheextendedniteelementmethod(XFEM)forthemodellingofdiscontinuitiesbutwithbasisfunctionsderivedfromgeometrylikeinisogeometricanalysis(Hughesetal.,2005).Forcrackproblems,XIGAprovidesthepossibilityofmodellingthecrackindependentlyofthemeshandwithinexactlypresentedgeometry.Uncommonly,inthisstudy,T-splinesareadoptedinXIGAusinganalysis-suitableT-splinestoapproximatethedisplacementinanypoint=(;)asfollowsu()=nsXi=1Ri()ui+ncfXj=1Rj()H()aj+nctXk=1Rk() 4X`=1F`()b`k!+niXt=1Rt()()ct(3.1)whereRistheT-splinebasisfunctionext
5
ractedfromanemptyextendedT-mesh,HistheHe
ractedfromanemptyextendedT-mesh,HistheHeavisidefunctionusedforthemodellingofthecrackface,ittakesvalue1abovethecrackand 1belowthecrack,Farethecrack-tipenrichmentfunctions,ui,aj,bkandctarethedisplacementvectorscorrespondingtons,ncf,nctandntcontrolpoints,respectively.Thefourthtermisusedwhenthereisnocoincidencebetweentheinterfaceandtheniteelementmeshforthemodellingofweakdiscontinuity.TheenrichmentfunctionofMoesetal.(2003)canbeused()=XRI()jIj XRI()I(3.2)whereisthesigneddistancevalueoftheinterfacecontrolpoints.
58S.H.Habib,I.Belaidi
TheenrichmentfunctionsofbimaterialinterfacecrackswerederivedbySukumaretal.(2004)asfF`(r;)g12`=1=np
rcos("logr)e "sin
2;p
rcos("logr)e "cos
2;p
rcos("logr)e"sin
2;p
rcos("logr)e"cos
2;p
rcos("logr)e"sin
2sin;p
rcos("logr)e"cos
2sin;p
rsin("logr)e "sin
2;p
rsin("logr)e "cos
2;p
rsin("logr)e"sin
2;p
rsin("logr)e"cos
2;p
rsin("logr)e"sin
2sin;p
rsin("logr)e"cos
2sino(3.3)4.NumericalsimulationsHere,theanalysis-suitableT-splineisusedinXIGAtosimulatethecrackinhomogeneousisotropicandbimaterialinterfaces.Twonumericalexamplesareconsideredforeachmaterialtypeinplanestaticproblems,wheremodeIandmodeIISIFsareevaluatedandcomparedwithothernumericalandanalyticalresults.First,theisotropicmaterialisconsideredinarectangularplatewithanedgecrackinordertostudytheconvergenceandthedomainindependenceinthecomputationsofSIF,alsoanisotropicsquareplatewithacentercrackisanalyzedfordierentcrackanglestoverifytheaccuracyoftheproposedapproach.Then,numericalapplicationsintheformofparametricstudiesareconsideredforedgeandcenterinterfacecracksinniterectangularplates.Inallgeometricmodels(NURBSandT-splines)thecubicorderisusedinbothparametricdirections,wheretheweightsaretakenasunity.Intheedgecrackproblems,thegeometryisrenedlocallyonce,whileforthecentercrackproblemsthegeometryisrenedlocallytwice.Fourtypesofniteelementsaredistinguishedintheseexamplesaccordingtotheirpositionswithrespecttothecrack,thestandardelementcontains33Gausspoints.Theelementhaving
6
tipenrichedcontrolpointscontains77Gauss
tipenrichedcontrolpointscontains77Gausspointsandthesub-triangletechnique(Ghorashietal.,2011)isusedforthetip-elementby13Gausspointsineachtriangle,howeverthesplitelementcontains66Gausspointsforthehorizontalcrackproblemsandthesub-triangletechniqueisusedby13Gausspointsineachtrianglefortheinclinedcrackproblems.TheSIFsareevaluatedusinginteractionintegral(YauandWang,1984),whereinthecracktipelementisnotconsideredinthecalculation.4.1.HomogeneousisotropicmaterialInthiscase,wesimulateaniterectangularplatecontaininganedgecrack(Fig.2a)andasquareplatecontaininganinclinedcentralcrack(Fig.2b),subjectedtounituniaxialtensioninplanestressstate.Theconvergenceoftheproposedapproachisstudiedfortheedgecrackpro-blemwithnormalizedM-integralradiusequalto1usingvedierentcontrolnetcongurations(200,296,362,754and1800controlpoints),allshowninFig.3.TheerrorsofthenormalizedSIFvaluesobtainedfromtheproposedapproachwhichareshowninTable.1arecomputedusingthefollowingequation
