/
SPECIALISSUEPAPER499Machinevisionconditionmonitoringofheavy-axleloadra SPECIALISSUEPAPER499Machinevisionconditionmonitoringofheavy-axleloadra

SPECIALISSUEPAPER499Machinevisionconditionmonitoringofheavy-axleloadra - PDF document

test
test . @test
Follow
369 views
Uploaded On 2015-11-24

SPECIALISSUEPAPER499Machinevisionconditionmonitoringofheavy-axleloadra - PPT Presentation

BWSchlakeSTodorovicJREdwardsJMHartNAhujaCPLBarkan CorrespondingauthorRailroadEngineeringProgramDepartmentofCivilandEnvironmentalEngineeringUniversityofIllinois JRRT376ProcIMechEVol224PartF ID: 203836

BWSchlake STodorovic JREdwards JMHart NAhujaCPLBarkan Correspondingauthor:RailroadEngineeringProgram Depart-mentofCivilandEnvironmentalEngineering UniversityofIllinois JRRT376Proc.IMechEVol.224PartF:

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "SPECIALISSUEPAPER499Machinevisionconditi..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

SPECIALISSUEPAPER499Machinevisionconditionmonitoringofheavy-axleloadrailcarstructuralunderframecomponents BWSchlake,STodorovic,JREdwards,JMHart,NAhujaCPLBarkan Correspondingauthor:RailroadEngineeringProgram,Depart-mentofCivilandEnvironmentalEngineering,UniversityofIllinois, JRRT376Proc.IMechEVol.224PartF:J.RailandRapidTransit 500BWSchlake,STodorovic,JREdwards,JMHart,NAhuja,andCPLBarkan Asaresult,USrailwayshaveprogressivelymovedawayfromreactivemaintenancetoplannedandscheduledcomponentreplacementinordertoimproveef-ciencyandreducecosts[].Consequently,theAsso-ciationofAmericanRailroads(AAR)andtheTrans-portationTechnologyCenter,Inc.(TTCI)initiatedtheAdvancedTechnologySafetyInitiative(ATSI)andaprogrammecalledTechnologyDrivenTrainInspec-tion(TDTI)todevelopandimplementautomatedinspectiontechnologies[TheobjectiveofATSIandTDTIistoprovidesafer,moreefcient,andtraceablemeansofrollingstockinspectionbyautomatingthemechanicalinspectionprocessthroughavarietyoftechnologies.Exam-plesofthesetechnologiesincludewheelimpactloaddetectors(WILDs),truck(bogie)performancedetectors(TPDs),acousticbearingdetectors(ABDs),andmachinevisioninspectionoftruckcomponents,safetyappliances,andbrakeshoes[].TheplanforTDTIistoimplementanintegratednet-workofautomaticwayside(lineside)systemscapa-bleofinspectingandmonitoringtheNorthAmer-icanfreightcareetwithtwoprincipalobjectives.Therstgoalistocost-effectivelymaintaincom-pliancewithFRAregulationsandrailroad-specicmaintenanceandoperationalstandards,andthesec-ondistoimprovetheoveralleffectivenessandef-ciencyoftherailcarinspectionandmaintenanceprocess.InorderforTDTItoprovidesubstantialimprove-menttotheinspectionprocess,eachcomponentandsystemontherailcarmustbeaddressed.Ifnot,railcarsandtrainswillstillneedtostopinordertomanuallyinspectthecomponentsexcludedfromautomatedinspection.Anautomatedsystemthatonlyaddressesalimitedselectionofinspec-tiontasks,oronlyinspectscertaincars,wouldofferincrementalandqualitativebenets,butitmaynotprovidesufcientsavingstocostjustifytheinvest-mentintheseexpensivetechnologies[].Conse-quently,thenalwaysideinspectionsystemsshouldbecomprehensiveinscope,inspectingasmanyaspectsofthecaraspossible[].Inadditiontothewidevarietyofcomponentsrequiringinspec-tion,therearealsomanyvariationsinthenatureofcomponentdefects,symptomsofinterest,andtherequiredmeansofascertainingcomponentcondi-tion.Asaresult,therequisitetechnologiescapableofaddressingtheseinspectiondemandsmustvaryindesignandapplication.TheAARhasinitiatedresearchanddevelopmentonavarietyofdifferentautomatedinspectiontechnologiesthatwilladdressmanyaspectsofthefederallymandatedfreightcarinspections,includingbrakeapplicationandreleaseverication,brakeshoethicknessmeasure-ment,safetyapplianceconditioninspection,wheeldefectinspection,andwheelprolemeasurementement3,6,8].2BACKGROUND2.1StructuralunderframecomponentsOnecomponentoftheTDTIinitiativeisthedevelop-mentofasystemknownasAutomatedInspectionofStructuralComponents(AISC)thatwillusecamerasandcomputer-aidedimage-searchmethodstoinspectfreightcarunderframes.Steelstructuralunderframecomponentscontributetothestructuralintegrityoftherailcarbysupportingthecarbodyandladingandtransmittinglongitudinalbuffanddraftforces(slackaction)withinthetrain.Onmanytypesoffreightcarstheprincipalstructuralmemberoftheunderframeisthecentresill,extendinglongitudinallyalongthecen-trefromoneendofthecartotheother.Thecentresillisthelargestelementintheunderframestruc-ture,supportingverticalloadsandalsotransmittingthemajorityofbuffanddraftforcesthroughthecarcar15].Inadditiontothecentresill,severalothercom-ponentsareneededtosupportvertical,longitudinal,static,anddynamicloadswhilethecarisintran-sit.Thesecomponentsincludesidesills,bodybolsters,andcrossbearers.Somecarsalsohavesmallercrossmembers(sometimescalledcrossties)andsmallerlongitudinalmembersknownasstringersoroorsup-ports.Unlikeotherunderframestructuralmembers,neithercrosstiesnorstringersbearsubstantialloads.Thesidesillsarelongitudinalmembersrunningalongeachsideofthecar.Theyareconnectedtothecen-tresillbyvariouscrossmembersthatruntransverselyfromthesidesillstothecentresill.Thetwobodybol-stersarethelargestofthesetransversemembersandarelocatedneareachendofthecar.Besidestheirroleasmajortransversemembersoftheunderframestruc-ture,theysupportthecarbodyatopitstrucks(bogies).Crossbearers(andcrossties)areadditionaltransversemembersconnectingthesidesillstothecentresillandfurtherhelptodistributeandsupportverticalloads.Allofthesecomponentscombinetoformastructuralsystemthatmaintainsthecar’scamberandstructuralintegrity.2.1.1StructuralunderframedefectsFreightcarstructuralunderframecomponentsaresubjecttocyclicloading,shock,andvibrationwhileinservice.Cycliclongitudinalloading,alsocalledslackaction,occursintheformofbuffanddraftforces.Themajorityoftheseforcesareabsorbedbyacar’sdraftsystem,butextremeloadinginbuff(compression)ordraft(tension)mustbeabsorbedbythecentresillandtheaccompanyingstructuralcomponents.Lateralcyclicloadingoccursincurvesascentripetalforcesgeneratehigherloadsononesideoftherailcar.Aportionoftheseloadsarecarriedbythesidesillandtransferredtothecentresillthroughthecrossbear-ers.Damageandrepeatedloadingandunloadingcan Proc.IMechEVol.224PartF:J.RailandRapidTransitJRRT376 502BWSchlake,STodorovic,JREdwards,JMHart,NAhuja,andCPLBarkan aperpendicularviewofthetruckwithrespecttothetrack,andalgorithmsweredevelopedtobothdetectthelocationsofbrakecomponentsandspringsetsandidentifymissingbearingendcapbolts.ThisresearchprovidedabasisforsubsequentresearchontheAuto-matedSafetyApplianceInspectionSystem(ASAIS)(ASAIS)12].ASAISdetectsdeformedladders,handholds,andbrakewheelsandusesvisuallearningtechniquestodeterminethedifferencebetweenFRAdefectsneed-ingimmediateattentionanddeformationsthatarelesscritical.TheresultsandmethodsdevelopedintheseprojectshavebeenincorporatedintotheAAR’sTDTIprogrammeandarecurrentlybeingdevelopedbytechnologycompaniesandadoptedbyrailroadsforeldtesting.SubsequentUIUCresearchdemonstratedthefea-sibilityofusingmachinevisiontodetectdefectsandotheranomaliesontheunderbodiesofpassen-gercarsandlocomotives[].Imageacquisitionandmachinevisiontechniquesweredevelopedtorecordimagesandinspectrollingstockandloco-motiveundercarriages.Algorithmsusingimagescap-turedinboththevisibleandtheinfraredspectrademonstratedthatmissing,damaged,oroverheatedcomponentscouldbedetected,aswellasincipientfailuresandforeignobjectsbeneaththecars.Videosoftrainswererecordedastheymovedoverastation-arycameramountedbetweentherailsinarepairpitbeneaththetracks.Thecombinationofinformationfromboththethermalandthevisiblespectraiden-tiedcertaindefectsthatmighthaveotherwisegoneunnoticedbyhumaninspectorsinthecourseofrou-tinevisualinspections.Thisresearchaddressedsomeoftheproblemsassociatedwithacquiringimagesfrombeneatharailcar:aninherentlychallengingloca-tionduetolightingrequirements,spaceconstraints,anddifcultiesinvolvedwithkeepingtheequipmentcleanandprotected.Hardware,algorithms,andtech-nicalmethodologiesforimageacquisitiondevelopedintheseearlierprojectswereadaptedandexpandedtodevelopasystemformachinevisioninspectionoffreightcarunderframesintheAISCprojectdescribedinthisarticle.2.4RegulatorycomplianceTheFRAregulationsforfreightcarinspectionformedthebasisfordeterminingwhichcomponentswouldbeinspectedbyAISC.Section215.121ofTitle49intheUSCodeofFederalRegulations(CFR)governstheinspectionoffreightcarbodiesandtwoofthesixpartsinthissectionpertaintotheinspectionofstructuralcomponents[].AccordingtotheFRAregulations,thecentresillmaynotbebroken,crackedmorethan15.24cm(6in),orbent/buckledmorethan6.35cm(2.5in)inany1.83m(6ft)length.Specicparametersareestablishedfortheallowablemagnitudeofcracksandbucklingbecausethesedefectsmayunderminetheintegrityofthecentresill,resultinginafailure[Therefore,theseregulationsareintendedtoidentifypotentiallyhazardouscarssothattheywillberepairedbeforeanin-servicefailure.DuringFRAmotivepowerandequipment(MP&E)inspections,inspectorshavemultipleenforcementoptions.Theinspectormaytakeexceptiontotheconditionofastructuralcomponentandissueawarningtotheoperatingrailroadofpos-siblemonetarypenaltiesifthedefectisnotrepairedimmediately.Whendeemednecessary,inspectorscanalsoissueviolationshavingmonetarypenaltiesrang-ingfrom$2500to$6000dependingonthetype,severity,andlocationofthedefect[2.5ResearchfocusInordertodeterminewhichstructuralelementsshouldhavethehighestpriorityamongAISCinspec-tiontasks,railcarinspectiondatafromtheFRAOfceofSafetywereanalysedforthetimeperiod2000–2007.Inspectiondatapertainingonlytorailcarunderframecomponentswereconsideredinthisanalysis.Fifty-ninepercentofallstructuralcomponentdefectsiden-tiedbyFRAMP&Einspectorswerebroken,cracked,bent,orbuckledcentresills,whereastheremaining41percentweredefectivesidesills,bodybolsters,orcrossbearers(Fig.1).Thesedatasuggestthatdefectsinthecentresillarethemostfrequenttypeamongfreightcarstructuralunderframecomponents.ThisisconsistentwithFRAtrainaccidentdatafrom1999to2008.Overthis10-yearperiod,bentorbrokencentresillswereresponsiblefor75trainaccidentsonUSClassIrailroadsincompar-isontoonly31accidentsduetobrokensidesillsandonlyoneaccidentduetoadefectivebodybolster[Giventheimportanceofcentresillsinprovidingloadbearingcapacityandtheirroleintransmittingbuff Fig.1Averagenumberofannualstructuralunder-framedefectsrecordedbyFRAMP&Einspectors