TROPICALSCHEMETHEORY9TropicalschemesidealsoftropicalLaurentpolynom

TROPICALSCHEMETHEORY9TropicalschemesidealsoftropicalLaurentpolynom - Description


:Thehomogenizationofapolynomialf=Pcuxu2k[x1;:::;xn]is~f=Xcuxux�juj+deg(f)0;wherejuj=u1++unanddegf=maxfjujjcu6=0g.Forexample,thehomogenizationoff=x21x32+x3is~f=x21x32+x3x40. Download

Tags

tropi trop min inwi trop tropi inwi min inw inwih deg nz2t tropih canberecoveredfromb troplf lemma3 7in supp nition9

Download Section

Please download the presentation after appearing the download area.


Download - The PPT/PDF document "TROPICALSCHEMETHEORY9TropicalschemesidealsoftropicalLaurentpolynom" is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.

Embed / Share - TROPICALSCHEMETHEORY9TropicalschemesidealsoftropicalLaurentpolynom


Presentation on theme: "TROPICALSCHEMETHEORY9TropicalschemesidealsoftropicalLaurentpolynom"— Presentation transcript


1 TROPICALSCHEMETHEORY9.Tropicalschemes,id
TROPICALSCHEMETHEORY9.Tropicalschemes,idealsoftropical(Laurent)polynomialsemirings,andvaluatedmatroidsWewilldiscusstherelationbetweentheTropicalschemes,idealsoftropical(Lau-rent)polynomialsemirings,andvaluatedmatroids.Theorem9.1.Letkbea eldandletv:k!Tbeavaluation.ForY(k)nasubschemede nedbyanidealIk[x11;:::;x1n],anyofthefollowingobjectsdeterminetheothers.(1)ThecongruenceB(tropI)=B(v(I))onT[x11;:::;x1n],(2)TheidealtropI=ftropfjf2Ig,and(3)Theset(tower)ofvaluatedmatroidsofthevectorspaceIhd,whereIhk[x0;:::;xn]isthehomogenizationofIandIhdisthedegreedpartofIh.Homogenization :Thehomogenizationofapolynomialf=Pcuxu2k[x1;:::;xn]is~f=Xcuxux�juj+deg(f)0;wherejuj=u1++unanddegf=maxfjujjcu6=0g.Forexample,thehomogenizationoff=x21x32+x3is~f=x21x32+x3x40.ThehomogenizationofatropicalpolynomialF=Pauxu=min(au+xu)is~F=min(au+xu+(deg(F)�juj)x0):ThehomogenizationofanidealIk[x11;:::;x1n]isIh=f~fjf2I\k[x11;:::;x1n]g;whichisanidealofk[x0;x1;:::;xn].ThehomogenizationofarelationFGwithF;G2T[x1;:::;xn](i.e.supp(F);supp(G)Nn)withdegFdegGis~F~G+(deg(F)�deg(G))x0:ThehomogenizationofacongruenceJT[x ]T[x ]isthecongruenceJh=D^FG (F;G)2JE:Proposition9.2.LetIk[x11;:::;x1n]beanideal.ThenB(trop(Ih))=(B(tropI))h. Date:October17,2017,Speaker:KalinaMincheva,Scribe:NetanelFriedenberg.1 2TROPICALSCHEMETHEORYBeforeweproceedwiththeproofofTheorem9.1werecallthede nitionofatropicallinearspace:De nition9.3.LetMbeamatroidona nitesetE=f0;1;:::;ng.Thetropicallinearspacetrop(M)isthesetofvectors(w0;:::;wn)2Rn+1suchthatforanycircuitCofMtheminimumofthewisisattainedatleasttwiceasirangesoverC.ProofTheorem9.1,part1.Her