KI=KI
p
a=TIa
L(4.1)whereTI(a=L)istheanalyticalformulawhichcorrespondstomodeI,itcanbecomputedas(Tadaetal.,2000)TI=1:122 0:231a
L+10:55a
L2 21:71a
L3+30:382a
L4
CrackanalysisinbimaterialinterfacesusingT-splinebasedXIGA59
Fig.2.Geometriesandloadingofthehomogeneousisotropicexamples(a)rectangularplatewithanedgecrackand(b)squareplatewithacenterinclinedcrack
Fig.3.Dierentmeshcongurationsusedintheconvergencestudy:(a)200points,(b)296points,(c)362points,(d)788pointsand(e)1800pointsTable1.ConvergenceoftheSIFforvariouscontrolnets
Controlpoints
KI
Error[%]
200
2.1275
1.0257
296
2.1189
0.6173
362
2.1121
0.2944
754
2.1098
0.1852
1800
2.1131
0.3419
TherstandthelastmeshesinFig.3representaspecialcaseofT-splineswhichisNURBS.AccordingtoTable1,analysissuitableT-splinesgiveuspreciseresultsforadierentnumberofcontrolpoints(meshes2,3and4),evenfortheminimalnumberofcontrolpointscomparedtoNURBS(mesh4comparedtomesh5)andthatattributedtothelocalrenementproperty.Table2comparestheresultsofthenormalizedSIFfordierentradiustostudythedomainindependenceinT-splin
7
emeshes.WeobservethattheSIFvaluesarealmo
emeshes.WeobservethattheSIFvaluesarealmostnotsensitivetotheradiusoftheM-integral.ThecontourplotsofthenormalstresscomponentyyandtheverticaldisplacementuyareillustratedinFig.4.Forthesquareplate,weusedameshconsistingof788controlpointsand689elements(Figs.5aand5b)toevaluatethenormalizedmixedmodeSIFfora=0:5indierentinclinedangles.TheexactSIFsofthisproblemcanbeobtainedbythefollowingequationsKI=0p
acos2KII=0p
asincos(4.2)
60S.H.Habib,I.Belaidi
Table2.Domainindependencestudy
Radius
Mesh2
Mesh3
Mesh4
KI
Error[%]
KI
Error[%]
KI
Error[%]
0.6
2.1131
0.3419
2.1280
1.0494
2.1245
0.8832
0.7
2.1256
0.9355
2.1202
0.6790
2.1142
0.3941
0.8
2.1256
0.9355
2.1209
0.7123
2.1122
0.2992
0.9
2.1218
0.7550
2.1177
0.5603
2.1122
0.2992
1.0
2.1189
0.6173
2.1121
0.2944
2.1098
0.1852
1.1
2.1146
0.4131
2.1118
0.2802
2.1109
0.2374
Fig.4.Graphicalvisualization:(a)normalstressand(b)verticaldisplacement
Fig.5.Themeshesusedfortheisotropicsquareplate:(a)T-splinecontrolnet(788points),(b)elementscorrespondingtotheT-splinecontrolnet(689elements)and(c)NURBScontrolnet(4625points)
Fig.6.Thecracktip(redsquares)andthecrackface(bluecircles)enrichedpointsof:(a)T-splinecontrolnetand(b)NURBScontrolnet,inthecase=0Figure6adepictstheenrichedcontrolpointsthatcorrespondtothecrackfaceandcracktipelements.Figure7showsacomparisonbetweenthenormalizedSIFscalculatedbythepropo-sedapproachandthosederivedfromtheexactsolutionandNURBS-basedXIGA.AuniformNURBSmeshisusedFig.6c,itsenrichedcontrolpointsarepresentedinFig.6b.Asseeninbothmodes,thereisaverycloseagreementbetweentheT-splineresultsandtheotherresults.
