/
Springer-VerlagBerlinHeidelberg2012 Springer-VerlagBerlinHeidelberg2012

Springer-VerlagBerlinHeidelberg2012 - PDF document

celsa-spraggs
celsa-spraggs . @celsa-spraggs
Follow
434 views
Uploaded On 2016-03-13

Springer-VerlagBerlinHeidelberg2012 - PPT Presentation

2SteadyOneDimensionalDetonations35 D media at restmedia at restdownstreamsonic planeshock frontexothermicreaction 30 150 50 p115 150 25 p1p1 translationalrotational equilibrium 10 20 150 ID: 254139

2SteadyOne-DimensionalDetonations35 D media restmedia rest(downstreamsonic

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Springer-VerlagBerlinHeidelberg2012" is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Springer-VerlagBerlinHeidelberg2012 2SteadyOne-DimensionalDetonations35 D media at restmedia at rest(downstreamsonic planeshock frontexothermicreaction 30 – 50 p115 – 25 p1p1 translational/rotational equilibrium (10 20 – 60GPa10 – 40GPa vibrational redistribution/bond breaking (10 0GPa sonic plane sonic plane unsteady expansion shock front shock front pressurepressure Fig.2.1.SchematicoftheZNDstructureofadetonationwave,forbothgaseousdetonationatatmosphericconditionsandcondensedphasedetonation,etc.)occursaswellasslowercondensationanddiusion-controlledpro-cessessuchascarbonparticulateformation.AcurrentpictureoftheNon-EquilibriumZND(NEZND)structureofcondensedphasedetonationwaveshasbeenpresentedbyTarver[]andinChap.ofthisvolume.Thispictureisfurthercomplicatedbythefactthatallknowngaseousdetonationsarehydrodynamicallyunstable(Chap.ofthisvolume)andthisinstabilityismanifestedasatransient,three-dimensionalcellularstructure(seeChaps.inthisvolume).Condensed-phaseexplosivesaresimilarlycomplex.Mostliquidexplosivesdisplayastructureoftransversewavesthatarebelievedtobesimilartothoseingaseousdetonation,onlyonamuch“nerscale.Solidexplosivesasusedinmostapplicationsarepolycrystalline, 40A.Higginsbetweenand),thelocationofthemaximumreactionrate,orthein”ectionpointofthetemperaturepro“le.Asactivationenergyisincreasedfrom =10to =25,thereactionzoneincreasesbyanorderofmagnitudeinlength.Increasingfrom =25to =50resultsinanadditionaltwoordersofmagnitudeincreaseinreactionzonelength.Thelengthscaleofthesereactionzonesissomewhatarbitrary,duetotakingthevalueofasunity.Whatismoresigni“cantistheincreas-sharpnessofthereactionpro“leasactivationenergyisincreased.Aloweractivationenergyresultsinarelativelygradualincreaseintemperaturebegin-ningimmediatelyaftertheshock,whilethehighactivationenergyresultsinalongplateauofnearlyconstantconditionsfollowedbyacomparativelyrapidenergyrelease.Thisfeatureofhighactivationenergyre”ectstheunderly-ingtemperaturesensitivityofchemicalreactionsthatmustbeactivatedandisoneofthemostsigni“cantandreoccurringthemesinthedevelopmentofdetonationtheory.Thetemperaturepro“lesinFig.2.2featuremaximathatoccurbeforetheendofthereactionzone;thisismostclearlyvisibleinthetemperaturepro“leforthe =50caseduetothesteepnessofthepro“lebutitispresentinallcasesplotted.Beyondthismaximum,exothermicheatreleaseinthe”owhastheeectofloweringthetemperature.Thiscounterintuitiveresultisaconsequenceoftheheatreleaseresultingingreater”owaccelerationandpres-sure/densityreductionthanitscontributiontoraisingthestatictemperatureofthe”ow.ThistemperaturedecreasewithheatadditionoccurswhentheMachnumberisintherange  1;thisresultiswellestablishedincompressibleone-dimensional”owwithheataddition(Rayleigh”ow).Itisinterestingtoexplorewhathappensifacalculationofthereactionzonestructureisinitializedwithanon-CJdetonationvelocity.ThisisdoneinFig.2.3for =25,wherethesolutionwasinitializedwiththepost-shockstateforshockMachnumbers20%greaterand20%lessthantheCJMachnumber.Forthestrongershockcase,thereactionzonestructurecanbesolvedfor,andasthereactionprogressvariablereaches=1,the”owisseentoremainsubsonic.Thissolutioncorrespondstoastrongdetonation,i.e.,thebranchoftheproductHugoniotcurveabovetheCJdetonationpointonthe(p,v)plane.Thiscaseisalsoreferredtoasanoverdrivendetonation,sincethedetonationisbeingforcedtopropagateataspeedgreaterthantheCJspeed,andtheheatreleaseisinsucienttochokethe”ow.Ifthesolu-tionisinitializedwithasub-CJdetonationvelocity,thenumericalintegrationencountersasingularityasthe”owbecomessonicwhilethereactionrateisstill“nite(1)in(2.16).Inthiscase,theheatreleaseissucienttochokethe”owbeforeaddingthefullheatrelease,andfurtherheatadditiontoasonic”owisnotpermittedinasteadysolution.Thissingularitywillappearforanyinitialconditionthatisevenin“nitesimallylessthantheCJspeed.Asimilarresultisobtainedifthewavespeedis“xedandtheheatreleaseincreasedincrementally.Theappearanceofamathematicalsingularitymay 2SteadyOne-DimensionalDetonations41 X Mach number M0.20.30.40.50.70.80.91.01.1 singularityX singularity 80% 120% X -0.50.00.51.0 singularity X Distance xp/p1102103104105Distance x102103104105Distance x102103104105Distance x1021031041051020304050607080 singularity Fig.2.3.StructureofZNDdetonationforreactionzonestructureinitializedwithaCJdetonation,adetonationoverdrivenat120%,andashockat80%showingpressure,temperature,reactionprogressvariable,and”owMachnumber =25,=10,2.Thesub-CJshockdoesnotcorrespondtoasolutionofconservationlaws,resultinginasingularityappearinginthenumericalintegrationappearalarming,butrecallthattheCJdetonationistheminimumvelocitywaveconsistentwiththegoverningconservationlaws.Thefactthatasin-gularityisencounteredinnumericallyintegratingthroughthereactionzoneinitializedwithaspeedlessthantheminimumspeedsimplyre”ectsthatanattemptisbeingmadetosolvea”owusinginitialconditionsforwhichnosteadysolutionexists.2.3PathologicalDetonationsInsteadoftheonestepreactionAB,consideratwo-stepreactionwithAreactingtoformB,whichinturnreactstoformCReaction1:AB(2.19)Reaction2:BC(2.20) 2SteadyOne-DimensionalDetonations43numberbasedontheequilibriumheatreleaseisequil781.Initial-izingtheintegrationof(2.23)withthevonNeumannstatebasedonthisshockMachnumberresultsinasingularitybeingencountered,asshowninFig.2.4.ItisnecessarytoincreasetheshockMachnumbertoeigen(orapproximately6%greaterthantheCJspeedbasedonequilibrium)inorderto“ndasolutionthatdoesnotencounterasingularitywithinthereac-tionzonestructure.Thisvaluecanonlybefoundbytrialanderrorintegrationofthegoverningordinarydierentialequations.ThetermChapman…Jouguetisstillusedtorefertothissolution,sinceitfeaturesasonicsurfaceconsistentwithJouguetsoriginalcriterion.Todierentiatethesetwocases,theywillbereferredtoastheCJequilibriumsolutionandtheCJeigenvaluesolution.Finally,toeliminateanyconfusionastowhythepresenceofanendother-micreactionresultsinagreaterthanequilibriumdetonationvelocity,notethatthedetonationvelocityassociatedwiththe“rststageexothermicreac-tionalonewouldbe)=9486.Theendothermicreactionreducestheeectiveheatreleaseanddetonationvelocityincomparisontothisvalue,butthepathologicalbehaviorresultsinadetonationvelocitythatisgreaterthantheCJequilibriumsolutionbasedonthetotalheatrelease.Numericalintegrationofordinarydierentialequationswithapotentialsingularityembeddedwithinthesolutionisanotoriouslydicultproblem.Itmaybenecessarytointerveneinthenumericalalgorithmusedinordertoselectasolution,sinceuponencounteringthesonicpoint,thedierentialequationsbecomeindeterminate.Alternatively,itispossibletostartatthesonicpointandintegrateforward,towardtheshock.Eveninthiscase,iter-ationisstillrequiredto“ndasolutionconsistentwiththeinitialconditionsupstreamofthewave,sincethethermodynamicstateofthesonicpointisnotknownapriori.Forthesolutionofthegoverningordinarydierentialequationsinitializedeigen207,thesolutionforthereactionzonestructureisshowninFig.2.4.Coincidentwiththesonicpoint,thelocalheatreleaserateisseentogotozeroduetoanexactbalancebetweentherateofexothermicheatadditionandendothermicheatremoval.ThisconditionisreferredtoasthegeneralizedChapman…Jouguetcondition,aterm“rstusedbyEyringetal..27].Theconditionofthelocalheatreleaseratebeingzerobehaveslikeaquasi-equilibriumconditionin(2.23),enablingthesolutiontopasssmoothlythroughthesonicpointandproceeddownstreamasasupersonic”ow(recallthatheatremovalacceleratesasupersonic”owawayfromsonic).Thiscaseisshownastheheavy,solidlineinFig.2.4ThesonicpointofthegeneralizedCJconditionisasaddlepoint,soinprincipleitisalsopossibleforthesolutionatthesonicpointtoreturntothesubsonicbranchunderthein”uenceofsubsequentendothermicreaction,asshownbythethin,dashedlinesinFig.2.4.Thissolution,however,featuresanonphysicalkinkŽinthe”owproperties.Thus,itcouldbesuggestedthatthesolutionthatpassessmoothlyfromthesubsonictothesupersonicbranchisthecorrectone,butthiscannotbeprovenrigorously.Asmentionedpreviously, 44A.Higgins X –0.50.00.51.01.5 singularityCJ EigenvalueCJ Equilibriumsupersonicbranchsubsonicbranch X Distance xMach number M102103104105Distance x102103104105Distance x102103104105Distance x1021031041050.00.51.01.5 singularityCJ EigenvalueCJ Equilibriumsubsonicbranchsupersonicbranch X p/p1102030405060 singularityCJ EigenvalueCJ Equilibriumsupersonicbranchsubsonicbranch X T/T105101520 singularityCJ EigenvalueCJ Equilibriumsubsonicbranchsupersonicbranchq./cpT1sonic pt. in eigenvalue soln.sonic pt. in eigenvalue