/
Jim Lambers MAT  Summer Session  Lecture  Notes These Jim Lambers MAT  Summer Session  Lecture  Notes These

Jim Lambers MAT Summer Session Lecture Notes These - PDF document

tatiana-dople
tatiana-dople . @tatiana-dople
Follow
545 views
Uploaded On 2015-05-26

Jim Lambers MAT Summer Session Lecture Notes These - PPT Presentation

3 in the text Positive and Negative De64257nite Matrices and Optimization The following examples illustrate that in general it cannot easily be determined whether a sym metric matrix is positive de64257nite from inspection of the entries Example Cons ID: 74731

the text Positive

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Jim Lambers MAT Summer Session Lecture..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Theprecedingexamplecanbegeneralizedasfollows:ifAisannndiagonalmatrixA=266664d1000d2.........000dn377775;thenAis:1.positivede niteifandonlyifdi�0fori=1;2;:::;n,2.negativede niteifandonlyifdi0fori=1;2;:::;n,3.positivesemide niteifandonlyifdi0fori=1;2;:::;n,4.negativesemide niteifandonlyifdi0fori=1;2;:::;n,5.inde niteifandonlyifdi&#x]TJ/;༕ ;.9;‘ ;&#xTf 1;.51; 0 ;&#xTd [;0forsomeindicesi,1in,andnegativeforotherindices.Wenowconsiderageneral22symmetricmatrixA=abbc:ThismatrixinducesthequadraticformQA(x;y)=ax2+2bxy+cy2:Ify=0,thenwehaveQA(x;0)=ax2,sowemustcertainlyhavea&#x]TJ/;༕ ;.9;‘ ;&#xTf 1;.51; 0 ;&#xTd [;0inorderforAtobepositivede nite.Ify6=0,thenweuseachangeofvariablex=tyandobtainQA(x;y)=QA(ty;y)=at2y2+2bty2+cy2=(at2+2bt+c)y2:ThusQA(x;y)ispositivede niteifandonlyif'(t)=at2+2bt+cispositive.From'0(t)=2at+2b;'00(t)=2a;weobtainthesinglecriticalpointt=�b=aanddeterminethatitisastrictglobalminimizerof'(t).Theminimumvalueis'(t)=a(�b=a)2+2b(�b=a)+c=c�b2 a=1 adet(A):WeconcludethatAispositivede niteifandonlyifa�0anddet(A)�0.Thisleadstothefollowingtheorem.TheoremA22symmetricmatrixAis2 whichcanbecon rmedtobepositivede nitebyexamininationoftheprincipalminors:1=2,2=3,3=4.Itfollowsthatthecriticalpoint(0;0;0)isastrictglobalminimizeroff(x;y;z).2ExampleLetf(x;y)=ex�y+ey�x:Wehaverf(x;y)=(ex�y�ey�x;�ex�y+ey�x);whichyieldsthecriticalpoints(x;x)forallx2R.WealsohaveHf(x;y)=ex�y+ey�x�ex�y�ey�x�ex�y�ey�xex�y+ey�x;whichyields1=ex�y+ey�x�0;2=(ex�y+ey�x)2�(�ex�y�ey�x)2=0:Thatis,Hf(x;x)ispositivesemide nite,making(x;x)aglobalminimizeroff(x;y).2ExampleLetf(x;y;z)=ex�y+ey�x+ex2+z2:Wehaverf(x;y;z)=(ex�y�ey�x+2xex2;�ex�y+ey�x;2z)whichyieldstheconditionsz=0,x=yandx=0foracriticalpoint.Therefore,(0;0;0)istheonlycriticalpoint.WethenhaveHf(x;y;z)=24ex�y+ey�x+4x2ex2+2ex2�ex�y�ey�x0�ex�y�ey�xex�y+ey�x000235;andthereforeHf(0;0;0)=243�20�22000235:whichispositived nite,inviewof1=3,2=2,and3=4.ItcanalsobeshownbydirectcomputationoftheminorsthatHf(x;y;z)ispositivede niteonallofR3,usingthefactthatex�0forallx.Therefore,thecriticalpoint(0;0;0)isastrictglobalminimizeroff(x;y;z).2ExampleLetf(x;y)=ex�y+ex+y:4 TheoremIff(x)isafunctionwithcontinuoussecondpartialderivativesonasetDRn,ifxisaninteriorpointofDthatisalsoacriticalpointoff(x),andifHf(x)isinde nite,thenxisasaddlepointofx.ExampleLetf(x;y)=x3�12xy+8y3:Wehaverf(x;y)=(3x2�12y;�12x+24y2);whichyieldsthecriticalpoints(0;0)and(2;1).WealsohaveHf(x;y)=6x�12�1248x;andthereforeHf(0;0)=0�12�120;Hf(2;1)=12�12�1248:WeseethatHf(2;1)ispositivede nite,becauseitsprincipalminorsarepositive,butHf(0;0)isnot,as1=0and2=�144.Thatis,Hf(0;0)isinde nite,so(0;0)isasaddlepoint.Furthermore,limx!1f(x;y)=+1;limx!�1f(x;y)=�1;sof(x;y)hasnoglobalminimizeronR2.Wecanconclude,however,that(2;1)isastrictlocalminimizer.2ItshouldbeemphasizedthatiftheHessianispositivesemide niteornegativesemide niteatacriticalpoint,thenitcannotbeconcludedthatthecriticalpointisnecessarilyaminimizer,maximizerorsaddlepointofthefunction.ExampleLetf(x;y)=x4�y4.Wehaverf(x;y)=(4x3;�4y3);whichyieldsthecriticalpoint(0;0).WethenhaveHf(x;y)=12x200�12y2:ThereforeHf(0;0)isthezeromatrix,whichispositivesemide nite.However,f(x;y)increasesfrom(0;0)alongthex-direction,anddecreasesalongthey-direction,so(0;0)isneitheralocalminimizernormaximizer.2ExampleLetf(x;y)=x4+y4.Asinthepreviousexample,Hf(0;0)isthezeromatrix,butitcanbeseenfromagraphthat(0;0)isastrictglobalminimizer.26