CrackanalysisinbimaterialinterfacesusingT-splinebasedXIGA61
Fig.7.VariationsofnormalizedmodeIandIISIFswithrespecttodierentcrackanglesusingtheanalysis-suitableT-splines,NURBSandexactsolutionforthesquareplateproblem
Fig.8.Geometriesandloadingofthebimaterialinterfaceexamples:(a)interfacecentercrackand(b)interfaceedgecrack4.2.BimaterialinterfacecrackWeconsidertwoniterectangularplatessubjectedtouniaxialtensionsinplanestresscon-ditions,each
8
oneconstitutedoftwodissimilarmaterialsan
oneconstitutedoftwodissimilarmaterialsandcrackedintheinterfaceasshowninFig.8.DierentratiosofYoung'smodulus(E1=E2=2,3,4,10and100)withxedPois-sonratios(1=2=0:3)aretakeninthesimulation.SimilarproblemsweresolvedbeforebyMiyazakietal.(1993)utilizingtheboundaryelementmethod(BEM),Nagashimaetal.(2003)utilizinganextendedniteelementmethod(XFEM),Matsumtoetal.(2000)makinguseoftheinteractionenergyreleaseratesandBEMsensitivityandLiuetal.2004)usingXFEMfordirectevaluationofthemixedmodeSIF.Forthecentercrackproblem(Fig.8a),weuseameshconsistingof3132controlpointsand2925elementsasshowninFigs.9aand9b.Fortheedgecrackproblem(Fig.8b),weuseameshconsistingof1446controlpointsand1235elementsasshowninFigs.9cand9d.TheenrichedcontrolpointsaredenedinFig.10.Inordertoverifytheaccuracyoftheobtainedresults,thenormalizedSIFsarecomparedwiththoseobtainedby
62S.H.Habib,I.Belaidi
othermethodsinFig.11forthecentercrackproblem(2a=L=0:4)andinFig.12fortheedgecrackproblem(a=L=0:3).Figures13and14illustratevariationsofthenormalizedSIFsintermsofcracklengthsforthecenterandedgecrackproblems,respectively.Formoredetails,checkTable3andTable4.
Fig.9.T-splinemeshesusedforthebimaterialinterfaceexamples:(a)controlnetfortheinterfacecentercrack(793points),(b)meshfortheinterfacecentercrack(688elements),(c)controlnetfortheinterfaceedgecrack(566points)and(d)meshfortheinterfaceedgecrack(431elements)
Fig.10.Cracktip,crackfaceandinterfaceenrichedcontrolpoints:(a)interfacecentercrackand(b)interfaceedgecrack
Fig.11.VariationsofnormalizedmodeIandIISIFswithrespecttodierentYoung'smodulusratiosusingT-splinebasedXIGA,BEMandXFEMforthecenterinterfacecrack(2a=L=0:4)
CrackanalysisinbimaterialinterfacesusingT-splinebasedXIGA63
Fig.12.VariationsofnormalizedmodeIandIISIFswithrespecttodierentYoung'smodulusratiosusingT-splinebasedXIGA,BEMandXFEMfortheedgeinterfacecrack(a=L=0:3)
Fig.13.TheeectofYoung'smodulusratioonthenormalizedSIFsforthecenterinterfacecrack
Fig.14.TheeectofYoung'smodulusratioonthenormalizedSIFfortheedgeinterfacecrack
64S.H.Habib,I.Bela
9
idi
Table3.Resultsofnormalizedstressinte
idi
Table3.Resultsofnormalizedstressintensityfactorsforthecenterinterfacecrack
E1=E2
2a=L
Presentstudy
Matsumtoetal.(2000)
Miyazakietal.(1993)
KI
KII
KI
KII
KI
KII
0.1
1.006
0:0731
0.995
0:072
1.001
0:072
0.2
1.0245
0:0713
1.019
0:07
1.02
0:071
2
0.3
1.0572
0:071
1.053
0:072
1.053
0:071
0.4
1.1056
0:0725
1.104
0:073
1.104
0:073
0.5
1.1814
0:0764
1.18
0:077
1.181
0:077
0.1
0.9993
0:1097
0.987
0:106
0.993
0:107
0.2
1.0179
0:1072
1.013
0:105
1.012
0:106