soln.sonic pt. in eigenvalue soln.sonic pt. in eigenvalue soln. Fig.2.4.ReactionzonestructureofZNDdetonationwithatwo-step,exother-mic/endothermicsystem,showingpressure,temperature,heatreleaserate,and”owMachnumberfor RT1=Ea2 =25,=20,2.ThereactionzoneinitializedwithashockbasedontheCJequilibriumsolutionencountersasingular-ityinthenumericalintegration.Theeigenvaluesolutioncanpasssmoothlythroughthesonicpoint,resultinginsupersonic”owattheendofthereactionzone(weakdetonation)similarindeterminacyoccursincompressibleisentropic”owwhenaninitiallysubsonic”owbecomessonicatanareaminimum(i.e.,atathroat).Iftherequirementthatthe”owpropertiesatthethroatvarysmoothlyisimposed,the”owshouldtransitiontoasupersonicsolutionlocallyatthethroat,andfromthere,the”owcaneithercontinuesupersonicallyorreturntothesub-sonicbranchviaashockwave,dependingonthedownstreamboundarycon-dition(e.g.,backpressure).Forboththedetonationwithcompetingreactionsandisentropic”owwithareachange,theissueofresolvingwhichbranchofthesolutionfollowingthesonicpointisthecorrectsolutionisultimatelydeterminedbyconsideringthedownstreamboundarycondition.Establishinghowthe”owexitingthesonic 2SteadyOne-DimensionalDetonations45 CJ EquilibriumQ = 0(inert shock) weakdetonation 00.20.40.60.81 InitialconditionQ = 10(equilibrium)Q = 5(partially reacted)Q = 11.35(partially reacted)Q = 20(exothermic only)v2/v1Generalized CJ(q. = 0)von Neumannstates strong detonation Fig.2.5.Equilibriumandeigenvaluesolutionsforatwo-step,exother-mic/endothermicsystemvisualizedinthe(p,v)plane( RT1=Ea2 =25,=20,surfaceofsuchadetonationmatcheswithadownstreamconditionimposedbyapistonbecomesquiteinvolvedasanumberofpossiblescenariosneedtobeconsidered.ThereaderisreferredtothebookbyFickettandDavis[foracompleteexpositiononthisproblem.FickettandDavisalsoconsiderthecaseoftwoexothermicreactions,whichturnsouttobequalitativelysimilartoasingleexothermicreactionanddoesnotexhibitpathologicalbehavior.Forthemostfrequentlyencounteredcaseofadownstreampistonatrest(correspondingtoadetonationinaclose-endedtube,forexample),the”owpassessmoothlytothesupersonicsolutionbeyondthesonicpoint.Inthiscase,theleadingedgeoftherarefactionwavelagsbehindthesonicsurfaceandtheendofthereactionzone,resultinginaregionofuniformsupersonic”owbetweentheendofthereactionzoneandtheleadingrarefactionthatwillincreaseinsizeasthedetonationpropagates.ThesescenariosarediscussedfurtherinAppendixTheeigenvaluesolutioncanalsobeinterpretedinthe(p,v)planewiththeuseofpartiallyreactedHugoniots,as“rstproposedbyvonNeumann[Fig.2.5,theHugoniotandRayleighlinefortheequilibriumsolutionareshownasdashedlines.TheHugoniotsforthevalueofheatreleaseatanintermediate Formally,aHugoniotisalocusofpossibleequilibriumendstatesforasteadywave,soapartiallyreactedHugoniotŽisamisnomer. 46A.Higginsvalue(=5)andatthesonicpointoftheeigenvaluesolution(=1135)areplottedasdashed-dottedandsolidlines,respectively.TheRayleighlinefortheeigenvaluesolutionisseentobetangenttothesolidHugoniotcurveatthepointwherethenetrateofheatreleaseiszero(thegeneralizedCJcondition).Inactuality,thereisacontinuousseriesofpartiallyreactedHugoniots,andthecorrectonetouseforthedetonationsolutioncannotbedetermineduntilthekineticrateequationhasbeenintegrated,aswasdoneabove.StartingfromthevonNeumannpoint,asthereactionprogresses,thesolutionproceedsdowntheRayleighlineasindicatedbythedirectionalarrows.Atthesonicpointoftheeigenvaluesolution,thesolutionisindeterminate.Asendothermicreactionsdominateovertheexothermicbeyondthesonicpoint,thesolutionmaycontinuedowntheRayleighline(supersonicbranch),ormayproceedbackuptheRayleighline(subsonicbranch).EitherbranchofthesolutioneventuallyreachestheequilibriumHugoniot.Theupperintersectionpointcanberecognizedasastrongdetonationandthelowerintersectionasaweakdetonation.Asdiscussedabove,theweaksolutionismorelikelytobereal-ized,andthuspathologicaldetonationsareanexampleofaweakdetonationsolution.Ifthereactionzonecalculationisinitializedwiththepost-shockstatecorrespondingtotheCJequilibriumsolution(dashedstraightline),thenasthetangencycondition(sonic”ow)isencounteredforthe“rsttime,thenetheatreleaserateisstillpositive.Asnetexothermicreactioncontinues,thereisnolongeranintersectionbetweentheRayleighlineandthepartiallyreactedHugoniot,resultinginthesingularityencounteredinFig.2.4.Thus,itisnotpossibletoconstructatrajectoryofpartiallyreactedstatestoreachtheCJequilibriumsolution.DetonationsforwhichtheequilibriumCJdet-onationsolutionmaynotbethecorrectsolution(orpermissiblesolution)duetocompetingeectsinthereactionzonemayoccurinsystemswithrealchemistryaswell(Sect.2.52.4DetonationswithSourceTermsInordertodiscusslimitstodetonationpropagation,lossesmustbeintroducedintothegoverningconservationequations.InasystemwithoutlossesandgovernedbyanArrhenius-typereactionrate,detonationpropagationisalwayspossibleduetothefollowingmechanism.AnArrhenius-governedsystemwillinevitablyreacttoequilibrium,andthetemperatureincreasefromevenaweakshockwavewillacceleratethereaction,resultinginawaveofexothermicenergyreleasetravelingwiththeshocksomedistancebehindit.Inthecaseofaveryslowreaction,thisfrontofexothermicitymaybespatiallyseparatedfromtheshockbyvastdistances,butintheabsenceoflossessuchasheattransferorfriction,theenergyreleasedwilleventuallyfeedintosupportingtheshock,ultimatelyresultinginadetonation.(RecallthataCJdetonationistheminimumvelocityallowedforasteady,compressivecombustionwave; 2SteadyOne-DimensionalDetonations47lowervelocitycombustionwavesarenotpermittedbytheconservationlaws.)ThisconceptissometimesreferredtointheRussiandetonationliteratureasKharitonsprinciple,namelythatanymediacapableofexothermicreactioniscapableofsupportingdetonationwavepropagationintheabsenceoflossesosses72].Thus,anydiscussionofthelimitstodetonationpropagationmustincludetheeectsoflosses.Thesteady,one-dimensionalmass,momentum,andenergyequationsincludingfrictionandheattransfersourcetermsinthewave-“xedreferenceframeare)=0(2.26)(2.27) (2.28)whereisasourcetermofmomentumandisasourcetermofenergy.Thevelocityisthevelocityofthewallinthewave-“xedframe,whichisequalinmagnitudetothevelocityofthewaveinthelaboratory-“xedframe,.Aswrittenhere,andarethevolumetricsourceterms,withunitsof[Nm]and[Wm],respectively.Amasssourcetermcouldalsobeincludedtoaccountfor,forexample,masslossintoaporouswall;however,thiseectisusuallytreatedbyintroducingareadivergenceintothegoverningequations,asdiscussedinSect.2.6.Thesemomentumandenergysourceswillberelatedtowallfrictionandheattransfercoecientsbelow.Notetheappearanceofthefrictiontermintheenergyequation,representingtheworkdonebyfriction.Thesigni“canceofthistermwillbeelaborateduponinSect.2.4.2below.FollowingthedevelopmentofSect.2.2,adierentialequationforthe”owvelocityinthereactionzonecanbefound dx=q cpT+q cpT+f(u1(Š1)Šu) c2 (2.29)Notethatif=0and=0,(2.29)revertsbackto(2.16).Heattransfertothewallisaheatloss(0),soinspecting(2.29)revealsthattheeectofheatlossissimilartothatofendothermicreactionsstudiedintheprevioussection.HeatlosseswillresultinthedetonationpropagatingatspeedslessthantheidealCJdetonationvelocity(i.e.,adetonationwithoutlosses),anddeterminingthesolutionwillnecessitateiteratingonthepropagationvelocityuntilaregularsolutionofthereactionzonestructurecanbefound.Theeectoffrictionisnotasintuitive,duetothetermsofmixedsigninvolving2.29);however,itwillbeshownthatfrictionalsoresultsinavelocityde“citincomparisontotheidealCJvelocity. 2SteadyOne-DimensionalDetonations57verylarge(i.e.,beyondvaluesthatcorrespondtorealreactivesystems)inordertoseethisconvergence.InSect.2.6,thesamerelationrelatingvelocityde“cittoactivationenergywillbefoundtoapplytodetonationswithfrontcurvatureduetolateral”owdivergencefromyieldingcon“nement.Detonationswithlargefrictionalandheattransferlosses,aswouldbeencounteredinporousmediaforexample,havebeenextensivelystudiedthe-oreticallybySivashinskyandcolleaguesinrecentyears[].Theirworkhasfurtherelucidatedthestructureofthereactionfrontandclassi-“edthepossiblemodesofpropagation,particularlylowvelocity(includingsubsonic)regimes.Theirmodeling,similartothatpresentedhere,usedasingle-stepArrheniuskineticsreactionmechanism.Asdiscussedinthenextsubsection,thisreactionmodelislikelynotrelevanttotheactualmechanismofburninginreactivewaveswithlargelosses.Modelsthatattempttoincor-poratethecontributionofturbulentcombustiontothereactionmechanismbyusinggreatlyexaggeratedvaluesoftransportproperties(e.g.,eectivetur-bulentdiusivity,etc.)mayprovideafuturedirectiontolinkthesemodelswithexperimentalresults[2.4.5ExperimentswithLossesGaseousdetonationsinchannelsthatexhibitlargevelocityde“citsduetomomentumandheattransferlossestowallroughnessorobstacleshavebeenextensivelystudiedandarereferredtoasquasi-detonations.Quasi-steadypropagationatvelocitiesaslowas50%oftheidealCJvelocityhasbeenobserved.Reviewsofresultsofthesestudiescanbefoundin[]andChap.of[].Itisunlikelythatplanarshock-initiatedhomogeneousreactionscon-tributesigni“cantlytotheenergyreleaseinsuchdetonations.Calculationsperformedwithdetailedchemistryshowthatthereactionratesforthelowshockvelocitiesinvolvedaremuchtooslowtoresultinexothermicreactionsonthetimescalesoftheobservedquasi-detonations.AseminalstudybyShchelkinhelkin78]suggestedthatshockre”ectionoobstaclesinthetubemaygeneratelocalhotspotsthatinitiatereactionandthusenablethedetonationtocontinuepropagatingatspeedsforwhichaplanarshockwouldnotbeofsucientstrengthtosustainpropagation.Muchoftheframeworkforexplainingdeto-nationphenomenaingaseousandcondensedphaseexplosiveshassincebeenbuiltaroundthishotspotŽidea.Inaddition,itislikelythatinteractionsofthepost-shock”owwiththeobstacles,theboundarylayerthatformsonthetubewall,andtheturbulentnatureofthequasi-detonationfrontitselfallcontributetoburningthemixtureandsustainingthefront.Themechanismofpropagationofveryhighspeed(300ms)turbulent”ameshasnotbeenconvincinglyelucidatedandcurrentlycomprisesanomanslandŽbetweenpremixedturbulentcombustionanddetonation,whichincludesthetransitionbetweenthetwo(de”agrationtodetonationtransition)[].Assuch,mod-elstoaddressthereactionmechanismareadhocandsemi-empiricalinnature 2SteadyOne-DimensionalDetonations59aregeometrydependent,asseenintheresultswiththesquaretubewithstaggeredpillars,whichwhileexhibitingacriticalvelocitydidnotexhibitatransitiontothelowvelocitychokingregime.Similarstudiesofdetonationsingaseousmixtures“llingtheinterstitialspacesinpackedbedsofinertsphericalbeadsbyMakrisetal.