/
Estimating Gamma distribution Thomas Mink  Abstract This note deriv es fast algorithm Estimating Gamma distribution Thomas Mink  Abstract This note deriv es fast algorithm

Estimating Gamma distribution Thomas Mink Abstract This note deriv es fast algorithm - PDF document

min-jolicoeur
min-jolicoeur . @min-jolicoeur
Follow
625 views
Uploaded On 2014-12-14

Estimating Gamma distribution Thomas Mink Abstract This note deriv es fast algorithm - PPT Presentation

In tro duction ha observ ed indep enden data oin ts x from the same densit restrict to the class of Gamma densities ie a a Ga a 57344 exp 10 12 14 16 18 20 002 004 006 008 01 012 014 px Figure 1 The Ga3 2 densit function Figure plots ypical Gamma d ID: 23852

tro duction

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Estimating Gamma distribution Thomas Min..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

EstimatingaGammadistributionThomasP.Minka2002AbstractThisnotederivesafastalgorithmformaximum-likelihoodestimationofbothparametersofaGammadistributionornegative-binomialdistribution.1IntroductionWehaveobservednindependentdatapointsX=[x1::xn]fromthesamedensity.WerestricttotheclassofGammadensities,i.e.=(a;b):p(xja;b)=Ga(x;a;b)=xa1(a)baexp(xb)0246810121416182000.020.040.060.080.10.120.14xp(x)Figure1:TheGa(3;2)densityfunction.Figure1plotsatypicalGammadensity.Ingeneral,themeanisabandthemodeis(a1)b.2MaximumlikelihoodThelog-likelihoodislogp(Dja;b)=(a1)Xilogxinlog(a)nalogb1bXixi(1)=n(a1)logxnlog(a)nalogbnx=b(2)Themaximumforbiseasilyfoundtobe^b=x=a(3)1 05101520-6-5.5-5-4.5-4ExactFigure2:Thelog-likelihood(4)versustheGamma-typeapproximation(9)andthebound(6)atconver-gence.Theapproximationisnearlyidenticaltothetruelikelihood.Thedatasetwas100pointssampledfromGa(7:3;4:5).Substitutingthisinto(1)giveslogp(Dja;^b)=n(a1)logxnlog(a)nalogx+nalogana(4)Wewilldescribetwoalgorithmsformaximizingthisfunction.The rstmethodwilliterativelymaximizealowerbound.Becausealogaisconvex,wecanusealinearlowerbound:aloga(1+loga0)(aa0)+a0loga0(5)logp(Dja;^b)n(a1)logxnlog(a)nalogx+n(1+loga0)(aa0)+na0loga0na(6)Themaximumisat0=nlogxn (a)nlogx+n(1+loga0)n(7) (^a)=logxlogx+loga0(8)where isthedigammafunction.Theiterationproceedsbysettinga0tothecurrent^a,theninvertingthe functiontogetanew^a.Becausethelog-likelihoodisconcave,thisiterationmustconvergetothe(unique)globalmaximum.Unfortunately,itcanbequiteslow,requiringaround250iterationsifa=10,lessforsmallera,andmoreforlargera.Thesecondalgorithmismuchfaster,andisobtainedvia`generalizedNewton'[1].Usinganapproximationoftheform,logp(Dja;^b)c0+c1a+c2log(a)(9)theupdateis1anew=1a+logxlogx+loga (a)a2(1=a 0(a))(10)Thisconvergesinaboutfouriterations.Figure2showsthatthisapproximationisveryclosetothetruelog-likelihood,whichexplainsthegoodperformance.2 Agoodstartingpointfortheiterationisobtainedviatheapproximationlog(a)alog(a)a12loga+const.(Stirling)(11) (a)log(a)12a(12)^a0:5logxlogx(13)(NotethatlogxlogxbyJensen'sinequality.)2.1NegativebinomialThemaximum-likelihoodproblemforthenegativebinomialdistributionisquitesimilartothatfortheGamma.ThisisbecausethenegativebinomialisamixtureofPoissons,withGammamixingdistribution:p(xja;b)=ZPo(x;)Ga(;a;b)d=Zxx!ea1(a)bae=bd(14)=a+x1xbb+1x1bb+1a(15)Let'sconsideraslightlygeneralizednegativebinomial,wherethe`waitingtime'forxisgivenbyt:p(xjt;a;b)=ZPo(x;t)Ga(;a;b)d=Z(t)xx!eta1(a)bae=bd(16)=a+x1xbtbt+1x1btbt+1a(17)GivenadatasetD=f(xi;ti)g,wewanttoestimate(a;b).OneapproachistouseEM,wheretheE-stepinfersthehiddenvariablei:E[i]=(xi+a)bbti+1(18)E[logi]= (xi+a)+logbbti+1(19)TheM-stepthenmaximizes(a1)XiE[logi]nlog(a)nalogb1bXiE[i](20)whichisaGammamaximum-likelihoodproblem.ReferencesThomasP.Minka.Beyondnewton'smethod.research.microsoft.com/~minka/papers/newton.html,2000.3