2 eweshowthat(1)and(2)determineeachother.(
eweshowthat(1)and(2)determineeachother.(Thesecondpartoftheproof,showingthat(2)and(3)determineeachother,ispostponeduntilthediscussionofvaluatedmatroidsandtropicallinearspaces,below.)ItiseasytoseethattropIdeterminesB(tropI).Conversely,byProposition9.2wehavethatB(tropI)determinesB(tropIh).Wecanregardanyhomogeneouspolynomialf2IdasalinearformonA(n+dd)whosecoordinatesareindexedbymonomialsofdegreedink[x1;:::;xn].Similarly,wecanregardatropicalpolynomialFofdegreedasatropicallinearformonT(n+dd).IfLdisthesubspaceofA(n+dd)wherethelinearformslfvanishforallf2Id,thentrop(Ld)=ld:=nz2T(n+dd) troplf(z)attainsitsminimumatleasttwiceo=nz2T(n+dd) troplf(z)=troplfbu(z)(8f2Ihd)(8u2supp(f))o=nz2T(n+dd) ltropf(z)=ltropfbu(z)(8f2Ihd)(8u2supp(f))o=nz2T(n+dd) lf(z)=lg(z)�8(f;g)2B(tropIhd)o:ItfollowsthatB(tropIh)determinesthetowerfldgd0.Butldalsodeterminesitsduallinearspacel?d=trop(L?d).NotethatavectorliesinL?difandonlyifitisacoecientvectorforapolynomialinIhd.Thusthetropicallinearspacel?disthesameastrop(Ihd)(thedegreedpartoftrop(Ih)).ThisimpliesthatB(tropIh)determinestropIh.SincewecanrecoverIasIhjx0=1,thisdeterminestropI.Weproceedtointroducevaluatedmatroidsandexplaintheirconnectiontotropi-callinearspaces.Valuatedmatroidsandtropicallinearspaces LetEa nitesetandr2N.Let�ErdenotethecollectionofsubsetsofEofsizer.Avaluatedmatroid MonEofrankrisafunctionp:�Er!R[f1g,calledthebasisvaluationfunction,suchthat(1)9B2�Ersuchthatp(B)6=1and(2)foranyB;B02�Er,forallu2BnB0thereexistsv2B0nBsuchthatp(B)�p(B0)p((Bnfug)[fvg)+p((B0nfvg)[fug).Thesupportofp,de nedtobesupp(p)=fB2�Erjp(B)6=1g,isthecollectionofbasesofarankrmatroidonE.Wecallthismatroid\theunderlyingmatroidofM"anddenoteit

3 byM . TROPICALSCHEMETHEORY3DenotebyMdthe
byM . TROPICALSCHEMETHEORY3DenotebyMdthesetofallmonomialsofdegreed.Iffisahomogeneouspoly-nomialofdegreedink[x0;:::;xn],thenwecanthinkoffasalinearformlfonthevectorspaceVdwithbasisMd.LetIdbethedegreedpartofahomogeneousidealIk[x0;:::;xn].ThenconsiderLd=fy2Vdjlf(y)=0(8f2Id)gVd.Wehaveapairingh�;�i:k[x0;:::;xn]dVd!kgivenbyhf;yi=lf(y).ThenthespaceLdistheannihilatorofId.LetdimLd=:rd.AnotherwaytoviewLdisasapointontheGrassmannianGr(rd;Vd)PN,whereN=�jMdjrd�1.ThevaluatedmatroidM(Id)ofIdisthefunctionpd:�Mdrd!R[f1gde nedbylettingpd(B)bethevaluationofthePluckercoordinateofLdindexedbyB.The(matroid-theoretic)vectorsofM(Id)aretropicalpolynomials.VectorsofminimalsupportarecircuitsofM(Id).ForexampleF=min(a1+xu1;a2+xu2),fromwhichwegetthevectorfu1;u2goftheunderlyingmatroid.ProofofTheorem9.1,part2.Wecannowshowthat(2)and(3),i.e.,trop(I)andfM(Id)gd0determineeachother.Asdiscussedabovetheelementsoftrop(I)darethevectorsofthevaluatedmatroidM(Id),sotrop(I)determinesandisdeterminedbythesetofvaluatedmatroidsfM(Id)gd0.Theorem9.4.LetY(k)nbethesubschemede nedbyanidealIk[x11;:::;x1n].Thenthemultiplicitiesofthemaximalcellsoftrop(Y)canberecoveredfromB(tropI).ThiscanbethoughtofasthetropicalHilbert-Chowmorphism.Multiplicitiesintropicalgeometry Werecallthede nitionofmultiplicitiesforthemaximalcellsofatropicalvariety.LetYbeasubvarietyof(k)nofdimensiond.Letv:k!�beavaluationwhichadmitsasplitting�!k,i.e.agrouphomomorphismw7!twsuchthatv(tw)=w.Firstrecallthattrop(Y)isapolyhedralcomplexofpuredimensiond.Forw2Rnandf=Pcuxutheinitialformoffwithrespecttowisinwf=Xval(cu)+wu=trop(f)(w)t�val(cu)cuxu2k[x1;:::;xn];wherekistheresidue eld.Wecansimilarlyde netheinitialidealinwI=hin