[]andPinaevandLyamin[]failedtoidentifyacriticalvelocityforalargenumberofdierentexplosivemixtures,withacontinuousspectrumofpropagationvelocityfromtheidealCJvelocitydownto30%oftheCJvelocity.Itislikelythattheroleofturbulentmixing-drivencombustionwavesaccountsforthegeometry-dependingvelocityde“citandcriticalbehaviorthatcannotbepredictedbythesimplehomogeneousreactionmechanismswithexponentialtemperaturedependenceusedinthischapter.2.5SystemswithRealChemistryInordertohaveamoreaccuratemodelforrealsystems,itisnecessarytotakeintoaccountthedetailsofthechemicalreactions,ratherthansimplytreatingtheenergyreleaseofreactionasexternalheatadditionaswasdoneinpriorsections.Inthissection,amodelofasteady,one-dimensionaldetonationinareactingsystemofidealgaseswillbedeveloped,followingthedevelopmentsfoundin[].Thisanalysisbeginswiththesamedierentialformoftheconservationequations(2.1)…(2.3)andadditionalconservationequationsforeachindividualchemicalspecies(2.40)sincespecieswillbeproducedandconsumedwhilechemicalreactionsproceed.subscriptin(2.40)denotesaparticularchemicalelementorcompound.Thetermistherateofspeciesproductionviachemicalreaction(units:kmol/m-s),andisthemolecularweightofspecies.Itisconvenienttointroducethemassfractionofaspecies ,whereisthedensityofthemixture.UndertheassumptionoftheDaltonmodelofpartialpressure,theidealgaslawappliestoeachindividualspecies .Theaveragemolecularweightofthemixture(whichwill,ingeneral,notremainconstantasthemixturereacts)isgivenby W\biYi (2.41)Theenthalpytermcontainsboththesensibleenthalpyandthelatententhalpyofformation.Thus,itisnotnecessarytointroduceaheatreleasetermintotheenergyequationtoaccountforexothermicchemicalreaction.Speci“cally,isgivenby(2.42) 64A.Higginswhererefisthereferencepressureusedinde“ningtheequilibriumconstantbasedonpartialpressures.Equilibriumconstantsarederivedfromthermodynamicdataasfollows:=exp (2.67)where¯istheGibbsfunctiononapermolebasisofspeciesevaluatedatthetemperatureandatthereferencepressureref=1atm.Thus,theequi-libriumconstants,inbeingderivedfromfundamentalthermodynamicdata,areknownwithmuchgreatercon“dencethankineticrateconstants.Thisapproachthenensuresthattheoverallkineticmechanismisconsistentwiththehigher-con“denceequilibriumconstants.Aconsequenceofthisassumptionisthatitispossibletostartwithacompletelyarbitraryorincorrectreactionmechanismandstillreachthecorrectequilibriumcompositionofareactinggasmixture.Thus,correctlyreproducingtheCJdetonationvelocityviaaZNDcalculationwithdetailedchemistryshouldnotbetakenasvalidationofthekineticmechanism.Theoverallconversionoffuelandoxidizerintoproductsisdescribedbyakineticmechanism,consistingofelementaryreactions.Formostcombustiblemixtures,itisnecessarytoconsidernumerouspossiblereactions.Evenasim-pleŽsystemlikehydrogen/oxygenistypicallymodeledwith20orsoelemen-taryreactions,whilemechanismsforhydrocarbonfuels(e.g.,methane)canconsiderreactionsnumberinginthehundredsorthousands.Foramechanismconsistingof,...,Melementaryreactionsthatdescribesthereactionof,...,Nspecies,theoverallproductionrateofspeciesisgivenby(2.68)(2.69)whereisthestoichiometriccoecientofspeciesintheforwardreactionandisthecorrespondingstoichiometriccoecientforthebackwardreac-tion.Ifaspeciesisabsentfromareaction,itsstoichiometriccoecientisThetimerateofchangeofconcentrationisoftenexpressedinthecom-bustionliteratureas (2.70)Thisexpressionisstrictlyonlyvalidforaconstantvolume(density)reac-tion.Ingeneral,reacting”owsarevariabledensity,sospeciesconcentrationscanchangeduetochangesindensityaswellasreaction,andthus(2.70)is 66A.HigginsTable2.1.Carbonmonoxide/oxygenreactionmechanism ReactionAnE(kJ/kmol) CO+O+M+M1.80.009,970CO+O+O2.50.00200,000O+O+M+M1.21.000 kmolkmolroleofhydrogeninconvertingtheCOintoCO.Thus,inanyrealsystemwitheventracecontaminationofhydrogen,water,orhydrocarbons,themechanism2.72)…(2.74)isnotthedominantreactionpath.Forthepurposesofamodelsystemtoexplorenumerically,however,thedryoxidationofcarbonmonoxideisconvenienttouse.InordertoinitializethecalculationofthereactionzonestructureatthevonNeumannpoint,itisnecessarytospecifythepropagationvelocityofthedetonationwave.Thiswasdoneintwodierentways:anequilibriumsolu-tionbasedonacontrolvolumeenclosingthewaveandaZNDsolutionwhichthestructureofthereactionzoneissolved.Theequilibriumsolutionbasedonacontrolvolumewasdeterminedthroughiterationupontheinte-gralconservationlaws(2.1)…(2.3)assumingchemicalequilibriumattheexitplaneuntiltheminimumwavevelocitysolutionwasfound.Thereactionzonestructurewasnotconsideredinthiscase.Thespeedofsoundwasnotexplic-itlyintroducedinthesecalculations,butthesolutionfoundcorrespondstosonicout”ow(i.e.,”owvelocityequalstheequilibriumspeedofsound).Thissolutionmethodologycanbeshowntoagreewiththatusedinwell-knownequilibriumprogramssuchastheNASACEAprogram[],andgeneratesthesameresultswithinnumericalprecision.TheZND-basedsolutionwasfoundbynumericallyintegratingthereactionzonestructureusingthe(2.58)…(2.71).Theinitialvelocityofthewavewasiter-ateduponuntilasolutionthathadsonicout”owandthatdidnotencounterasingularitywasfound.Notethatthesonicout”owconditionfoundisthatde“nedbyusingtheequilibriumspeedofsound.Theout”owwithrespecttothefrozenspeedofsoundwasstillsubsonic(Mach0.963).Therefore,thissolutiondoesnotsatisfythegeneralizedCJcondition(2.59TheresultsofthetwosolutionmethodologiesarecomparedinTable2.2Thepropagationvelocityofthedetonationwavefoundbythesetwomethodsagreestosixsigni“cantdigits,andthe”owpropertiesattheexitstateagreetowithin“veorsixsigni“cantdigits.Thus,itcanbeconcludedthatthesetwomethods“ndthesamesolutionforthedetonationwave.ThestructureofthewaveisshowninFig.2.10.Thereactionzonelength,asde“nedbyidentifyingthelocationofmaximumthermicityorthein”ectionpointintemperature,isontheorderof10…15cm.However,thesoniccondition(usingtheequilibriumsoundspeed)isonlyapproachedasymptotically.Thus, 2SteadyOne-DimensionalDetonations69existsinthiscasethatpermitsthesolutiontosatisfythegeneralizedCJcriterion.Thisresultisduetothefactthatthethermicityparameterisalwayspositiveandonlyapproacheszeroasymptotically.Inorderforthesolutiontopassthroughsonicviaasaddlepoint,thethermicitymustpassthroughzero.Thus,forthecarbonmonoxide/oxygensystemdiscussedhere,thereisnoambiguitysincetheequilibriumandtheZND-basedmethodsgeneratethesameuniquesolution.2.5.3Hydrogen/ChlorineSystemIdenti“cationofarealcombustiblemixturethatexhibitsthetypeofpatho-logicalbehaviordiscussedinSect.2.3isaninterestingproblemthathasbeenthesubjectofperiodicinvestigationsincetheintroductionoftheZNDmodelinthe1940s.ZeldovichandRatner[]pointedoutthatthereactionofHandCltoformHClcanoccurviatheNernstchainreactionmuchmoreread-ilythanthedissociationofCl,whichhasarelativelyhighactivationenergy.Thus,thehighlyexothermicreactionformingHClmaybefollowedbyanendothermicdissociationreactioninCl,resultinginthetypeofexother-mic/endothermicreactionnecessaryforpathologicalbehavior.Subsequentstudiesofexperimentalsystemsexhibitingpathologicalbehaviorhavetendedtofocusonthissystem.The“rstdetailedchemicalkineticcalculationsofaZNDdetonationin/ClwereperformedbyGu´enocheetal.