/
Topics in Representation Theory Lie Groups Lie Algebras and the Exponential Map Most of Topics in Representation Theory Lie Groups Lie Algebras and the Exponential Map Most of

Topics in Representation Theory Lie Groups Lie Algebras and the Exponential Map Most of - PDF document

tatiana-dople
tatiana-dople . @tatiana-dople
Follow
668 views
Uploaded On 2014-11-12

Topics in Representation Theory Lie Groups Lie Algebras and the Exponential Map Most of - PPT Presentation

e subgroups of Aut the group of invertible linear transformations from to itself for an ndimensional vector space over a 64257eld Once a basis for has been chosen then elements of are invertible n by n matri ces with entries in and Gl nF Group mul ID: 10980

subgroups Aut

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Topics in Representation Theory Lie Grou..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

1Di erentialGeometry,aReviewAnn-dimensionalsmoothor(C1)manifoldisaspaceMcoveredbyopensetsU togetherwith\coordinatemaps" :U !Rnsuchthat isahomeomorphismofU anditsrange,and �1 : (U \U )! (U \U )isaC1map.Inthiscourse,mapsshouldbeassumedtobesmoothunlessotherwisestated.De nition1(VectorField).Avector eldonasmoothmanifoldMisaderivationX:C1(M)!C1(M)i.e.alinearmapsuchthatonaproductoffunctionsfandgX(fg)=f(Xg)+(Xf)gLocallyonecanchoosecoordinatessothatsuchaderivationisalinearcombinationofthederivativeswithrespecttothecoordinatesX=nXi=1ai(x1;;xn)@ @xiandwithrespecttothischoiceofcoordinates,avector eldisgivenateachpointbythen-vector(a1;;an).Sometimeswe'llalsorefertothevalueofavector eldatapointm2MasXm,thiscanbethoughtofintermsofderivationsactingongermsoffunctionsatm.ThespaceofsuchXmmakesupthetangentspacetoMatm,calledTm(M).Onthespaceofvector eldsthereisananticommutativebilinearoperation:De nition2(LieBracket).TheLiebracketoftwovector eldsXandYisde nedby[X;Y]=XY�YXTheLiebracketofvector eldssatis estheJacobiidentity[X;[Y;Z]]+[Z;[X;Y]]+[Y;[Z;X]]=0Vector eldsbehave\covariantly"undersmoothmaps,i.e.forasmoothmapofsmoothmanifolds :M1!M2thereisa\push-forward"map ,thedi erentialof ,de nedby: X(g)=X(g )2 2LieGroups,LieAlgebrasandtheExponentialMapBasicallyaLiegroupisasmoothmanifoldwhosepointscanbe(smoothly)multipliedtogetherDe nition4(LieGroup).ALiegroupisasmoothmanifoldGtogetherwithasmoothmultiplicationmap(g1;g2)2GG!g1g22Gandasmoothinversemapg2G!g�12Gthatsatisfythegroupaxioms.Foreachelementg2G,therearetwomapsofGtoitself,givenbyrightandleftmultiplication.Lg(h)=gh;Rg(h)=hg�1(theinverseistheresothatRgRh=Rgh).Asonanymanifold,there'sanin nitedimensionalspaceofvector eldsonG,butinthiscasewecanrestrictattentiontoinvariantones.De nition5(LieAlgebra).TheLiealgebragofGisthespaceofallleft-invariantvector eldsonG,i.e.vector eldssatisfyingXgh=(Lg)(Xh)TheLiebracketofoftwoleft-invariantvector eldsisleftinvariant,soitde nesanantisymmetricbilinearproduct[X;Y]ongsatisfyingtheJacobiiden-tity.Vector eldsare rst-orderdi erentialoperators,theuniversalenvelopingalgebraU(g)=T(g)=(X Y�Y X�[X;Y])isthespaceofallleft-invariantdi erentialoperatorsonG.Onecanidentifygmoreexplicitlywiththefollowingsecondwayofcharac-terizingtheLiealgebra:Theorem1.ThemapX2g!Xe2Te(G)givenbyrestrictionofavector eldtoitsvalueattheidentityisabijection.Finally,thereisathirdwaytocharacterizetheLiealgebrausingtheexpo-nentialmap.4  � forsomecomplexnumbers and satisfyingj j2+j j2=1NotethatthisistheequationforS3C2.AbasisfortheLiealgebrasu(2)isgivenbytakingthePaulimatrices:1=0110;2=0�ii0;3=100�1andmultiplyingthembyi.References[1]Simon,B.,RepresentationsofFiniteandCompactGroups,AmericanMath-ematicalSociety,1996.[2]Warner,F.,FoundationsofDi erentiableManifoldsandLieGroups,Springer,1983.6