3
0.3
1.0504
0:1068
1.044
0:105
1.045
0:106
0.4
1.0981
0:1089
1.095
0:108
1.096
0:109
0.5
1.1726
0:1145
1.172
0:115
1.171
0:115
0.1
0.9934
0:1314
0.981
0:128
0.987
0:129
0.2
1.0121
0:1284
1.006
0:126
1.006
0:127
4
0.3
1.0443
0:1279
1.037
0:126
1.031
0:127
0.4
1.0916
0:1303
1.088
0:131
1.089
0:13
0.5
1.1649
0:1368
1.163
0:136
1.163
0:137
0.1
0.972
0:1764
0.962
0:172
0.968
0:174
0.2
0.9906
0:1729
0.987
0:168
0.986
0:171
10
0.3
1.0224
0:1708
1.017
0:171
1.018
0:17
0.4
1.0712
0:1745
1.065
0:172
1.066
0:173
0.5
1.1418
0:1838
1.135
0:181
1.136
0:182
0.1
0.9488
0:2086
0.943
0:207
0.946
0:206
0.2
0.967
0:2043
0.964
0:201
0.964
0:201
100
0.3
0.9979
0:201
0.994
0:198
0.994
0:2
0.4
1.0435
0:204
1.039
0:2
1.039
0:203
0.5
1.1088
0:2129
1.104
0:208
1.104
0:21
TheresultsoftheproposedmethodareclosertotheBEMresultsthantheXFEMresults,asshowninFigs.11and12.Young'smodulusratiohasaslighteectontheSIFs,asshowninTables3and4.Asitisobviousintheprecedentexamples,thelocalrenementpropertyofanalysis-suitableT-splinesallowsincreasingtheaccuracyoftheresultsandusinglessDOFs.Finally,wenotethattheevaluationofshapefunctionsinXIGAisslowerthansomemethodssuchasXFEM.5.ConclusionInthisstudy,theanalysis-suitableT-splinehasbeenusedinXIGAtoapproximatethesolutionincrackedbimaterialinterfacesinordertoconstructgeometryandtomakelocalrenementaroundthediscontinuities.Furthermore,ithelpsavoidingtheemergenceofsuper\ruouscontrolpointsduringthelocalrenementprocess.Theasymptoticcrack-tipenrichmentfunctionsandt
10
heinteractionintegralmethodcorresponding
heinteractionintegralmethodcorrespondingtobimaterialinterfacecrackshavebeenusedtoevaluatethestressintensityfactors.Theresultsobtainedbytheproposedmethodhavebeencomparedwiththeresultsformliterature,whereagoodagreementhasbeenregardeddemonstratingtheaccuracyoftheapproach.
CrackanalysisinbimaterialinterfacesusingT-splinebasedXIGA65
Table4.Resultsofnormalizedstressintensityfactorsfortheedgeinterfacecrack
E1
E2
2a
L
Presentstudy
Matsumtoetal.(2000)
Miyazakietal.(1993)
Liuetal.(2004)
KI
KKII
KI
KII
KI
KII
KI
KII
0.1
1.1899
0:1299
1.19
0:127
1.195
0:129
{
{
0.2
1.3682
0:1352
1.367
0:137
1.368
0:137
1.374
0:137
2
0.3
1.6619
0:1576
1.657
0:156
1.659
0:158
1.669
0:159
0.4
2.1198
0:1975
2.109
0:195
2.11
0:198
2.125
0:198
0.5
2.8423
0:2678
2.819
0:268
2.882
0:267
2.844
0:267
0.1
1.1974
0:1988
1.198
0:195
1.203
0:197
{
{
0.2
1.369
0:2049
1.368
0:208
1.368
0:207
1.375
0:208
3
0.3
1.6603
0:2379
1.655
0:235
1.656
0:239
1.668
0:240
0.4
2.116
0:2977
2.102
0:298
2.105
0:298
2.121
0:299
0.5
2.8351
0:403
2.812
0:402
2.814
0:402
2.839
0:402
0.1
1.2216
0:343
1.222
0:336
1.229
0:34
{
{
0.2
1.3719
0:3461
1.366
0:348
1.369
0:349
1.379
0:354
10
0.3
1.6547
0:3976
1.648
0:394
1.648
0:399
1.661
0:403
0.4
2.1023
0:4945
2.09
0:491
2.09
0:494
2.109
0:5
0.5
2.8103
0:6649
2.789
0:661
2.789
0:663
2.819
0:668
0.1
1.2422
0:4286
1.251
0:424
1.251
0:424
{
{
0.2
1.3744
0:4252
1.376
0:429
1.370
0:428
1.381
0:434
100
0.3
1.6491
0:4842
1.647
0:47
1.642
0:485
1.657
0:494
0.4