[]usingthemechanismgiveninTable2.3.Thesecalculationsarereproducedhere.Afuel-lean(chlorine-rich)mixturewithfuelequivalenceratio66atrelativelylowpres-sure(33kPa)wasselectedhereforasamplecalculationinordertoaccentuatethedierencebetweentherapid,exothermicformationofHClandtheslowerdissociationoftheexcessCl.Thegoverningdierentialequa-tions(2.58)…(2.71)wereintegratedcoupledwiththekineticmechanisminTable2.3.TheinitialshockvelocitywasiterateduponuntilasolutionthatTable2.3.Hydrogen/chlorinereactionmechanism ReactionAnEkmol)(kJ/kmol) H+H+M+M1.01.000HCl,Cl,Cl1.000H0.600H2Cl+M62.07238815H,Cl,HCl,H2.07238857ClHCl+MH+Cl+M62.00427765H,Cl,HCl,H,ClCl+HHCl+H40.0022H+ClHCl+Cl60.684 kmol 70A.HigginsTable2.4.Hydrogen/chlorinedetonation Initialcomposition(Moles)H Initialstate(kPa)3(K)300(ms)278 DetonationsolutionEquilibriumEigenvalue(ZND) (ms)1,320.71,527.34.7355.476vonNeumannstate(kPa)86.469116.0618.06634.852(K)1,374.11,724.4(ms)232.96251.88(ms)586.81655.230.39700.3844Chapman…Jouguetstate(kPa)47.07360.30014.13618.108(K)2,075.942,989.09(ms)748.4883.3(ms)789.0883.3(ms)748.4N/A0.94851.00001.0000N/A passesthroughthefrozensonicpointwasidenti“ed.ThissolutionispresentedinTable2.4andFig.2.12,showingthethermodynamicproperties,speciesconcentrations,thermicityparameter,andthe”owMachnumber(usingthefrozenspeedofsound).AshypothesizedbyZeldovichandRatner,theH/Clsystemdoesexhibitanovershootintheheatreleasefollowedbyanendother-micphase.Thisismostclearlyseenbyexaminingthetemperatureandthethermicityparameter,whichpassesthroughzeroandbecomesnegativeatthesamepointwherethe”owbecomesfrozensonic,asrequiredbythegeneralizedCJcondition.(Notethefactthatthethermicitybecomesnegativepreventstheuseofalog-scaleonthe-axis,incomparisontoFig.2.10.)Thehistoryofspeciesconcentrationsthroughthereactionzoneveri“esthattherapidforma-tionofHClfollowedbyaslowerdissociationofClintoClisthesourceoftheexothermic/endothermicnatureofthereaction.Thissolution,resultingfromiterationuponthereactionzonestructureuntilatrajectorythatsatis“esthegeneralizedCJconditionwasfound,istheeigenvaluesolution.Theeigenvaluesolutionfoundaboveiscomparedtotheequilibriumsolu-tion,suchaswouldbefoundviatheNASACEA[]orotherchemicalequilibriumsoftware,inTable2.4.Asigni“cantdierencebetweenthetwosolutionsisfound,witha15%discrepancyinthedetonationpropagationvelocitieswiththeequilibriumvelocitybeinglower.Thisresultisunlikethat 2SteadyOne-DimensionalDetonations71 Mole Fraction10-310-210-1100Cl2H2ClH X 100HClsonic surface Flow Mach Number (frozen sound speed)0.20.40.60.81.01.21.41.61.8sonic (frozen) Thermicity (1/s) Distance (m)Pressure (atm)Temperature (K)10-410-310-210-1100Distance (m)10-410-310-210-1100Distance (m)10-410-310-210-110000.511.521600180020002200240026002800300032003400PressureTemperature Fig.2.12.StructureofHdetonation,showingpressure,temperature,molefractions,thermicity,and”owMachnumber.ThelocationofthesonicpointisdenotedasaverticaldashedlineobtainedwithCO/Odetonationsconsideredinthepriorsection,forwhichtheequilibriumandZNDapproacheswereseentogeneratethesamesolution(withinnumericalprecision).IfaZNDcalculationoftheH/Clreactionzoneisinitializedwiththepost-shockvonNeumannconditionsfortheCJequilib-riumsolution,asisdoneinFig.2.13,thecalculationencountersasingularity.Thereactionzoneisnowlongerduetothelowerpost-shocktemperature,butwhentheexothermicreactionbeginstoreleasesigni“cantheatintothe”ow,itresultsinsonic”owbeingencounteredbeforethethermicitygoingtozero,hencecausingthesingularity.Qualitatively,thisisidenticaltothebehaviorseeninSect.2.3withanarti“ciallyconstructedtwo-stependother-mic/exothermicsystem.Indeed,anyattempttoinitializeasolutionwithashockvelocityevenincrementallybelowtheeigenvaluesolutionfortheH/Clsystemresultsinasingularity.Solutionsinitializedwithafastershockremainsubsonicwithrespecttothefrozenspeedofsound(i.e.,thestrongdetonationsolution).Finally,notethatitisnotpossibletode“neanequilibriumsoundspeedforthe(nonequilibrium)sonicpointoftheeigenvaluesolution. 76A.Higginswavefrombehindanddisruptingthereactionzone.However,asadetona-tionpropagates,thegradientofexpansionbehindthewavebecomesmoregradual,andthusthefrequencyofrarefactionwavesmightbeexpectedtoapproachthelow(equilibrium)limit.Further,whiletheinitialleadingedgeofacenteredrarefactionwouldpropagateatthefrozenspeedofsound,thisacousticwaveisquicklyattenuated(decaysexponentially)andthemajorityoftherarefactionisgovernedbytheequilibriumspeedofsound.Thisaspectofrarefactionspropagatinginreactive”owwasexploredindetailbyWoodandParker[].Ifthisisthecase,thentheequilibriumsolutionwouldagreewiththeconceptualpictureoftheCJdetonationbeingisolatedfromdownstreamdisturbancesbyasonicplane.Forasystemwithpathologicalheatrelease,suchasthehydrogen/chlorinesystemconsideredinSect.2.5.3,itisnotpossibletoobtainasolutionforthereactionzonestructurethatisinitializedwiththeCJequilibriumvalueofdet-onationspeed(seeFig.2.13).Thiscasecanbevisualizedonthe(p,v)planebytheinabilityofasequenceofintermediateHugoniotstoprovideapathalongtheRayleighlinetoastateoftangencytotheequilibriumHugoniot(seeFig.2.5).Theonlypermittedsteadysolutionwithasonicpointistheeigenvaluesolutionwithafrozensonicpointembeddedinthesolutionandanexit”owthat,withrespecttotheequilibriumHugoniot,isaweakdeto-nation.Similarly,inanysystemwithlossessuchasheattransferorfriction,asdiscussedinSect.2.4orwithlaterallydivergent”ow,aswillbediscussedinSect.2.6,itisthefrozensoundspeedthatde“nesthesaddlepointoftheeigenvaluesolution.Thissituationgivesrisetoanapparentparadox,whereinthelimitingsolu-tionasthelossmechanismdecreasestozeromaynotconvergetotheideal,planarsolution,sincetheformerisde“nedbythefrozenspeedofsoundandthelatterusestheequilibriumspeedofsound.Forexample,forthecaseofadetonationinatubewithlossesatthewalls,astheradiusofthetubeincreasestoin“nity,thesolutionforthedetonationvelocitywillnotagreewiththeplanarsolution(i.e.,lim).Inordertoresolvethisapparentinconsistency,apossiblestrategywouldbetosolvethefull,unsteadyEulerequationswithoutimposingaparticularcriterion,andseewhichsolu-tionevolves(thisapproachwasdonebySharpeandFalle[]forpatho-logicaldetonationsandbyDionneetal.[]fordetonationswithfrictionandheattransfer,asdiscussedinSect.2.4.3).SuchacalculationwasperformedbySharpe[]foramodelsystemwithasingle-stepreversiblechemistryoriginallyproposedbyFickettandDavis[](FickettandDavisconsideredasystemwithzeroactivationenergy,whileSharpeconsideredasystemwithlowactivationenergythatgaveastableZNDsolution).Sharpe[]showedthat,foraplanardetonationinitiatedbyanoverdrivenblastwaveintheabovesystem,afteralongpropagationtime,thewavevelocityandreactionzonestructureapproachedthatofanequilibriumsonicCJdetonation.However,ifevenanin“nitesimaldegreeoflosswasintroduced(curvature,inthecaseofSharpescalculations),thelong-termevolutionofthesolutionconverged 78A.Higginswhichthecriticaldimensionis“rstencountered.Ingaseousexplosivescon-tainedinrigidtubes,near-limitbehaviorismorecomplex,sincethewavecaninteractwiththetubewallinordertosustainpropagationintransientmodesknownasspinningandgallopingdetonations(seediscussioninChap.of[Thevelocityde“citin“nite-sizedchargesandtheexistenceofacriti-caldimension(usually,thediameterofacylindricalcharge)areheavilyuti-lizedinresearchondetonationwavesincondensed-phaseexplosivesasameanstoprobethereactionzonestructureandthermodynamicpropertiesofthedetonationproducts.Duetotheextremelyshortreactiontimescalesincondensed-phasedetonations(typically,sub-microsecondtonanosecond),theopaquenatureofdetonatingmedia,andtheextremepressuresgenerated,insitumeasurementsofanydetonationpropertiesareextraordinarilydicult.Asaresult,almostallmodelsforcondensed-phaseddetonationsutilizedataderivedfromthevelocityde“citand/orthecurvatureoftheshockfrontasthechargediameterisdecreased,ormeasurementofthecriticaldiameteratwhichdetonationfailureoccurs.Theradialexpansionofdetonationproductsinacylindricalchargecon“nedwithaductilematerial(e.g.,copper)isalsothebasisofmostsemi-empiricalmodelsfortheequationofstateofthedetonationproducts.Fordetonationsingas-phasemediaontheorderofatmosphericpressure,perfectlyrigidcon“nementispossible,forexample,usingasteel-walledtube.However,theperipheryofthegaseouschargestillin”uencesthedetonationwaveviafrictionandheattransfertothewall.InSect.2.4,theseeectsweretreatedasvolumetriclossesthatwerespreaduniformlyacrossthecrosssectionofthetube.Inreality,thein”uenceofthewallisconveyedtothedetonation”owviaaboundarylayerregionnearthewall.Thegrowthoftheboundarylayerresultsinadiverging”owinthereactionzone,qualitativelysimilartothediverging”owthatoccursinacondensed-phasedetonationduetoyieldingcon“nement.Itmayappearcounterintuitivethatgrowthofaboundarylayeralongthewallresultsinadiverging”owinthedetonationreactionzone;notethatinthewave-“xedreferenceframe,thewallshavetheeectofacceleratingthe”owwhilealsocoolingandincreasingthedensityofgasintheboundarylayer.Bycontinuity,thiseectrequiresthatthecoreofthe”owdivergesoutwardtoaccountforthemasseectivelyremovedbytheboundarylayer.BoundarylayersofthistypearesometimescallednegativeboundarylayersWithinthecontextofaquasi-one-dimensionalapproximation,detonationswithdivergent”owcanbetreatedwiththereactionzoneequationsderivedpreviouslyinSect.2.2.Inparticular,(2.10),reproducedhereslightlymodi“ed dx=q cpT\nŠu1 AdA dx (2.75)modelstheeectofdiverging”owviathe AdA term.Inthissection,thesteadyreactionzonestructureofdetonationwaveswithdiverging”owisfurther 80A.Higgins(0)��Ld))whereisthelengthofthereactionzone,thentheareadivergencetermsdierbyanumericalfactoroftwoforthetwogeometries2-DSlab: AdA dxt(x) (0)(2.80)AxisymmetricTube: AdA dx2d(x) (0)(2.81)Thismeansthatthesolutionforthereactionzonestructureinthetwogeome-triesshouldbethesame,providedthediameteroftheaxisymmetriccylinderisscaledbytwicethethicknessofthe2Dslab.Earlymodelsfordetonationin“nite-diameterchargesbyJones[]andEyringetal.