PPT-CS 2750: Machine Learning

Author : aaron | Published Date : 2018-12-04

Expectation Maximization Prof Adriana Kovashka University of Pittsburgh April 11 2017 Plan for this lecture EM for Hidden Markov Models last lecture EM for Gaussian

Presentation Embed Code

Download Presentation

Download Presentation The PPT/PDF document "CS 2750: Machine Learning" is the property of its rightful owner. Permission is granted to download and print the materials on this website for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.

CS 2750: Machine Learning: Transcript


Expectation Maximization Prof Adriana Kovashka University of Pittsburgh April 11 2017 Plan for this lecture EM for Hidden Markov Models last lecture EM for Gaussian Mixture Models EM in general . Lecture 5. Bayesian Learning. G53MLE | Machine Learning | Dr Guoping Qiu. 1. Probability. G53MLE | Machine Learning | Dr Guoping Qiu. 2. . Spring . 2013. Rong. Jin. 2. CSE847 Machine Learning. Instructor: . Rong. Jin. Office Hour: . Tuesday 4:00pm-5:00pm. TA, . Qiaozi. . Gao. , . Thursday 4:00pm-5:00pm. Textbook. Machine Learning. The Elements of Statistical Learning. Lecture 6. K-Nearest Neighbor Classifier. G53MLE . Machine Learning. Dr . Guoping. Qiu. 1. Objects, Feature Vectors, Points. 2. Elliptical blobs (objects). 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. http://hunch.net/~mltf. John Langford. Microsoft Research. Machine Learning in the present. Get a large amount of labeled data . . where . . Learn a predictor . Use the predictor.. The Foundation: Samples + Representation + Optimization. COS 518: Advanced Computer Systems. Lecture . 13. Daniel Suo. Outline. 2. What is machine learning?. Why is machine learning hard in parallel / distributed systems?. A brief history of what people have done. CS539. Prof. Carolina Ruiz. Department of Computer Science . (CS). & Bioinformatics and Computational Biology (BCB) Program. & Data Science (DS) Program. WPI. Most figures and images in this presentation were obtained from Google Images. Dan Roth. University of Illinois, Urbana-Champaign. danr@illinois.edu. http://L2R.cs.uiuc.edu/~danr. 3322 SC. 1. CS446: Machine Learning. Tuesday, Thursday: . 17:00pm-18:15pm . 1404 SC. . Office hours: . Prabhat. Data Day. August 22, 2016. Roadmap. Why you should care about Machine Learning?. Trends in Industry. Trends in Science . What is Machine Learning?. Taxonomy. Methods. Tools (Evan . Racah. ). Expectation Maximization. Prof. Adriana . Kovashka. University of Pittsburgh. April 11, 2017. Plan for this lecture . EM for Hidden Markov Models (last lecture). EM for Gaussian Mixture Models . EM in general . Geoff Hulten. Why do people Attack Systems?. Crime, espionage. For fun. To make money. Making Money off of Abuse. Driving traffic. Compromising personal information. Compromising computers. Boosting content. An Overview of Machine Learning Speaker: Yi-Fan Chang Adviser: Prof. J. J. Ding Date : 2011/10/21 What is machine learning ? Learning system model Training and testing Performance Algorithms Machine learning Bahrudin Hrnjica, MVP. Agenda. Intro to ML. Types of ML. dotNET and ML-tools and libraries. Demo01: ANN with C#. Demo02: GP with C#. .NET Tools – Acord.NET, GPdotNET. Summary. Machine Learning?. method of teaching computers to make predictions based on data.. (CS725). Autumn 2011. Instructor: . Prof. . Ganesh. . Ramakrishnan. TAs: . Ajay Nagesh, Amrita . Saha. , . Kedharnath. . Narahari. The grand goal. From the movie . 2001: A Space Odyssey. (1968). Outline. Gihyuk Ko. PhD Student, Department of Electrical and Computer Engineering. Carnegie Mellon University. November. 14, 2016. *some slides were borrowed from . Anupam. . Datta’s. MIT Big . Data@CSAIL.

Download Document

Here is the link to download the presentation.
"CS 2750: Machine Learning"The content belongs to its owner. You may download and print it for personal use, without modification, and keep all copyright notices. By downloading, you agree to these terms.

Related Documents