/
Externally-resonatedlinearmicrovibromotorformicroassemblyKazuhiroSaito Externally-resonatedlinearmicrovibromotorformicroassemblyKazuhiroSaito

Externally-resonatedlinearmicrovibromotorformicroassemblyKazuhiroSaito - PDF document

aaron
aaron . @aaron
Follow
387 views
Uploaded On 2017-11-25

Externally-resonatedlinearmicrovibromotorformicroassemblyKazuhiroSaito - PPT Presentation

CorrespondingauthorPhone7347630036Fax7346473170Emailkazuumicheduorwithotherprocesseswhicharemoree ectiveforgrosspositioningseeSection5foranexample Stick to gripper b c Stick f Inac ID: 608985

Correspondingauthor;Phone:(734)763{0036 Fax:(734)647{3170 E-mail:kazu@umich.eduorwithotherprocesseswhicharemoree ectiveforgrosspositioning{seeSection5foranexample. Stick gripper b) c) Stick f) Inac

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Externally-resonatedlinearmicrovibromoto..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Externally-resonatedlinearmicrovibromotorformicroassemblyKazuhiroSaitouandSoungjinJ.WouDepartmentofMechanicalEngineeringandAppliedMechanicsUniversityofMichigan,AnnArbor,MI48109{2125,USAABSTRACTAnewdesignofalinearmicrovibromotorforon-substrate nepositioningofmicro-scalecomponentsispresentedwhereamicrolinearsliderisactuatedbyvibratoryimpactsexertedbymicrocantileverimpacters.Thesemicrocantileverimpactersareselectivelyresonatedbyshakingtheentiresubstratewithapiezoelectricvibrator,requiringnoneedforbuilt-indrivingmechanismssuchaselectrostaticcombactuatorsasreportedpreviously.1,2Thisselectiveresonanceofthemicrocantileverimpactersviaanexternalvibrationenergy eldprovideswithaverysimplemeansofcontrollingforwardandbackwardmotionofthemicrolinearslider,facilitatingassemblyanddisassemblyofamicrocomponentonasubstrate.Thedouble-Vbeamsuspensiondesignisemployedinthemicrocantileverimpactersforlargerdisplacementinthelateraldirectionwhileachievinghighersti nessinthetransversaldirection.Ananalyticalmodelofthedeviceisderivedinordertoobtain,throughtheSimulatedAnnealingalgorithm,anoptimaldesignwhichmaximizestranslationspeedofthelinearslideratdesiredexternalinputfrequencies.Prototypesoftheexternally-resonatedlinearmicrovibromotorarefabricatedusingthethree-layerpolysiliconsurfacemicromachiningprocessprovidedbytheMCNCMUMPSservice.Keywords:microassembly,on-substrate nepositioning,microelectro-mechanicalsystems(MEMS),microlinearvibromotor,micromechanicalresonator.1.INTRODUCTIONAssemblyhasnotbeenanissueofresearchinmicroelectromechanicalsystems(MEMS).Thisisbecauseoneofthelargestadvantagesofsurfacemicrofabricationtechnologies,whichMEMSisbasedon,isnoneedforassembly;anentiresystem(,achip)withmultiplecomponentscanbefabricatedinprocessesinvolvingnoassembly.Asthecomplexityofthesystemincreases,however,theneedforassembly,aswellasdisassembly,becomesmoreevidentsincecomplexintegratedsystemsoftensu erfromlowreliabilityduetothelackofmodularityamongsubsystems.ThisisespeciallytrueforMEMS,whichoftenrequirecomplexelectromechanicalintegrationandpackaging.Despitethesedemands,nopracticalassembly/disassemblymethodsofmicro-scalecomponentssuitableforautomationhasbeendevelopedsofar.AssemblyinMEMS,ifneeded,istypicallydonebymanualoperationofmicroprobesormicrotweezers(Suchminiaturizationoftheconventionalpick-and-placeroboticassembly,however,experiencesextremedicultyinhandlingandpositioningcomponentswithsizeslessthanamillimeter,duetothesurfaceadhesionforceswhichcausestickingamongcomponentsandhandlingdevices.Figure1illustratespick-and-placeassemblyofamicro-scalecomponentusingamicrogripper.Surfaceadhesionforcessuchaselectrostatic,vanderWaals,andsurfacetensionforcescausethecomponenttosticktothegripperduringtheapproach(Figure1(b))andtherelease(Figure1(d))phases.Mechanicalshockcanbeappliedtothegrippertodropthestuckcomponent(Figure1(e)),withthepriceofinaccuratepositioningofthereleasedcomponent(Figure1(f)).Onewaytoovercomethisproblemistodesignadeviceonthesubstratethatfacilitatescomponentpositioningsothatgrosspositioningisdoneintheconventionalpick-and-placefashion,whereas nepositioningisdonebytheon-substratepositioningdevice.ThisconceptisillustratedinFigure2,whereaon-substratelinearactuatorpushesainaccuratelypositionedmicrocomponent(,asaresultofthe\shockrelease"showninFigure1(e)and(f))againsta xtureanchoredtothesubstrate(Figure2(a)),achievingprecisepositioningofthecomponent(Figure2(b)).Thelinearactuatoralsoshouldbeabletore-opentoreleasethepositionedcomponenttofacilitatethepotentialneedsfordisassembly(Figure2(c)). Correspondingauthor;Phone:(734)763{0036,Fax:(734)647{3170,E-mail:kazu@umich.eduorwithotherprocesseswhicharemoree ectiveforgrosspositioning{seeSection5foranexample. Stick to gripper b) c) Stick f) Inaccurate positioning Figure1.Typicalpick-and-placeassemblyinmicroscale(modi edfrom).(a)Agripperapproachestoacom-ponent;(b)Thecomponentstickstothegripper;(c)thegrippergraspsthecomponent;(d)Thecomponentistransportedtoadesiredlocation;(e)Thecomponentisreleasedwithshock;(f)Thecomponentisplacedatinaccu-rateposition. a) Anchored fixture Inaccurately positioned component b) Figure2.Precisecomponentpositioningandreleasewithaon-substratelinearactuatoranda xture.(a)inaccu-ratelypositionedcomponent;(b)accuratelypositionedcomponent;(c)releaseofthecomponentfordisassembly.Thispaperdescribesadesignofsuchamicrolinearactuatorfor nepositioningofamicro-tomeso-scalecomponentonasubstrate.ThedesignisbasedonalinearmicrovibromotorreportedbyDanemanetal.amicrolinearsliderisactuatedbyvibratoryimpactsexertedbymicrocantileverimpacters.Dissimilartotheirdesign,however,thesemicrocantileverimpactersareselectivelyresonatedbyshakingtheentiresubstratewithapiezoelectricvibrator,requiringnoneedforbuilt-indrivingmechanismssuchaselectrostaticcombactuators.Thisselectiveresonanceofthemicrocantileverimpactersviaanexternalvibrationenergy eldprovideswithaverysimplemeansofcontrollingforwardandbackwardmotionofthemicrolinearslider,facilitatingassemblyanddisassemblyofamicrocomponentonasubstrate.Thedouble-Vbeamsuspensiondesignisemployedinthemicrocantileverimpactersforlargerdisplacementinthelateraldirectionwhileachievinghighersti nessinthetransversaldirection.Ananalyticalmodelofthedeviceisderivedinordertoobtain,throughtheSimulatedAnnealingalgorithm,anoptimaldesignwhichmaximizestranslationspeedofthelinearslideratdesiredexternalinputfrequencies.Prototypesoftheexternally-resonatedlinearmicrovibromotorarefabricatedusingthethree-layerpolysiliconsurfacemicromachiningprocessprovidedbytheMCNCMUMPSservice.2.RELATEDWORKInthee ortsofthedevelopmentofabulkassemblymethodformicro-tomeso-scalecomponents,severalapproacheshavebeenproposedtoincorporateself-positioningtomicroassembly.YehandSmithintegratedtrapezoidalGaAsmicroblocksonaSisubstratewithtrapezoidalholesbydispensingtheseinacarrier