[]usedphenomenologicaldescriptionsforthestreamtubeareadivergence(i.e.,nozzle”owmodels).Whilenotrigorous,thesemodelsareofinterestintheirprovidingaphysicalpictureofthe”ow“eldsthatresultfromtheboundaryofthechargeexpandingoutwardastheexplosivereacts.ThemodelsdevelopedbyJonesandelaborateduponbyEryingetal.assumedaPrandtl…Meyer(P…M)expansionfanoriginatingwhereanormaldetonationencounteredtheedgeofthecharge.TheinitialstatewastakenastheCJstatefortheideal,constantareadetonation(notethatusingthesubsonicvonNeumannstateisnotanoptionsincetheP…Mfunctionisonlyde“nedforsupersonic”ow).Foranuncon“nedcharge,theP…Mfanattheedgewasmatchedtoastreamtubecontainingthecoreofthedetonation”ow.Foraheavilycon“nedcharge,theP…Mfanwasmatchedtoanobliqueshocktransmittedintothecon“ningmaterialtodeterminethedivergenceangle,whichwastakenasconstant.Eyringetal.wentontodevelopheuristicmodelsincorporatingthefactthat,ifthe”owattheboundaryofthechargeisdivergingoutwardfollowingtheleadingshock,theshockfrontitselfcannotbe”atandmustbeobliqueattheboundary.Inotherwords,theleadingshockfrontiscurved(normalonthecentralaxisofthechargeandincreasinglyobliquetowardtheedges),similartothemeniscusofaliquidsurfaceinacapillarytube.Eyringetal.werecarefultopointoutthatfrontcurvatureisanecessaryconsequenceofdiverging”ow;curvatureand”owdivergencearedierentmanifestationsofthesamephenomenon,notseparateeectsthatshouldbesuperimposedinmodels.Theoreticalinvestigationsintothe1960scontinuedtopresupposefunctionalformsforthestreamtubeareapro“le,oftenoutofanalyticconvenienceratherthanfromphysicalconsiderationss26,100].2.6.2RadialFlowDerivativeBeginningwiththeworkofWoodandKirkwood[],amorerigorousapproachtosolveforthereactionzoneofadetonationwavewithdivergent”owwasdevelopedthatexaminedthetwo-dimensional”ow(eitherrectangu-laroraxisymmetric)alongthecentralaxialstreamlineofthereactionzone. 2SteadyOne-DimensionalDetonations81Utilizingthefactthatthe”owissymmetricaboutthisline,thecontinuityequationfortwo-dimensional,steadycompressible”owŠ=0(2.82)canbesimpli“edforrectangularcoordinates x+(v) =0(2.83)sincethetransverse”owvelocityiszeroalongthisstreamline,asfollows: x+v (2.84)Notethat,whilethetransversevelocityiszeroalongthecentralstreamline=0),thederivativeofthevelocityintheradialdirectionhasanonzerovalue .Likewisethecontinuityequationforaxisymmetric”owincylindricalcoordinates x+1 rv =0(2.85)specializedtothecentralstreamlinevialHopitalsruleyields x+2v (2.86)-momentumequationinrectangular uv y=Šp (2.87)andcylindricalcoordinatesru ruv r=Šrp (2.88)bothrevert(viasymmetry)tothefamiliarformofthemomentumequationwhenappliedalongtheaxialstreamline x+uu (2.89)Returningtocontinuity,(2.84)and(2.86)canbewrittenas x+v (2.90)wheredenotesthetransverse-directionintherectangulargeometryandradial-directioninthecylindricalgeometry,andhasthevalueof1and 82A.Higgins2fortherectangularandcylindricalgeometries,respectively.Bycomparing2.90)with(2.4),thederivativeofthetransverse/radialvelocityterm( canberelatedtotheareadivergenceofastreamtube AdA dx= uv (2.91)Thisequivalencecanalsobedemonstratedbyconsideringanarbitrarilysmallstreamtubethatenclosesthe”owalongthechargeaxis,andusingthederiva-tiveoftheradial”owvelocitytoapproximatethedivergenceofthestreamtubeboundary.Asthestreamtubeshrinkstotheaxis,thecorrespondence2.91)becomesexact.2.6.3ShockFrontCurvatureThederivativeoftheradial”owvelocitycanalsoberelatedtotheradiusofcurvatureoftheleadingshockfrontbyusingthegeometricconstructionintheshock-attachedreferenceframeshowninFig.2.16.The”owvelocityapproachingtheshockisthedetonationpropagationvelocity().Notethatthisconstructionappliestothe2Dslabandaxisymmetricgeometriesequally.Usingthefactthatthecomponentof”owvelocityparalleltoashockfrontdoesnotchangeasthe”owcrossestheshock,asrequiredbyconservationofmomentum,itispossibletoexpresstheradialcomponentofvelocityas(2.92) DDu\\ =D sin\bu\t = D cos\bu\tv\b u\\centerlineRshock frontvon Neumann point x y, r two-dimensional slabaxisymmetric cylinder Fig.2.16.Geometricconstructionrelatingshockfrontradiusofcurvaturetothederivativeoftheradial”owvelocity rorv atthecenterlineimmediatelybehindtheshock 2SteadyOne-DimensionalDetonations83Performingapartialdierentiationofthevelocitywithrespecttotheangle shock(cos2 shock(2.93)wheretheshockŽsubscriptdenotesthatthedierentiationwasperformedalongtheshockfront.Thedierentiationcanbeconvertedtoadierentialwithrespectto(denotedas)asfollows: shock shock shock shock (2.94)Takingthelimitapproachingthecentralaxis (0) (2.95)where(0)istheaxialvelocityatthevonNeumannpointalongthecentralaxis.Thus,theradiusofthecurvatureoftheshockfrontisdirectlyrelatedtothederivativeoftheradial”owimmediatelybehindtheshockfront.ThisrelationappliesstrictlyonlyatthevonNeumannpoint(i.e.,immediatelyaftertheleadingshock);however,lackingfurtherinformation,thisderivativeisoftentakenasconstantthroughthereactionzone.Theshockradiuscanberelatedtothecurvatureoftheshockfrontasfollows: (2.96)whereagainis1forthetwo-dimensionalslabgeometry(cylindricalcurvatureoftheshockfront)and2fortheaxisymmetriccylindergeome-try(sphericalcurvatureoftheshockfront).Thefactthat,foralocallysteadydetonationfront,theshockcurvatureuniquelydeterminestheeigenvaluevelocityofpropagationprovidesthemeanstoconstructthedetonationfrontshapeandtrajectoryasthedetonationpropagates,forexample,throughacomplexchargegeometry.Thistechnique,calledDetonationShockDynamicsisthesubjectofChap.ofthisvolume.2.6.4Con“nementInteractionviaNewtonianTheoryInordertoassociatethesedivergent”owmodelswithexperimentalresultsormakequantitativepredictionsofvelocityde“citsorcriticaldiameter,itisnecessarytolinkthe”owdivergencetotheoveralldimension(diameterorthickness)ofthechargeandthepropertiesofthecon“nement.Forcondensed-phasedetonations,solvingforthisinteractioncanbechallenging;thistopiciselaborateduponinChap.ofthepresentvolume.Asanillustrativenumericalexamplerelevanttogaseousdetonations,asimpleNewtonianmodelfortheinteractionofthediverging”owinthereactionzonewiththecon“nementwillbedevelopedfurtherinthissection.Beinganozzle”ow-typemodel,itdoesnotexplicitlyincludethecurvatureoftheshockfront.However,this 84A.Higginsmodel(originallyproposedbyTsugeetal.[])isinstructiveinthatittreatstheevolvinginteractionofthereacting”owwiththecon“nementviaananalyticallytractablemethodwithoutresortingtoempiricalinputoranassumedformulafortheareadivergence.TheNewtonianmodelforhypersonic”owassumesthata”owencounteringaninclinedsurfacelosesthecomponentofvelocitynormaltothesurfacebutretainsthetangentialvelocity.Inotherwords,a”owencounteringaninclinedsurfaceslidesalongthesurface,andthechangeinmomentum”uxofthe”owdeterminesthatthepressureonthesurfacemustvaryas(2.97)whereisthesurfaceinclinationangletothe”owwithfreestreamdensity,andvelocity.OriginallyproposedbyNewton,this”owmodelhasbeenshowntoberemarkablyaccurateinpredictingsurfacepressuresforslenderbodiesinhypersonic”ow[].Themodelisinvokedheretotreatthe”owofthecon“nementmaterialasitencounterstheexpanding”owofreactinggas,therebylinkingthepressureofthereacting”owtothedivergenceangleofthestreamtubeenclosingthat”ow.Sincethestreamtubecannotsupportapressuredierence,thereacting”owmustlocallymatchthepressureofthecon“nementandtherebytheslopeofthestreamtubeboundary.Using2.97)forthe”owofcon“nementmaterial dx 2 1+\ndz (2.98)whereŽdenotesthepropertiesofthecon“nementbeforeinteractionwiththedetonationwaveandŽiseithertheradiusorthehalf-thicknessthestreamtube.Solvingfortheslopeofthestreamtube dx=\f\r\r p(x)Špc cu2c 1Šp(x) (2.99)Thisexpressionisusedto“ndtheareadivergencetermasafunctionofthelocalpressureinthestreamtube2-DSlab: AdA dx=t t=y y=1 y\f\r\r p(x)Špc cu2c 1Šp(x)Špc (2.100)AxisymmetricTube: AdA dx=2d d=2r r=2 r\f\r\r p(x)Špc cu2c 1Šp(x)Špc (2.101)Theseexpressionsfor AdA canbeuseddirectlyintheODEgoverningthereactionzonestructure(2.75).Sincepressurenowappearsexplicitly,thisODEmustbeintegratedcoupledtothemomentumequation(2.5)reproducedhere 2SteadyOne-DimensionalDetonations85 dx=Šudu dx=Šm Adu (2.102)whichcanberelatedtothelocalstreamtubedimensionasfollows:2-DSlab: dx=Š1u1y1 ydu (2.103)AxisymmetricTube: dx=Š1u1\br1 r\t2du (2.104)whereandarethedensityandvelocityupstreamofthedetonation)andandaretheinitialhalf-thicknessandradiusoftheexplo-sive,respectively.ThissetofODEswasintegratedtoobtainthestructureofadetonationwithyieldingcon“nement.Thepropertiesoftheexplosivewerethesamethathavebeenusedpreviouslyinthischapter(=10,andasingle-stepArrheniusreactionwith =25).Theinertcon“nementwasassumedtobeatthesameinitialpressureastheexplosive,butwithadensity2.5timesgreaterthantheexplosive().Thisdensityratioapproximatelycor-respondstothedensityratioofairtostoichiometrichydrogen/oxygen,whichwillbeusedasanillustrativeexperimentlaterinthissection.AsexpectedfromtheformofthegoverningODE(2.75),wheretheeectofareadivergencefromtheyieldingcon“nementisseentocompetewithexothermicheatrelease,itisnecessarytoiterateuponthedetonationvelocityto“ndaneigenvaluesolutionthatcanpasssmoothlythroughthesonicpointwithoutencounter-ingasingularity.Aswasseenpreviouslywiththeeectofheattransferandfriction,thereisacriticalamountoflossthatthedetonationcansustain,inthiscase,resultingfromtheexplosivechargebeingtoothinandlosingtoomuchmomentumtothedivergenceofthe”ow.Forchargesthinnerthanthiscriticalthickness,nosteadysolutionwithasonicpointcanbefound.Thestructureofthereactionzoneforthecriticalslabthicknessatwhichfailureoccurs(i.e.,atthecriticalturningpoint)isshowninFig.2.17asthicklinesincomparisontotheidealCJsolutionforanin“nitethicknesscharge(thinlines).Asmallschematicdonetoscaleisincludedtoshowtheactualamountofareadivergenceobservedatthecriticalturningpoint.Alldimen-sionsarenormalizedbythehalfreactionthicknessoftheidealCJdetona-tion().Thelocationofreactioncompletionorthesonicsurfacecannotbede“nedfortheidealCJdetonation.Thesonicsurfaceforthe“nite-sizechargewithareadivergence,however,canbedeterminedfromtheeigenvaluesolution.Notethattheareadivergencefromtheshocktothesonicplaneismoderate(30%increaseinarea)andthat,evenforthesmallestchargethick-nessthatcansupportdetonation,thethicknessoftheexplosiveslabisstillmorethanthreetimesthelengthofthedetonationfront(i.e.,thedistancefromtheshocktothesonicsurface).IncomparisontotheidealCJsolution,thelocationofthepeakinexothermicityandhalfreactionlengthhavemorethanquadrupledduetothelowerpost-shocktemperature,andtheexother-micityisstill“niteasthesolutionpassesthroughsonic.Atthesonicsurface 88A.HigginsStewart[],andKleinetal.[].Theanalysisby[]and[]yieldsaresultforthecriticalvelocityidenticaltothatpreviouslyfoundbyZeldovichandKompaneetsfordetonationswithheatloss(2.38),reproducedherecrt DCJ1Š1 21 \bEa (2.105)Theanalysisof[]producesaslightlymorecomplexexpressiondependentupon,whichnonethelessisequivalentto(2.105).ThisrelationisplottedinFig.2.18asadashedline.WhileexhibitingqualitativelysimilartrendstotheresultsobtainedbyintegratingthegoverningODEsto“ndtheeigenvaluedetonationvelocity,quantitativeagreementisonlyfoundforveryhighvaluesofactivationenergy(wheretheasymptoticanalysisisintendedtoapply).2.6.5ComparisonstoExperimentExperimentswithcolumnsofdetonablegas(hydrogen/oxygen)con“nedbyinertgas(nitrogen)havebeenperformedby[].Somecharacter-isticimagesofsuccessfulpropagationandfailureofpropagationareshowninFig.2.19;furtherexperimentsarediscussedinChap.ofthisvolume.Theexpansionofthedetonationproductsandtheobliqueshockbeingdrivenintothecon“ninggasareclearlyvisible,asisthecurvatureoftheshockfront.Quantitativecomparisonofthemeasureddetonationvelocityinthese“nite-diametercolumnsofdetonablegaswithZND-typecalculationusingtheNew-tonianmodelforinteractionwiththecon“nement(aswasdoneinSect.2.6.4butwithamoredetailedchemistrymodel)wasdonebyTsugeetal.[andshowedgeneralagreementwiththeexperiments.Theexperimentaldata,however,hadrelativelylargeerrorbars,andmoreaccuratevelocitymeasure-mentswouldnecessitatemeasuringpropagationinlongercolumnsofdeton-ablegas,whichisadicultexperimenttoprepare. PropagationFailure bdbdacac Fig.2.19.Experimentalphotographsofdetonationsin“nite-diameter,uncon“nedcolumnsofhydrogen/oxygen[ 2SteadyOne-DimensionalDetonations89PerhapsthemostimpressivedemonstrationlinkingtheZNDmodeltoanexperimentalresultisthestudyofgaseousdetonationsinporous-walledtubesandchannelsofRadulescu[].Duetothe”owintotheporouswalls,thereactionzoneofthedetonationinsuchatubeorchannelexperiencesadiver-gent”ow,qualitativelysimilartothedivergenceresultingfromyieldingcon-“nementorboundarylayersdiscussedearlierinthissection.Thisdivergenceresultsinvelocityde“citsand,forasucientlysmalltubediameter,failureofthedetonation.Theexperimentalmeasurementsofthevelocityde“citandfailurediameterinmixturesofhydrogen/oxygenandacetylene/oxygenwithlargeamountsofargondilutionexhibitedgoodcorrelationwithaZNDcalcu-lationwithdetailedchemistry(similartothatinSect.2.5)whichincludestheeectof”owdivergence(asisdoneinthissection).Theradial”owderiva-tive(or,equivalently,theareadivergence)wasestimatedbyassumingthatthe”owintotheporouswallwaschoked(sonic)attheporeopenings,withthenetout”owbeingscaledbytheporosityofthewall.Comparisonsofthismodeldemonstratedgoodagreementwiththeexperimentalresults,includingpredictionofthecriticaldiameteratwhichdetonationfailurewasobserved(seeFig.2.20).Whatismore,studiesinporous-walledtubesandporous-lined L*/dD/DCJ10-410-310-20.600.700.800.901.10 2H2 + O2ModelExp.C2H2 + 2.5O2 + 75%ArModelExp. Fig.2.20.Velocityde“citsobservedforgaseousdetonationspropagatinginporous-walledtubes,comparedtoaZNDmodelwithareadivergencedueto”owintothetubewalls.ThetubediameterisnormalizedbythecomputedreactionzonelengthoftheZNDdetonationwithdivergence,.Intheexperiments,initialpressurewaschangedinordertovaryreactionzonelengthwhilethetubediameterwasconstant[ 92A.Higginsnozzlethroat).SimilartransonicŽcombustionregimesarebelievedtooccurinramaccelerators[].Adynamicalsystemsanalysisofthecriticalpointsinthesetypeof”owswasrecentlyperformedbyDeSterck[Researcherswhohavelaboredtodeveloptheframeworkforunderstand-ingdetonationwavesshouldderivesatisfactionthattheireortsmay“ndawiderrangeofapplicationthanthenarrow“eldforwhichthatframeworkwasoriginallydeveloped.AcknowledgmentsThischapterwasdevelopedoutofdiscussionswithJimmyVerreault,OrenPetel,Fran¸cois-XavierJett´e,PatrickBatchelor,andDavidMack.VincentTanguaycontributedtotheanalysisoftheinclusionoftheworkdonebyfrictionindetonationsandtheTaylorwaveanalysisintheappendix.Jean-PhilippeDionnesdoctoraldissertationprovidedatemplateformuchofthischapter.JennyChaoandMateiRadulescuarethankedforsharingtheirexper-imentaldata.FanZhangandCraigTarverprovidedhelpfulandinsightfulcommentary.A.1AppendixA:GasdynamicsofDetonationProductsTheexistenceofsonic”owattheexitplaneofadetonation,whichcomprisestheclassicalChapman…Jouguetconditionanditsgeneralizationtononidealdetonations,meansthatthedetonationwaveisdecoupledfromtheexpansionofthedetonationproductsinthewakeofthewave.Thus,thedetailsoftheexpansiondonotneedtobeexplicitlyconsideredinsolvingforthedetonationwavepropertiesorstructure.Theexpansionofthegasthathasbeenprocessedbythedetonation(i.e.,theburnedgas)canbeofinterestinitsownrightforsomeapplications.Considerationofhowthedetonationexitstateismatchedwiththedownstreamexpansioncanalsoprovidesomeguidanceindeterminingthepossiblenon-CJexitstatesthatmightberealizable.ThegasdynamicsoftheunsteadyexpansionofdetonationproductswastreatedbyG.I.Taylorinaseminalwork[],andthesolutionhefoundisoftenreferredtoastheTaylorwave.Inthisappendix,theTaylorwave”ow“eldsolutionisbrie”ydevelopedusingthemethodofcharacteristicsfortheplanarcase(Sect.A.1.1matchingoftheTaylorwavewithdierentbranchesofdetonationsolutionsisthenexamined(Sect.A.1.2),and“nallyamoreformalsimilaritysolutionforthecylindricalandsphericalcase(Sect.A.1.3)isdeveloped.A.1.1PlanarDetonationTaylorstreatmentofthedynamicsoftheproductsemergingfromapla-nardetonationbeginsbyassumingthatthedetonationwavepropagatesata 2SteadyOne-DimensionalDetonations93steadyspeed,withtheproductsleavingthewaveatconstantconditions.Itisfurtherassumedthattherearenoshockwavesinthe”owdownstreamofthedetonation.Thus,sinceallthe”oworiginatesatthesamestate(denotedstate2Žtobeconsistentwiththenotationinthischapter)andremainsisentropic,theentire”owhasthesamevalueofentropy(i.e.,the”owishomentropic).Thismeansthat,ateverypointinthe”ow,characteristicwavesorig-inatingfromthedetonationbutpropagatingintheoppositedirectionasthewavehavethesamevalueoftheRiemanninvariant: Š1c=u2Š2 (2.106)wheretheprime()onisusedtodenotethatitisthevelocityintheunsteady,laboratory-“xedreferenceframe,inordertodierentiateitfromthesteady”owvelocityusedthroughoutthischapter.From(2.106),itcanbeshownthatateverypointintheproducts,andarelinearlyrelated.Thisresultmeansthatcharacteristics(alongwhich constant)thatpropagateinthedetonationproductstowardthewavemusthaveconstantvaluesofandandarethereforestraightlinesinthe(x,tplane.Onepossiblesolutionthatcanbeconstructedwithstraightcharac-teristicsisacenteredrarefactionfanoriginatingattheorigin.Thedetonationisalsoassumedtooriginateattheoriginandhasnegligiblethicknesscom-paredtothedomainofinterest.Thus,the”owpatternbecomesself-similar,asseeninFig.2.21.Atanypointinsidethecenteredrarefaction,thevalue x detonation wave’ + characteristics characteristics C+ = constantC = constant Fig.2.21.Centeredrarefactionsolutionfortheexpansionofproductsbehindadetonationwave,showingtheandcharacteristics 94A.Higginsmustequalthevalueof atthatpoint.Usingthisproperty,alongwiththeconstantcharacteristicsemanatingfromthedetonation,the”owvelocityandsoundspeedcanbesolvedfor:x,t +1\bx tŠc2\t+ Š1 (2.107)x,t +1\bx tŠu\t+2 (2.108)Notethatpositionandtimealwaysappearasthecombination ,verifyingthatthisisasimilaritysolution.Theotherthermodynamicproperties(pres-sure,density,temperature)canbedeterminedfromthesoundspeedbyusingtheisentropicrelations.Thevelocitypro“lebehindthewaveisplottedinFig.2.22.Forthisparticularplot,theconditionsatthedetonationexitplaneweretakenastheCJconditionsinthelimitoflargeheatrelease D=1 +1,limQc2 D= +1,limQ2 1= +1 ,limQp2 1D2=1 (2.109)whereavalueof2wasusedforFig.2.22.Notethatthevelocityinthecenteredrarefactionfangoestozeroandreversesdirection,reachinganescapespeedof -0.500.51 Fig.2.22.Flow“eldbehindaplanarCJdetonationwave(Taylorwave)showingpressureand”owvelocityforbothclose-endedandopen-endedtubes( 96A.Higgins xtCJ detonation wave weak detonation wave u’+c = Du’+c DD strong detonation wave u’+c� DD strong detonation wave u’+c = DCJ DetonationWeak DetonationStrong Detonation (supported)Strong Detonation decayingto CJ Detonationwallwallpiston at restpistonpistonpistonstops uniform region rarefactiondeceleratesdetonation x x x t t t dcba Fig.2.23.Expansionofcombustionproductsbehindadetonationwaveforthecasesof()CJdetonation,()weakdetonation,()strong(piston-supported)detonation,and()apiston-supporteddetonationinwhichthepistonstopsandtherarefactionsgeneratedovertakedetonation,deceleratingituntilthedetonationisparallelwithcharacteristics(CJdetonation)detonation,establishingaCJdetonation.Thissimplepicture,illustratedinFig.2.23d,perhapsprovidesamoresatisfyingexplanationforthelegitimacyoftheCJconditionofsonic”owattheexitofanunsupporteddetonationwave.A.1.3CylindricalandSphericalDetonationsToconstructasolutionforthedynamicsoftheproductsbehindasphericaldetonationoriginatingfromapoint(oracylindricaldetonationinitiatedalongaline),theconservationofmassandmomentumforsphericalandcylindricalsymmetryareusedasfollows: 2SteadyOne-DimensionalDetonations99outthatinitiationofasphericaldetonationwillalwayslikelyrequiresomedegreeofinitialoverdrivethatwillresultinthedetonationbeinginitiallyonthestrongbranchofthesolution()andwillonlyasymptoticallyapproachanidealCJdetonationasthewaveexpands,sothattheissueofthein“nitegradientsinthesolutionisavoided[A.2AppendixB:CriticalSonicPointwithFrictionForadetonationwithfriction(andnoheattransfer),thecriticalconditionatwhichthewavepropagationvelocityequalsthevelocityofthecombustionproductscanbesolvedforanalyticallyasfollows[].Themomentumandenergyequations(2.27)and(2.28)canbeequated(excludingtheheatlossterm)viathefrictionfactor u1h+1 (2.117)andintegratedtoyield u1h+1 (2.118)whereisaconstantofintegrationthatcanbeevaluatedusingconditionsupstreamofthedetonationwave(,and).Atthecriticalsoniccondition,the”owexitingthewaveissonicandequaltothevelocityofthe”owapproachingthewave(inthelaboratory-“xedframe,thisisequivalenttothe”owthathasbeenprocessedbythewavebeingatrest),crs(2.119)wherethe2Žsubscriptdesignatestheexitstate.Theconditionthatexitvelocityisthesameasthein”owvelocitymeansthatthedensityisconstantacrossthewave().TheserelationsallowthecriticalMachnumberofpropagationtobesolvedforcrs c1= (2.120)Sincethedensityisconstantacrossthewave,thiscriticalsonicconditioncorrespondstoafrontofconstantvolumeexplosionpropagatingthroughthemediumwithapressureincreasegivenby p1=pCV (2.121)Atthiscriticalsoniccondition,the”owvelocitybeingzerorelativetothewallattheexitofthewavemeansthatfrictionnolongerin”uencesthe”ow 100A.Higginsatthatpoint,andthusitisnolongerpossibleto“ndaneigenvaluesolutionthatpassesthroughasonicpoint.Atlowerwavevelocities,the”owwillbeentirelysubsonicfromtheshocktotherearboundarycondition(i.e.,nosonicconditioncanbefound).TocontinuethesolutioncurveinFig.2.7tolowervelocities,adierentcriterionisadopted,namelythatthe”owvelocitymustbezerointhelaboratory-“xedframe,satisfyingaclosedend-wallboundarycondition.Thissolutionmayhavesomerelevancetotheso-calledchokingregimeŽofcombustionwavepropagationthatisexperimentallyobservedincombustiblemixturesinobstacleladentubes,asdiscussedinSect.2.4.5References1.Akyurtlu,A.:Aninvestigationofthestructureanddetonabilitylimitsofhydrogen-chlorinedetonations,PhDThesis,UniversityofWisconsin-Madison(1975)2.Anderson,J.B.,Long,L.N.:DirectMonteCarlosimulationofchemicalreactionsystems:Predictionofultrafastdetonations.J.Chem.Phys.(7),3102…3110(2003)3.Anderson,J.B.,Long,L.N.:Directsimulationofpathologicaldetonations.In:Ketsdever,A.D.,Muntz,E.P.(eds.)Rare“edGasDynamics.AmericanInstituteofPhysicsConferenceSeries,vol.663,pp.186…193(2003)4.AndersonJ.Jr.:HypersonicandHigh-TemperatureGasDynamics,AIAAEdu-cationSeries,2ndedn.,813pp.AIAA,Restons(2006)5.Bauer,P.A.,Dabora,E.K.,Manson,N.:Chronologyofearlyresearchondeto-nationwave.In:Kuhl,A.L.,Leyer,J.C.,Borisov,A.A.,Sirignano,W.A.(eds.)DynamicsofDetonationsandExplosions:Detonations.ProgressinAstronau-ticsandAeronautics,vol.133,pp.3…18.AIAA,VA(1991)6.Brailovsky,I.,SivashinskyG.:Onde”agration-to-detonationtransition.Com-bust.Sci.Technol.(1),201…231(1997)7.Brailovsky,I.,Sivashinsky,G.:Hydraulicresistanceandmultiplicityofdeto-nationregimes.Combust.Flame(1…2),130…138(2000)8.Brailovsky,I.,Sivashinsky,G.I.:Hydraulicresistanceasamechanismforde”agration-to-detonationtransition.Combust.Flame(4),492…499(2000)9.Brailovsky,I.,Sivashinsky,G.:Eectsofmomentumandheatlossesonthemultiplicityofdetonationregimes.Combust.Flame(1…2),191…196(2002)10.BrinkleyS.R.Jr.,RichardsonJ.M.:Onthestructureofplanedetonationwaveswith“nitereactionvelocity.Symp.Int.Combust.(1),450…457(1953)11.Bykov,V.,Goldfarb,I.,Goldshtein,V.,Kagan,L.,Sivashinsky,G.:Eectsofhydraulicresistanceandheatlossesondetonabilityand”ammabilitylimits.Combust.TheoryModel.(2),413…424(2004)12.Chao,J.,Lee,J.H.S.:Thepropagationmechanismofhighspeedturbulentde”agrations.ShockWaves,277…289(2003)13.Chase,M.W.,Curnutt,J.L.,Downey,J.R.,Jr.,McDonald,R.A.,Syverud,A.N.,Valenzuela,E.A.:Janafthermochemicaltables,1982supplement.J.Phys.Chem.Ref.Data(3),695…940(1982)14.Ciccarelli,G.,Dorofeev,S.:Flameaccelerationandtransitiontodetonationinducts.Prog.EnergyCombust.Sci.(4),499…550(2008) 2SteadyOne-DimensionalDetonations10115.Courant,R.,Friedrichs,K.O.:SupersonicFlowsandShockWaves.Interscience,NewYork(1948)16.Cowie,L.L.,Rybicki,G.B.:Thestructureandevolutionofgalacto-detonationwaves:someanalyticresultsinsequentialstarformationmodelsofspiralgalax-ies.ApJ(2),504…511(1982)17.Curran,E.T.,Heiser,W.H.,Pratt,D.T.:Fluidphenomenainscramjetcom-bustionsystems.Annu.Rev.FluidMech.(1),323…360(1996)18.DaboraE.K.,NichollsJ.A.,MorrisonR.B.:Thein”uenceofacompressibleboundaryonthepropagationofgaseousdetonations.SympIntCombust(1),817…830(1965)19.Davis,W.C.,Fickett,W.:Detonation.UniversityofCaliforniaPress,Berkeley(1979)20.Dionne,J.-P.:Numericalstudyofthepropagationofnon-idealdetonations,PhDThesis,McGillUniversity,Montreal(2000)21.Dionne,J.P.,Duquette,R.,Yoshinaka,A.,Lee,J.H.S.:PathologicalDetona-tionsinH-Cl.Combust.Sci.Technol.(1),5…14(2000)22.Dionne,J.-P.,Ng,H.D.,Lee,J.H.S.:Transientdevelopmentoffriction-inducedlow-velocitydetonations.Proc.Combust.Inst.(1),645…651(2000)23.D¨oring,W.:Uberdendetonationsvorgangingasen.Ann.Phys.(6…7),421…436(1943)24.Du,R.E.:Calculationofreactionpro“lesbehindsteady-stateshockwaves.I.Applicationtodetonationwaves.J.Chem.Phys.(6),1193…1197(1958)25.Edwards,D.H.,Brown,D.R.,Hooper,G.,Jones,A.T.:Thein”uenceofwallheattransferontheexpansionfollowingaC-Jdetonationwave.J.Phys.D:Appl.Phys.(3),365…376(1970)26.Erpenbeck,J.J.:Steadyquasi-one-dimensionaldetonationsinidealizedsys-tems.Phys.Fluids(5),967…982(1969)27.Eyring,H.,Powell,R.E.,Duy,G.H.,Parlin,R.B.:Thestabilityofdetonation.Chem.Rev.(1),69…181(1949)28.Fay,J.A.:Two-dimensionalgaseousdetonations:Velocityde“cit.Phys.Fluids(3),283…289(1959)29.Freedman,W.L.,Madore,B.F.,Mehta,S.:Galacticdetonationwavesnumer-icalmodelsillustratingthetransitionfromdeterministictostochastic.ApJ(2),412…426(1984)30.Frost,D.,Zhang,F.:Slurrydetonation.In:Zhang,F.(ed.)HeterogeneousDetonation,ShockWaveScienceandTechnologyReferenceLibrary,vol.4,pp.169…216.Springer,Berlin(2009)31.Fujiwara,T.,Tsuge,S:Quasi-onedimensionalanalysisofgaseousfreedetona-tions.J.Phys.Soc.Jpn.(1),237…241(1972)32.Gelfand,B.E.,Frolov,S.M.,Nettleton,M.A.:Gaseousdetonations…aselectivereview.Prog.EnergyCombust.Sci.(4),327…371(1991)33.Gerola,H.,Seiden,P.E.:Stochasticstarformationandspiralstructureofgalaxies.ApJ,129…135(1978)34.Gordon,S.,McBride,B.J.:Computerprogramforcomputationofcomplexchemicalequilibriumcompositions,rocketperformance,incidentandre”ectedshocks,andChapman-Jouguetdetonations.TechnicalReportNASASP-273,NASA(1971)35.Gordon,P.V.,Sivashinsky,G.I.:Pressurediusivityandlow-velocitydetona-tion.Combust.Flame(4),440…444(2004) 102A.Higgins36.Gross,R.,Oppenheim,A.K.:Recentadvancesingaseousdetonation.ARSJ.,173…179(1959)37.Guenoche,H.,LeDiuzet,P.,Sedes,C.:In”uenceoftheheat-releasefunctiononthedetonationstates.In:Bowen,J.R.,Manson,N.N.,Oppenheim,A.K.(eds.)GasdynamicsofDetonationsandExplosions.ProgressinAstronauticsandAeronautics,vol.75,pp.387…407.AIAA,VA(1981)38.He,L.,Clavin,P.:Onthedirectinitiationofgaseousdetonationsbyanenergysource.J.FluidMech.,227…248(1994)39.Hertzberg,A.,Bruckner,A.P.,Knowlen,C.:Experimentalinvestigationoframacceleratorpropulsionmodes.ShockWaves,17…25(1991)40.Heuze,O.:1899…1909:TheKeyYearsoftheUnderstandingofShockWaveandDetonationPhysics.AIPConf.Proc.(1),311…314(2009)41.Jones,H.:Atheoryofthedependenceoftherateofdetonationofsolidexplo-sivesonthediameterofthecharge.Proc.R.Soc.Lond.SerA.Math.Phys.Sci.(1018),415…426(1947)42.Jouguet,E.:M´ecaniquedesexplosifs,´etudededynamiquechimique.O.Doin&Fils,Paris(1917)43.Kagan,L.,Sivashinsky,G.:Thetransitionfromde”agrationtodetonationinthinchannels.Combust.Flame(4),389…397(2003)44.Kirkwood,J.G.,Wood,W.W.:Structureofasteady-stateplanedetonationwavewith“nitereactionrate.J.Chem.Phys.