2.0895
0:5975
2.083
0:569
2.078
0:597
2.101
0:608
0.5
2.7888
0:7972
2.772
0:793
2.77
0:797
2.804
0:813
References1.AnX.,ZhaoZ.,ZhangH.,HeL.,2013,Modelingbimaterialinterfacecracksusingthenumericalmanifoldmethod,EngineeringAnalysiswithBoundaryElements,37,464-4742.AndersD.,WeinbergK.,ReichardtR.,2012,Isogeometricanalysisofthermaldiusioninbinaryblends,ComputationalMaterialsScience,52,182-1883.BazilevsY.,AkkermanI.,2010,LargeeddysimulationofturbulentTaylor-Couette\rowusingisogeometri
11
canalysisandtheresidual-basedvariational
canalysisandtheresidual-basedvariationalmultiscalemethod,JournalofComputa-tionalPhysics,229,3402-34144.BazilevsY.,CaloV.,ZhangY.,HughesT.J.,2006,Isogeometric\ruid-structureinteractionanalysiswithapplicationstoarterialblood\row,ComputationalMechanics,38,310-3225.BelytschkoT.,GracieR.,2007,OnXFEMapplicationstodislocationsandinterfaces,Inter-nationalJournalofPlasticity,23,1721-17386.BensonD.,BazilevsY.,DeLuyckerE.,HsuM.C.,ScottM.,HughesT.,Belytschko,T.,2010,Ageneralizedniteelementformulationforarbitrarybasisfunctions:fromisogeometricanalysistoXFEM,InternationalJournalforNumericalMethodsinEngineering,83,765-7857.Bhardwaj,G.,Singh,I.,2015,Fatiguecrackgrowthanalysisofahomogeneousplateinthepresenceofmultipledefectsusingextendedisogeometricanalysis,JournaloftheBrazilianSocietyofMechanicalSciencesandEngineering,37,1065-10828.BhardwajG.,SinghI.,MishraB.,2015a,FatiguecrackgrowthinfunctionallygradedmaterialusinghomogenizedXIGA,CompositeStructures,134,269-2849.BhardwajG.,SinghI.,MishraB.,2015b,Stochasticfatiguecrackgrowthsimulationofin-terfacialcrackinbi-layeredFGMsusingXIGA,ComputerMethodsinAppliedMechanicsandEngineering,284,186-229
66S.H.Habib,I.Belaidi
10.BhardwajG.,SinghI.,MishraB.,BuiT.,2015c,NumericalsimulationoffunctionallygradedcrackedplatesusingNURBSbasedXIGAunderdierentloadsandboundaryconditions,CompositeStructures,126,347-35911.BordenM.J.,VerhooselC.V.,ScottM.A.,HughesT.J.,LandisC.M.,2012,Aphase-elddescriptionofdynamicbrittlefracture,ComputerMethodsinAppliedMechanicsandEngineering,217,77-9512.BuffaA.,SangalliG.,VazquezR.,2010,Isogeometricanalysisinelectromagnetics:B-splinesapproximation,ComputerMethodsinAppliedMechanicsandEngineering,199,1143-115213.DeLuycker,E.,BensonD.,BelytschkoT.,BazilevsY.,HsuM.,2011,X-FEMiniso-geometricanalysisforlinearfracturemechanics,InternationalJournalforNumericalMethodsinEngineering,87,541-56514.ErdoganF.,1963,Stressdistributioninanonhomogeneouselasticplanewithcracks,JournalofAppliedMechanics,30,232-23615.EvansJ.A.,HughesT.J.,2013,Isogeometricdiverg
12
ence-conformingB-splinesforthesteadyNavi
