/
Estimating Planet Parameters from the Estimating Planet Parameters from the

Estimating Planet Parameters from the - PowerPoint Presentation

aaron
aaron . @aaron
Follow
378 views
Uploaded On 2018-03-01

Estimating Planet Parameters from the - PPT Presentation

Lightcurve 0 Choose your lightcurve a GLPlanet Assumptions a Gould amp Loeb planetary GLPlanet caustic crossing perturbation No parallax No blending Goal Estimate 7 Parameters of a 2L1S Model ID: 640286

planet parameters image caustic parameters planet caustic image source major event einstein minor stellar time ring star trajectory 2006

Share:

Link:

Embed:

Download Presentation from below link

Download Presentation The PPT/PDF document "Estimating Planet Parameters from the" is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Slide1

Estimating Planet Parameters from the LightcurveSlide2

0. Choose your

lightcurve

(a

GLPlanet)

Assumptions:

a Gould & Loeb planetary (

GLPlanet

) caustic crossing

perturbation

No parallax

No blendingSlide3

Goal: Estimate 7 Parameters of a 2L1S Model

t

0

= time of closest approach b/w source and lensu0 = impact parametert

E

= Einstein timescale

s = planet-star separationq = planet-star mass ratioρ = source radiusα = angle of source trajectory

relative to Einstein ring sizeSlide4

Goal: Estimate 7 Parameters of a 2L1S Model

t

0

= time of closest approach b/w source and lensu0 = impact parametert

E

= Einstein timescale

s = planet-star separationq = planet-star mass ratioρ = source radiusα = angle of source trajectory

Parameters of the Stellar Event

Parameters of the Planet

Other ParametersSlide5

Lens

Einstein Ring

Source

Point Lens Parameters: t

0

, u

0

,

t

E

u

0

= impact parameter

t

0

time

@ u(t) = u

0

t

E

= Einstein timescale/Einstein crossing timeSlide6

Position of the Source: u(t)

u(t)

u

0Slide7

Planet Parameters: s, q, α

planet

s = separation (projected, as a fraction of the Einstein ring)

Binary axis

α = angle b/w binary axis and source trajectorySlide8

7th Parameter:

ρ

Source radius (scaled to the Einstein ring)Slide9

2 Observables: Time & MagnitudeSlide10

Relating Magnitude to Magnification

f

blend

= 0Slide11

Relating Magnification to TimeSlide12

1. Parameters of the Stellar Event: t

0

t

0

~

957Slide13

2. Parameters of the Stellar Event: u

0

0Slide14

2. Parameters of the Stellar Event: u

0

Δm

= 18.1-17.05 =

1.05

magnitudesSlide15

2. Parameters of the Stellar Event: u

0

How many magnitudes (

Δm) brighter does the event get? 1.05 magnitudes

What

magnification

(A) does that imply? 2.63

What is u0?

0.38Slide16

3. Parameters of the Stellar Event:

t

E

Use the same equations to find

t

E

.

1.

u1 = 1

A

1

= 1.34

2.

Δ

m = 0.3177Slide17

3. Parameters of the Stellar Event:

t

ESlide18

4. Parameters of the Planet: s

Where is the planet?

When is the planet?Slide19

4. Parameters of the Planet: s

Possible Planet Locations

The planet perturbs one of the images.

XSlide20

4. Parameters of the Planet: s

Where is the source at

t

planet

=

930.15

?Slide21

4. Parameters of the Planet: s

u

0Slide22

4. Parameters of the Planet: s

τ

u

=

0.605

y

+

=

1.35

y

-

=

0.742Slide23

4. Parameters of the Planet: s

Is this a major or a minor image perturbation?Slide24
Slide25

Not a dip!Slide26

4. Parameters of the Planet: s

minor

 s =

y

-

=

0.742

Dip!Slide27

5. Other Parameters:

α

Binary Axis

Source Trajectory

αSlide28

5

. Other Parameters:

α

u

0

α = -51.1

deg

=

-0.892 radSlide29

5

. Other Parameters:

α

α

Due to different geometric conventions, the correct value of α may be π/2 or π from the value you calculateSlide30

What’s left?

ρ

and q Slide31

3 regimes:

minor image

ρ

< caustic

major image

ρ

< caustic

major image

ρ

> caustic

distinct peaks

merged peaksSlide32

6. Major Image, ρ

>

caustic: ρ

Δ

t

= 2

t*

ρ = t* / t

E

Gould &

Gaucherel

1994Slide33

7. Major Image,

ρ

> caustic: q

Δ

m

p

 ApA

p

= 2(

q

/

ρ

2

)

Gould &

Gaucherel

1994Slide34

6. Major Image, ρ

<

caustic:

ρ

Δ

t

=

2

t

*Slide35

7. Major Image, ρ

<

caustic: q

2 caustic crossings

α = 165

degSlide36

Han 2006

ApJ

638, 1080

Han 2006: Major Image CausticSlide37

7. Major Image, ρ

<

caustic: qSlide38

Minor Image,

ρ

< caustic

2 caustic crossings

TroughSlide39

6.

Minor

Image,

ρ < caustic:

ρ

2

t

*

~ 0.2 days

ρ

=

0.00175Slide40

7

.

Minor Image,

ρ < caustic: qSlide41

Han 2006

ApJ

638, 1080

Han 2006: Minor Image CausticSlide42

7

.

Minor Image,

ρ

< caustic:

q

q

~

0.00022

Δ

t

= 3.3 days

~ 0.0579