(11),1915…1919(1954)45.Klein,R.,Krok,J.C.,Shepherd,J.E.:Curvedquasi-steadydetonations:Asymptoticanalysisanddetailedchemicalkinetics.TechnicalReportFM95-04,GraduateAeronauticalLaboratories,CaliforniaInstituteofTechnology(1995)46.Knystautas,R.,Lee,J.H.:Detonationparametersforthehydrogen-chlorinesystem.In:Kuhl,A.L.,Bowen,J.R.,Leyer,J.C.,Borisov,A.A.(eds.)DynamicsofExplosions.ProgressinAstronauticsandAeronautics,vol.114,pp.32…44.AIAA,VA(1988)47.Kolesnikov,S.,Utkin,A.:Nonclassicalsteady-statedetonationregimesinpressedTNETB.Combust.Explos.ShockWaves,710…716(2007)48.Krehl,P.O.K.:HistoryofShockWaves,ExplosionsandImpact:AChronolog-icalandBiographicalReference.Springer,Berlin(2009)49.Latte,P.:Recherchesexp´erimentalessurlondeexplosiveetlondedechoc.Ann.Phys.(4)623…634(1925)50.Lee,J.H.,Lee,B.H.K.,Shan“eld,I.:Two-dimensionaluncon“nedgaseousdetonationwaves.10thSymp.(Int.)Combust.(1),805…815(1965)51.LeeJ.H.S.:TheDetonationPhenomenon.CambridgeUniversityPress,Cam-bridge(2008)52.Lee,J.H.S.,Moen,I.O.:Themechanismoftransitionfromde”agrationtodetonationinvaporcloudexplosions.Prog.EnergyCombust.Sci.(4),359…389(1980)53.Makris,A.:ThePropagationofGaseousDetonationsinPorousMedia.PhDThesis,McGillUniversity,Montreal(2003)54.Makris,A.,Sha“que,H.,Lee,J.,Knystautas,R.:In”uenceofmixturesen-sitivityandporesizeondetonationvelocitiesinporousmedia.ShockWaves(1),89…95(1995) 2SteadyOne-DimensionalDetonations10355.Manson,N.,Dabora,E.:Chronologyofresearchondetonationwaves:1920…1950.In:Kuhl,A.L.,Leyer,J.C.,Borisov,A.A.,Sirignano,W.A.(eds.)DynamicAspectsofDetonations.ProgressinAstronauticsandAeronautics,vol.153,pp.3…39.AIAA,VA(1993)56.McBride,B.J.,Gordon,S.:Computerprogramforcalculationofcomplexchem-icalequilibriumcompositionsandapplicationsII.Usersmanualandprogramdescription.TechnicalReportNASARP-1311,NASA(1996)57.Mikhelson,V.A.:Onthenormalignitionvelocityofexplosivegaseousmix-tures.Scienti“cPapersoftheMoscowImperialUniversityonMathematicsandPhysics,1…93(1893)58.vonNeumann,J.:Theoryofdetonationwaves.TechnicalReportOSRD-549,NationalDefenseResearchCommittee(1942)59.vonNeumann,J.:TheoryofDetonationWaves,JohnvonNeumann:CollectedWorks,1903…1957,vol.6,pp.178…218.PergamonPress,Oxford(1963)60.Nikolaev,Yu.A.,Fomin,P.A.:Analysisofequilibrium”owsofchemicallyreact-inggases.Combust.Explos.ShockWaves(1),53…58(1982)61.Oran,E.S.:Astrophysicalcombustion.Proc.Combust.Inst.(2),1823…1840(2005)62.Oran,E.S.,Boris,J.P.:NumericalSimulationofReactiveFlow.CambridgeUniversityPress,Cambridge(2001)63.Paillard,C.,Dupre,G.,Lisbet,R.,Combourieu,J.,Fokeev,V.P.,Gvozdeva,L.G.:Astudyofhydrogenazidedetonationwithheattransferatthewall.ActaAstronaut.(3…4),227…242(1979)64.Parker,E.N.:Dynamicsoftheinterplanetarygasandmagnetic“elds.ApJ,664…676(1958)65.Peraldi,O.,Knystautas,R.,Lee,J.H.:Criteriafortransitiontodetonationintubes.21stSymp.(Int.)Combust.(1),1629…1637(1988)66.Pinaev,A.V.,Lyamin,G.A.:Fundamentallawsgoverningsubsonicanddeto-natinggascombustionininertporousmedia.Combust.Explos.ShockWaves(4),448…458(1989)67.Powers,J.,Paolucci,S.:Accuratespatialresolutionestimatesforreactivesupersonic”owwithdetailedchemistry.AIAAJ.,1088…1099(2005)68.Radulescu,M.I.:Thepropagationandfailuremechanismofgaseousdetona-tions:Experimentsinporous-walledtubes.PhDThesis,McGillUniversity,Montreal(2003)69.Radulescu,M.I.,Hanson,R.K.:Eectofheatlossonpulse-detonation-engine”ow“eldsandperformance.J.Propul.Power(2),274…285(2005)70.Radulescu,M.I.,Lee,J.H.S.:Thefailuremechanismofgaseousdetonations:Experimentsinporouswalltubes.Combust.Flame(1…2),29…46(2002)71.Radulescu,M.I.,Sharpe,G.J.,Law,C.K.,Lee,J.H.S.:Thehydrodynamicstructureofunstablecellulardetonations.J.FluidMech.,31…81(2007)72.Rozing,V.O.,Khariton,Yu.B.:Thedetonationcutoofexplosivesubstanceswhenthechargediametersaresmall.Dokl.Akad.Nauk.SSSR(4),360…361(1940)73.Sasoh,A.,Knowlen,C.:Ramacceleratoroperationanalysisinthermallychokedandtransdetonativepropulsivemodes.Trans.Jpn.Soc.Aeronaut.SpaceSci.(128),130…148(1997)74.Shapiro,A.H.:TheDynamicsandThermodynamicsofCompressibleFluidFlow,vol.1.RonaldPress,NewYork(1953) 104A.Higgins75.Sharpe,G.J.:Linearstabilityofpathologicaldetonations.J.FluidMech.311…338(1999)76.Sharpe,G.J.:Thestructureofplanarandcurveddetonationwaveswithreversiblereactions.Phys.Fluids(11),3007…3020(2000)77.Sharpe,G.J.,Falle,S.A.E.G.:One-dimensionalnonlinearstabilityofpatho-logicaldetonations.J.FluidMech.,339…366(1999)78.Shchelkin,K.I.:In”uenceofthetubewallsroughnessontheonsetandpropa-gationofdetonationingases.Zh.Eksp.Teor.Fiz.,823…827(1940)79.Sichel,M.,David,T.S.:TransferbehinddetonationsinHmixtures.AIAA(6),1089…1090(1966)80.Skinner,J.H.,Jr.:Frictionandheat-transfereectsonthenonsteady”owbehindadetonation.AIAAJ.(11),2069…2071(1967)81.Sleath,J.P.,Alexander,P.:Anewmodelofthestructureofspiralgalaxiesbasedonpropagatingstarformation…I.ThegalacticstarformationrateandSchmidtLaw.Mon.Not.R.Astron.Soc.,507…514(1995)82.Sokolik,A.S.,Shchelkin,K.I.:Detonationingasmixtures:Thein”uenceofpressureonthevelocityofadetonationwave.ActaPhysicokhimikaSSSR311…317(1934)83.Sommers,W.P.:Gaseousdetonationwaveinteractionswithnonrigidbound-aries.ARSJ.,1780…1782(1961)84.Sommers,W.P.,Morrison,R.B.:Simulationofcondensed-explosivedetonationphenomenawithgases.Phys.Fluids(2),241…248(1962)85.Spalding,D.B.:Atheoryofin”ammabilitylimitsand”ame-quenching.Proc.R.Soc.Lond.SerA.Math.Phys.Sci.(1220),83…100(1957)86.DeSterck,H.:Criticalpointanalysisoftransonic”owpro“leswithheatcon-duction.SIAMJ.Appl.Dyn.Syst.,645…662(2007)87.Strehlow,R.A.:FundamentalsofCombustion.InternationalTextbookCo.,Scranton,PA(1968)88.Tanguay,V.,Higgins,A.J.:Ontheinclusionoffrictionalworkinnonidealdetonations.In:Shepherd,J.E.(ed.)20thInternationalColloquiumontheDynamicsofExplosionsandReactiveSystems:ExtendedAbstractsandTech-nicalProgram(2005).ISBN1600490018,9781600490019(CD-ROM)89.Tanguay,V.,Higgins,A.J.,Zhang,F.:Asimpleanalyticalmodelforreactiveparticleignitioninexplosives.PropellantsExplos.Pyrotech.(5),371…384(2007)90.Tarver,C.M.:Multiplerolesofhighlyvibrationallyexcitedmoleculesinthereactionzonesofdetonationwaves.J.Phys.Chem.A(27),4845…4851(1997)91.TarverC.M.:Ontheexistenceofpathologicaldetonationwaves.AIPConf.Proc.,902(2004).doi:10.1063/1.178038392.Tarver,C.,Forbes,J.,Urtiew,P.:NonequilibriumZeldovich-vonNeumann-Doringtheoryandreactive”owmodelingofdetonation.Russ.J.Phys.Chem.BFocusPhys.(1),39…45(2007)93.Taylor,G.I.:Thedynamicsofthecombustionproductsbehindplaneandsphericaldetonationfrontsinexplosives.Proc.R.Soc.Lond.SerA.Math.Phys.Sci.(1061),235…247(1950)94.Trubachev,A.:Detonationwavesininterstellargas.Combust.Explos.ShockWaves,72…76(1997) 2SteadyOne-DimensionalDetonations10595.Tsuge,S.,Furukawa,H.,Matsukawa,M.,Nakagawa,T.:Onthedualpropertiesandthelimitofhydrogen-oxygenfreedetonationswaves.Astronaut.Acta377…386(1970)96.Utkin,A.V.,Kolesnikov,S.A.,Pershin,S.V.:Eectoftheinitialdensityonthestructureofdetonationwavesinheterogeneousexplosives.Combust.Explos.ShockWaves(5),590…597(2002)97.Vasilev,A.A.,Zak,D.V.:Detonationofgasjets.Combust.Explos.ShockWaves(4),463…468(1986)98.Vieille,P.:Roledesdiscontinuit´esdanslapropagationdesph´enom`enesexplosifs.C.R.Acad.Sci.,,413…416(1900)99.Vincenti,W.G.,Kruger,C.H.:IntroductiontoPhysicalGasDynamics.Krieger,Malabar,FL(1965)100.Wecken,F.:Non-idealdetonationwithconstantlateralexpansion.In:FourthSymposium(International)onDetonation,pp.107…116(1965)101.Wood,W.W.,Kirkwood,J.G.:Diametereectincondensedexplosives.Therelationbetweenvelocityandradiusofcurvatureofthedetonationwave.J.Chem.Phys.(11),1920…1924(1954)102.Wood,W.W.,Kirkwood,J.G.:Ontheexistenceofsteady-statedetonationssupportedbyasinglechemicalreaction.J.Chem.Phys.(6),1276…1277(1956)103.Wood,W.W.,Parker,F.R.:Structureofacenteredrarefactionwaveinarelaxinggas.Phys.Fluids(3),230…241(1958)104.Wood,W.W.,Salsburg,Z.W.:Analysisofsteady-statesupportedone-dimensionaldetonationsandshocks.Phys.Fluids(4),549…566(1960)105.Yao,J.,Stewart,D.S.:Onthenormaldetonationshockvelocity-curvaturerelationshipformaterialswithlargeactivationenergy.Combust.Flame(4),519…528(1995)106.Zeldovich,Ya.B.:Onthetheoryofthepropagationofdetonationsongaseoussystem.Zh.Eksp.Teor.Fiz.(5),542…568(1940)107.Zeldovich,Ya.B.,Kompaneets,A.S.:TheoryofDetonation.Academic,NewYork(1960)108.Zeldovich,Ya.B.,Ratner,S.B.:Zh.Eksp.Teor.Fiz.,170(1941)109.Zeldovich,Ya.B.,Gelfand,B.E.,Kazhdan,Ya.M.,Frolov,S.M.:Detonationpropagationinaroughtubetakingaccountofdecelerationandheattransfer.Combust.Explos.ShockWaves,342…349(1987)110.Zeldovich,B.,Borisov,A.A.,Gelfand,B.E.,FrolovYa,S.M.,Mailkov,A.E.:Nonidealdetonationwavesinroughtubes.In:Kuhl,A.L.,Bowen,J.R.,Leyer,J.C.,Borisov,A.A.(eds.)DynamicsofExplosions.ProgressinAstronauticsandAeronautics,vol.114,pp.211…231.AIAA,VA(1988)111.Zhang,F.:Detonationinreactivesolidparticle-gas”ow.J.Propuls.Power,1289…1309(2006)112.Zhang,F.:Detonationofgas-particle”ow.In:Zhang,F.(ed.)HeterogeneousDetonation,ShockWaveScienceandTechnologyReferenceLibrary,vol.4,pp.87…168.Springer,Berlin(2009)