ence-conformingB-splinesforthesteadyNavier-Stokesequations,MathematicalModelsandMethodsinAppliedSciences,23,1421-147816.EvansA.G.,RuhleM.,DalgleishB.J.,CharalambidesP.G.,1990,Thefractureenergyofbimaterialinterfaces,MetallurgicalTransactionsA,21,2419-242917.GhorashiS.S.,MohammadiS.,Sabbagh-Yazdi,S.-R.,2011,OrthotropicenrichedelementfreeGalerkinmethodforfractureanalysisofcomposites,EngineeringFractureMechanics,78,1906-192718.GhorashiS.S.,ValizadehN.,MohammadiS.,2012,Extendedisogeometricanalysisforsi-mulationofstationaryandpropagatingcracks,InternationalJournalforNumericalMethodsinEngineering,89,1069-110119.GhorashiS.S.,ValizadehN.,MohammadiS.,RabczukT.,2015,T-splinebasedXIGAforfractureanalysisoforthotropicmedia,CompositeStructures,147,138-14620.HsuM.-C.,AkkermanI.,BazilevsY.,2011,High-performancecomputingofwindturbineaerodynamicsusingisogeometricanalysis,ComputersandFluids,49,93-10021.HughesT.J.,CottrellJ.A.,BazilevsY.,2005,Isogeometricanalysis:CAD,niteelements,NURBS,exactgeometryandmeshrenement,ComputerMethodsinAppliedMechanicsandEn-gineering,194,4135-419522.HutchinsonJ.W.,MearM.,RiceJ.R.,1987,Crackparallelinganinterfacebetweendissimilarmaterials,JournalofAppliedMechanics,54,828-83223.IkedaT.,NagaiM.,YamanagaK.,MiyazakiN.,2006,Stressintensityfactoranalysesofin-terfacecracksbetweendissimilaranisotropicmaterialsusingtheniteelementmethod,EngineeringFractureMechanics,73,2067-207924.JiaY.,AnitescuC.,GhorashiS.S.,RabczukT.,2015,Extendedisogeometricanalysisformaterialinterfaceproblems,IMAJournalofAppliedMathematics,80,608-63325.KalaliA.T.,HassaniB.,Hadidi-MoudS.,2016,Elastic-plasticanalysisofpressurevesselsandrotatingdisksmadeoffunctionallygradedmaterialsusingtheisogeometricapproach,JournalofTheoreticalandAppliedMechanics,54,113-12526.LeeK.Y.,ChoiH.J.,1988,Boundaryelementanalysisofstressintensityfactorsforbimaterialinterfacecracks,EngineeringFractureMechanics,29,461-47227.LiX.,ZhengJ.,SederbergT.W.,HughesT.J.,ScottM.A.,2012,OnlinearindependenceofT-splineblendingfunctions,ComputerAide
13
dGeometricDesign,29,63-7628.LiuX.,XiaoQ.
dGeometricDesign,29,63-7628.LiuX.,XiaoQ.Z.,KarihalooB.,2004,XFEMfordirectevaluationofmixedmodeSIFsinhomogeneousandbi-materials,InternationalJournalforNumericalMethodsinEngineering,59,1103-1118
CrackanalysisinbimaterialinterfacesusingT-splinebasedXIGA67
29.MatsumtoT.,TanakaM.,ObaraR.,2000,ComputationofstressintensityfactorsofinterfacecracksbasedoninteractionenergyreleaseratesandBEMsensitivityanalysis,EngineeringFractureMechanics,65,683-70230.MiyazakiN.,IkedaT.,SodaT.,MunakataT.,1993,Stressintensityfactoranalysisofinterfacecrackusingboundaryelementmethodapplicationofcontour-integralmethod,EngineeringFractureMechanics,45,599-61031.MoesN.,CloirecM.,CartraudP.,RemacleJ.-F.,2003,Acomputationalapproachtohan-dlecomplexmicrostructuregeometries,ComputerMethodsinAppliedMechanicsandEngineering,192,3163-317732.NagashimaT.,OmotoY.,TaniS.,2003,StressintensityfactoranalysisofinterfacecracksusingX-FEM,InternationalJournalforNumericalMethodsinEngineering,56,1151-117333.NguyenV.P.,AnitescuC.,Bordas,S.P.,RabczukT.,2015,Isogeometricanalysis:Anoverviewandcomputerimplementationaspects,MathematicsandComputersinSimulation,117,89-11634.NguyenV.P.,KerfridenP.,BordasS.P.,2014,Two-andthree-dimensionalisogeometriccohesiveelementsforcompositedelaminationanalysis,CompositesPartB:Engineering,60,193-21235.NguyenV.P.,Nguyen-XuanH.,2013,High-