Proc.IMechEVol.224PartF:J.RailandRapidTransitJRRT376 504BWSchlake,STodorovic,JREdwards,JMHart,NAhuja,andCPLBarkan arrangementwasusedduringtestingattheNorfolkSouthern(NS)locomotiverepairfacilityinDecatur,Illinois(Fig.3(b)).Thetestset-upincludedtwocamerasplacedbelowtherails.Inanarrangementsimilartotheset-upusedatMonticello,camera1waslocated1.65m(65in)belowthetopofrail,centredbetweenthetworailsandaimedstraightupward,90fromhorizontal(Fig.3(a)).Thevideo-imagecollectionsystemforthiscameraviewwasaDragony2camerarecordingat15framespersecond,witha4.8mmlensandanf/1.8aperture.Illuminationwasprovidedbyeight575W(115V)halo-genlights,eachwithparabolicreectorsandmediumoodlenses.Thelightswereorientedontheoorofthepitinacirclearoundthecamera,andtheintensityofeachlightcouldbeindividuallyadjusted.Usingahandheldlightmeter,themaximumluminousinten-sityofeachlightwasdeterminedtobe40900lx(3880footcandlesatadistanceof3ft).Thelightswereaimedupwardbutadjustedinwardlyatvariousanglestopro-videevenilluminationofthecamera’sentireeldofview.Halfofthelightswereorientedtoilluminatethecentresill,whereastheotherfourlightswereposi-tionedathigherangles(closerto90vertically)inordertoilluminatethemoredistantportionsoftheunderbody(i.e.thetopsectionsofthehoppers).Camera2waspositioned1.22m(48in)fromtheeldsideoftherail,0.76m(30in)belowthetopofrail,orientedperpendiculartothetrackandaimedupward45abovehorizontal(Fig.3(a)).EquipmentforthiscameraviewincludedaMarlincamerarecordingat15framespersecondanda6mmlenswithanf/1.4aperture.Fourindividuallyadjustablehalogenlights(withthesamespecicationsasthoseusedforcamera1)providedilluminationforcamera2,eachorientedatapproximately45abovehorizontal.TestswererunusingtwoNSgondolacarsandoneNScoveredhop-percarbyrollingthempastthecamerasat5–8km/h(3–5mile/h).Fourteendifferentvideoswererecordedduringtesting,andtheimagedatawereconvertedintopanoramicimages(Fig.4).Sincethetwogondolacarswerealmostidenticaltoeachother,imagesofonlyoneofthecarsareshown.ResultsfromthetestingatDecaturshowmuchmoreevenilluminationforthecoveredhoppercarimage(Fig.4(a))comparedtothepreviouslyrecordedhoppercarpanorama(Fig.2).Thepanoramaofthegondolaunderbody(Fig.4(b))providesaclearviewofthecentresill,crossbearers,andcrossties(thinnerlateralmembersbetweenthecrossbearers).Othercompo-nentsofthegondolathatareclearlyvisibleincludethebrakereservoir,brakecylinder,andtheentirefoun-dationofthebrakingsystem.Inordertodeterminetheresolutionofthepanoramicimages,engineeringdrawingswereacquiredfromNSforeachofthecarsthatweretested.Bymeasuringcertaincomponentsinthepanoramicimageinpixelsanddividingbytheactuallengthsofthosecomponents,thepixel-to-cmratio(i.e.theimageresolution)wasdeterminedtobe3.03pixelspercentimetre(7.8pixelsperinch).Eachpanoramicimagewasdevelopedbycombiningthecentrestripsofover400videoframes,witheachstriphavingameanstripsizeofapproximately12pixels.Thepanoramasfromcamera2aremuchlongerduetothefactthatthiscamerawaslocatedclosertothetrackthancamera1.Asaresult,theimagesinFigs4(c)and(d)onlyrepresentonehalfofeachrailcar.Theimagesfromthiscameraviewarevaluablebecausecracksorbreaksinthesideofthecentresillwouldbevisiblefromthisangle.Thisviewcanalsobeusedtoinspectthecamberofthecar,todeterminewhetherthecentresillissaggingordeformed. Fig.4(aandd)Panoramicimagesofhoppercarand(bandc)gondolacarfromcamera1(aandb)andcamera2(candd) Proc.IMechEVol.224PartF:J.RailandRapidTransitJRRT376

Related Contents


Next Show more