PDF-(DOWNLOAD)-Modern Spacecraft Dynamics and Control (Dover Books on Engineering)

Author : SarahWhitney | Published Date : 2022-09-06

This highly regarded book provides a bridge that spans spacecraft maneuvering and control techniques with associated physical fundamentals Beginning with an examination

Presentation Embed Code

Download Presentation

Download Presentation The PPT/PDF document "(DOWNLOAD)-Modern Spacecraft Dynamics an..." is the property of its rightful owner. Permission is granted to download and print the materials on this website for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.

(DOWNLOAD)-Modern Spacecraft Dynamics and Control (Dover Books on Engineering): Transcript


This highly regarded book provides a bridge that spans spacecraft maneuvering and control techniques with associated physical fundamentals Beginning with an examination of the basic principles of physics underlying spacecraft dynamics and control the text covers orbital and attitude maneuvers orbit establishment and orbit transfer plane rotation interplanetary transfer and hyperbolic passage lunar transfer reorientation with constant momentum attitude determination and attitude adjustment requirements Additional topics include attitude control devices as well as automatic attitude control orbital perturbations and the fundamental methods of astrodynamics A final chapter explores some special problems in this field This treatment is suitable for advanced undergraduates and graduate students and professional engineers in astronautics Each chapter presents relevant exercises of varying difficulty and the text includes a section of answers to selected exercises. 4412. Dynamics and Control of Space Vehicles. Mrinal Kumar, Assistant Prof.. Mechanical and Aerospace Engineering. SYLLABUS…. EAS 4510:. . Keplerian. Mechanics --- Considers motion of two . particles. Used increasingly in telecommunications, scientific research, surveillance, and meteorology, satellites rely heavily on complex onboard control systems. This book explains the basic theory of spacecraft dynamics and control and the practical aspects of controlling a satellite. The emphasis is on analyzing and solving real-world engineering problems. Among the topics covered are orbital dynamics, attitude dynamics, gravity gradient stabilization, single and dual spin stabilization, attitude maneuvers, attitude stabilization, and structural dynamics and liquid sloshing. Written on the eve of World War II, this pioneering introduction to the science of aerodynamics is the work of one of the Jet Propulsion Laboratory\'s founders. Clark B. Millikan\'s brief but intensive summary deals with the basic problems of aerodynamics, covering subjects essential to the background of any well-rounded aeronautical engineer. State-of-the-art at the time of its original publication, this volume will appeal to historians of science as well as to students of aerodynamics, who will welcome the chance to encounter this basic text by one of the foremost early members of their profession.Starting with an overview of fundamental principles, the treatment examines the aerodynamicist\'s basic data and considers aspects of performance, longitudinal stability and control, and lateral stability and control. A selection of problems appears at the end of the book, in addition to a density and pressure altitude conversion chart and a composite performance chart. Provides the basics of spacecraft orbital dynamics plus attitude dynamics and control, using vectrix notationSpacecraft Dynamics and Control: An Introduction presents the fundamentals of classical control in the context of spacecraft attitude control. This approach is particularly beneficial for the training of students in both of the subjects of classical control as well as its application to spacecraft attitude control. By using a physical system (a spacecraft) that the reader can visualize (rather than arbitrary transfer functions), it is easier to grasp the motivation for why topics in control theory are important, as well as the theory behind them. The entire treatment of both orbital and attitude dynamics makes use of vectrix notation, which is a tool that allows the user to write down any vector equation of motion without consideration of a reference frame. This is particularly suited to the treatment of multiple reference frames. Vectrix notation also makes a very clear distinction between a physical vector and its coordinate representation in a reference frame. This is very important in spacecraft dynamics and control problems, where often multiple coordinate representations are used (in different reference frames) for the same physical vector.Provides an accessible, practical aid for teaching and self-study with a layout enabling a fundamental understanding of the subjectFills a gap in the existing literature by providing an analytical toolbox offering the reader a lasting, rigorous methodology for approaching vector mechanics, a key element vital to new graduates and practicing engineers alikeDelivers an outstanding resource for aerospace engineering students, and all those involved in the technical aspects of design and engineering in the space sectorContains numerous illustrations to accompany the written text. Problems are included to apply and extend the material in each chapterEssential reading for graduate level aerospace engineering students, aerospace professionals, researchers and engineers. Comprehensive, classic introduction to space-flight engineering for advanced undergraduate and graduate students. Provides basic tools for quantitative analysis of the motions of satellites and other vehicles in space. Includes vector algebra, kinematics, transformation of coordinates, gyrodynamics, generalized theories of mechanics. Geared toward upper-level undergrads, graduate students, and practicing engineers, this comprehensive treatment of the dynamics of atmospheric flight focuses especially on the stability and control of airplanes. An extensive set of numerical examples covers STOL airplanes, subsonic jet transports, hypersonic flight, stability augmentation, and wind and density gradients.The equations of motion receive a