4 wfjf2Ii.Themultiplicityofwisde nedto
wfjf2Ii.Themultiplicityofwisde nedtobemult(w)=XPaminimalassociatedprimeofinwImult(P;inwI);wheremult(P;inwI)isthemultiplicityofPinaprimarydecompositionofinwI.Afterasuitablemonomialchangeofcoordinateson(k)n,wecanshowthatinwIisgeneratedbypolynomialsinxd+1;:::;xn.Thenmult(w)=dimkk[x1d+1;:::;x1n] inwI\k[x1d+1;:::;x1n].Indeed,oneobservesthatthemultiplicitiesdonotchangewhenwepasstok[xd+1;:::;xn]andthentheproblemisreducedtocomputingprimarydecompositionofthezeroideal 4TROPICALSCHEMETHEORYintheArtiniank-algebrak[x1d+1;:::;x1n] inwI\k[x1d+1;:::;x1n](cf.Lemma3.4.7in[MS]).Tode nethemultiplicityofamaximalcell,pickwintherelativeinteriorof.Thenmult()=mult(w).Inordertorecoverthemultiplicitiesfromthebendrelations,weneedtoextendGrobnertheorytocongruences.LetF=Puauxu=min(au+xu)2T[x0;:::;xn].Forw2Rn+1thewede netheinitialformofFwithrespecttowtobeinwF:=minau+wu=F(w)xu2B[x0;:::;xn].ForG=min(bu+xu)2T[x0;:::;xn]weconsidertherelationFG.TheinitialformofFGisde nedtobeinw(FG):=((inwFinwG)ifF(w)=G(w)(0inwG)ifF(w)�G(w).De nition9.5.IfCisacongruencetheninwC=hinw(FG)jFG2Ci.Example9.6.LetF=min(0+x;1+y;2+z).F^x=min(1+y;2+z).SoFF^xisinB(F).Forw=(2;1;3),wehaveinwF=min(x;y)andinwF^x=y.Soinw(FF^x)=min(x;y)y.Proposition9.7(Tropicalizationandinitialformscommute).(a)Forf2k[x11;:::;x1n]andw2Rn,inw(tropf)=trop(inwf).(b)ForIk[x11;:::;x1n]andw2Rn,inw(B(tropI))=B(trop(inwI)).We rstobservethee ectofachangeofcoordinatesontropicalvarietiesandcongruences.Amonomialchangeofcoordinateson(k)n,x u 7!x Au forsomeA2GLn(Z)correspondstoamapF(x )7!F(ATx )=:AF,whereFisatropicalpolynom

5 ial(cf.Lemma3.2.7in[MS]).ForacongruenceC
ial(cf.Lemma3.2.7in[MS]).ForacongruenceConT[x11;:::;xn1]wede neAC=fAFAGj(FG)2Cg.Onecanshowthatthisactioncommuteswithtropicalization:trop(V(AI))=Atrop(V(I)).ProofofTheorem9.4.LetY(k)nwithde ningidealIandletdimY=dimtrop(Y)=d:Wepickwintherelativeinteriorof,whereisamaximalcelloftrop(V(I)).LetL=span(w�w0jw02).AfterachangeofcoordinateswecanassumethatL=span(e1;:::;ed).ByLemma3.3.6in[MS]itfollowsthatwehavethatL=tropV(inwI)=V(trop(inwI)):Indeed,if:=trop(V(I))=fwjinwI6=(1)gandamaximalcellandwintherelativeinteriorofwehaveL=star(w)=fvjinv(inw(I))6=(1)g.WeknowfromProposition9.7thatLcanberecoveredfromB(trop(inwI))=inw(B(tropI)).SoLcanberecoveredfromB(tropI).TheinitialidealinwIishomogeneouswithrespecttothegradingdeg(xi)=eifor1idanddeg(xi)=0otherwise.Asremarkedearlier,thereisageneratingsetink[x1d+1;:::;x1n]forinwIk[x11;:::;x1n]. TROPICALSCHEMETHEORY5ConsiderinwI\k[x1;:::;xn]anddenotebyinwIhthehomogenizationofinwIink[x0;:::;xn].Recallthatmult()=dimkk[x0;xd+1;:::;xn] inwIh\k[x0;xd+1;:::;xn].How-ever,k[x0;xd+1;:::;xn] inwIh\k[x0;xd+1;:::;xn]iszero-dimensionalsotheHilbertpolynomialofk[x0;xd+1;:::;xn] inwIhmustbeaconstantpolynomial.RecallthattheHilbertpolynomialofahomogeneousidealJcanberecoveredfromB(tropJ).Toshowthatmult(w)canberecoveredfromB(tropI)itisenoughtoshowthatB(trop(inwIh))canberecoveredfromB(tropI).FromProposition9.2andProposition9.7weknowthatB(trop(inwIh))=B(trop(inwI))handB(trop(inwI))h=inw(B(tropI))h:TheseimplythatB(trop(inwIh))=inw(B(tropI))hwhichcanberecoveredfromB(tropI).References[MS]D.Maclagan,B.SturmfelsIntroductiontotropicalgeometry,Volume161ofGraduateStud-iesinMathematicsAMS

Shom More....