orderB-splinesbasedniteelementsfordelami-nationanalysisoflaminatedcomposites,CompositeStructures,102,261-27536.PantM.,SinghI.,MishraB.,2011,EvaluationofmixedmodestressintensityfactorsforinterfacecracksusingEFGM,AppliedMathematicalModelling,35,3443-345937.PekoviO.,StuparS.,SimonoviA.,SvorcanJ.,TrivkoviS.,2015,Freevibrationandbucklinganalysisofhigherorderlaminatedcompositeplatesusingtheisogeometricapproach,JournalofTheoreticalandAppliedMechanics,53,453-46638.PengX.,AtroshchenkoE.,SimpsonR.,KulasegaramS.,BordasS.,2014,CrackgrowthanalysisbyaNURBS-basedisogeometricboundaryelementmethod,11thWorldCongressonComputationalMechanics,Barcelona,Spain39.RiceJ.,1988,Elasticfracturemechan
14
icsconceptsforinterfacialcracks,Journalo
icsconceptsforinterfacialcracks,JournalofAppliedMe-chanics,55,98-10340.RiceJ.,SihG.C.,1965,Planeproblemsofcracksindissimilarmedia,JournalofAppliedMecha-nics,32,418-42341.ScottM.,LiX.,SederbergT.,HughesT.,2012,Localrenementofanalysis-suitableT-splines,ComputerMethodsinAppliedMechanicsandEngineering,213,206-22242.SederbergT.W.,CardonD.L.,FinniganG.T.,NorthN.S.,ZhengJ.,LycheT.,2004,T-splinesimplicationandlocalrenement,ACMTransactionsonGraphics(TOG),23,276-28343.SederbergT.W.,ZhengJ.,BakenovA.,NasriA.,2003,T-splinesandT-NURCCs,ACMTransactionsonGraphics(TOG),22,477-48444.SukumarN.,HuangZ.,PrevostJ.H.,SuoZ.,2004,Partitionofunityenrichmentforbima-terialinterfacecracks,InternationalJournalforNumericalMethodsinEngineering,59,1075-110245.SunC.T.,JihC.,1987,Onstrainenergyreleaseratesforinterfacialcracksinbi-materialmedia,EngineeringFractureMechanics,28,13-2046.TadaH.,ParisP.,IrwinG.,2000,TheAnalysisofCracksHandbook,ASMEPress2,1,NewYork,USA47.TemizerI.,WriggersP.,HughesT.,2011,ContacttreatmentinisogeometricanalysiswithNURBS,ComputerMethodsinAppliedMechanicsandEngineering,200,1100-111248.VerhooselC.V.,ScottM.A.,DeBorstR.,HughesT.J.,2011,Anisogeometricapproachtocohesivezonemodeling,InternationalJournalforNumericalMethodsinEngineering,87,336-360
68S.H.Habib,I.Belaidi
49.WilliamsM.,1959,Thestressesaroundafaultorcrackindissimilarmedia,BulletinoftheSeismologicalSocietyofAmerica,49,199-20450.YauJ.,WangS.,1984,Ananalysisofinterfacecracksbetweendissimilarisotropicmaterialsusingconservationintegralsinelasticity,EngineeringFractureMechanics,20,423-43251.YuukiR.,XuJ.-Q.,1994,Boundaryelementanalysisofdissimilarmaterialsandinterfacecrack,ComputationalMechanics,14,116-12752.ZhouZ.,XuX.,LeungA.Y.,HuangY.,2013,StressintensityfactorsandT-stressforanedgeinterfacecrackbysymplecticexpansion,EngineeringFractureMechanics,102,334-34753.ZhouZ.H.,LeungA.Y.T.,XuX.S.,2014,Theniteelementdiscretizedsymplecticmethodforinterfacecracks,CompositesPartB:Engineering,58,335-342ManuscriptreceivedMarch7,2016;acceptedforprint
houcine@yahoo.fr;idir.belaidi@gmail.comAnalysis-suitableT-splinesareusedforthemodelingandanalyzingofcracksinbimaterialinterfaceswithintheframeworkofanextendedisogeometricanalysis(XIGA).Thecracktipenri
© 2021 docslides.com Inc.
All rights reserved.