very full treatment, including the effects of the curvature and rotation of the Earth and distortional motion. Complete chapters are given to human pilots and handling qualities and to flight in turbulence, with numerical examples for a jet transport. Small-perturbation equations for longitudinal and lateral motion appear in convenient matrix forms, both in time-domain and Laplace transforms, dimensional and nondimensional. Space agencies are now realizing that much of what has previously been achieved using hugely complex and costly single platform projects--large unmanned and manned satellites (including the present International Space Station)--can be replaced by a number of smaller satellites networked together. The key challenge of this approach, namely ensuring the proper formation flying of multiple craft, is the topic of this second volume in Elsevier\'s Astrodynamics Series, Spacecraft Formation Flying: Dynamics, control and navigation.In this unique text, authors Alfriend et al. provide a coherent discussion of spacecraft relative motion, both in the unperturbed and perturbed settings, explain the main control approaches for regulating relative satellite dynamics, using both impulsive and continuous maneuvers, and present the main constituents required for relative navigation. The early chapters provide a foundation upon which later discussions are built, making this a complete, standalone offering.Intended for graduate students, professors and academic researchers in the fields of aerospace and mechanical engineering, mathematics, astronomy and astrophysics, Spacecraft Formation Flying is a technical yet accessible, forward-thinking guide to this critical area of astrodynamics. Written by one of the leading aerospace educators of our time, each sentence is packed with information. An outstanding book. — Private PilotIlluminated throughout by new twists in explaining familiar concepts, helpful examples and intriguing by-the-ways. A fine book. — Canadian Aeronautics and Space JournalThis classic by a Stanford University educator and a pioneer of aerospace engineering introduces the complex process of designing atmospheric flight vehicles. An exploration of virtually every important subject in the fields of subsonic, transonic, supersonic, and hypersonic aerodynamics and dynamics, the text demonstrates how these topics interface and how they complement one another in atmospheric flight vehicle design. The mathematically rigorous treatment is geared toward graduate-level students, and it also serves as an excellent reference. Problems at the end of each chapter encourage further investigation of the text\'s material, the study of fresh ideas, and the exploration of new areas. Pointing a satellite in the right direction requires an extremely complex system — one that describes the satellite\'s orientation and at the same time predicts and either uses or neutralizes external influences.From its roots in classical mechanics and reliance on stability theory to the evolution of practical stabilization ideas, Spacecraft Attitude Dynamics offers comprehensive coverage of environmental torques encountered in space energy dissipation and its effects on the attitude stability of spinning bodies motion equation for four archetypical systems derived and used repeatedly throughout the text orientation parameters (not limited to Euler angles) illustrations of key concepts with on-orbit flight data and typical engineering hardware, with examples of the implementation of dynamic ideas.Suitable as a text for advanced undergraduates and graduate students, this unified treatment is also a valuable reference for professional engineers studying the analysis and application of modern spacecraft attitude dynamics. The sole prerequisites are a fundamental knowledge of vector dynamics and matrix algebra. Over 250 diagrams appear throughout the text, along with extensive problem sets at the end of each chapter, 350 references (cited, interpreted, and placed in perspective to reinforce the material), and two helpful appendixes. Written by a trio of experts, this is the definitive reference on the Apollo spacecraft and lunar modules. It traces the design of the vehicles, their development, and their operation in space. More than 100 photographs and illustrations highlight the text, which begins with NASA\'s origins and concludes with the triumphant Apollo 11 moon mission. Teaching text developed by U.S. Air Force Academy and designed as a first course emphasizes the universal variable formulation. Develops the basic two-body and n-body equations of motion orbit determination classical orbital elements, coordinate transformations differential correction more. Includes specialized applications to lunar and interplanetary flight, example problems, exercises. 1971 edition. Written by a trio of experts, this is the definitive reference on the Apollo spacecraft and lunar modules. It traces the design of the vehicles, their development, and their operation in space. More than 100 photographs and illustrations highlight the text, which begins with NASA\'s origins and concludes with the triumphant Apollo 11 moon mission. Written by a trio of experts, this is the definitive reference on the Apollo spacecraft and lunar modules. It traces the design of the vehicles, their development, and their operation in space. More than 100 photographs and illustrations highlight the text, which begins with NASA\'s origins and concludes with the triumphant Apollo 11 moon mission. Written by a trio of experts, this is the definitive reference on the Apollo spacecraft and lunar modules. It traces the design of the vehicles, their development, and their operation in space. More than 100 photographs and illustrations highlight the text, which begins with NASA\'s origins and concludes with the triumphant Apollo 11 moon mission.

Download Document

Here is the link to download the presentation.
"(DOWNLOAD)-Modern Spacecraft Dynamics and Control (Dover Books on Engineering)"The content belongs to its owner. You may download and print it for personal use, without modification, and keep all copyright notices. By downloading, you agree to these terms.

Related Documents