uid(ethanol)ontotheSisubstrate.Cohn,KimandPisanoexperimentedwiththeself-assemblyofsmallhexagonalparts(1indiameter)byplacingaquantityofthemonaslightlyconcavediaphragmthatwasagitatedwithaloudspeaker.Hosokawa,ShimoyamaandMiuraexperimentedwiththeself-assemblyofmicropartswhicharebroughttogetheronawatersurfacebysurfacetensionofthewater.Bohringer,Goldberg,Cohn,HoweandPisanoproposedamethodtopositionsub-millimeterpartsusingultrasonicvibrationtoeliminatefrictionandadhesion,andelectrostaticforcestopositionandalignpartsinparallel.Whilenoexternalpositioning/handlingofcomponentsisnecessaryinthese componentAnchored fixtureCavity for gross positioning Linear sliderFlange Impacter massFolded cantilever Backward impactersForward impacters Figure3.Aschematictopviewoftheexternally-resonatedlinearmicrovibromotorforon-substrateprecisepositioning.methods,thecomponentsareonlygrosslypositioned,requiringauxiliarymeanstoachieveprecisepositioningneededforpracticalmicroelectromechanicalapplications.Otherworkhasbeendoneontheuseofmechanicalforcetobothself-positionandfastencomponentssothatassemblyrequirespositioning/handlingofcomponents.Judy,Cho,HoweandPisanofabricatedalaterally-de ectingcantileveronthesidewallofapolysiliconmesawhichadjuststhepositionofotherstructuresattachingtothecantilever,andprovidesthebearingforcesbetweenstructures.Burgett,PisterandFearingusedspringloadedlatchestoself-positiontheplateswithinmicrofabricatedhinges.Prasad,BohringerandMacDonaldfabricatedamicrosnapfastenerwith1{2widelaterally-de ectingchamferedlatches.Thesemethodsdonotconsiderthepotentialneedfordisassembly,hencenon-destructiveremovalofthefastenedcomponentsisextremelydicultorevenimpossible.3.DESIGN3.1.OperationalprincipleOurdesignoftheexternally-resonatedlinearmicrovibromotorformicroassemblyisbasedonalinearmicrovibro-motorreportedbyDanemanetal.whereamicrolinearsliderisactuatedbyvibratoryimpactsexertedbymicrocantileverimpacters.Dissimilartotheirdesign,however,thesemicrocantileverimpactersareselectivelyresonatedexternalpiezoelectricvibration,requiringnoneedforbuilt-indrivingmechanismssuchaselectrostaticcombactuators.AsillustratesinFigure3,itconsistsofalinearsliderlocatedbetweentwopairsoffoldedcantileverimpactersanchoredonthesubstratewhichcanexertforwardandbackwardvibratoryimpactstothesidesoftheslider,dependingonwhichpairofimpactersisresonatedbyexternalvibration.Figure4illustratesthethree-stepoperationofthelinearmicrovibromotor.First,thesubstrateisshakenwithapiezoelectricvibratoratthefrequencyThisexternalvibrationresonatesonlytheforwardimpacters,causingthelinearslidertomoveright(Figure4(a)).Thismotioncausestheslidertopushamicrocomponentagainstananchored xture,achievingprecisepositioning(Figure4(b)).Next,thesubstrateisshakenatthefrequency.Thisexternalvibrationresonatesonlythebackwardimpactersandmovestheslidertotheleft(Figure4(c)),releasingthepositionedcomponent.Thisselectiveresonanceofthemicrocantileverimpactersviaanexternalvibrationenergy eldprovideswithverysimplemeansofcontrollingforwardandbackwardmotionofthemicrolinearslider,withoutexplicitroutingtodirectenergytoeachoftheimpacters.Thispropertyoftheselectiveresonancewouldbeparticularlyusefulinthesituationwhereanumberoflinearmicrovibromotorsareimplementedinatwo-dimensionalarrayinordertopositionmultiplemicrocomponentssimultaneously.Bydesigningtheforwardandbackwardimpacterstohave f1f2 b)C) Figure4.Three-stepoperationoftheexternally-resonatedlinearmicrovibromotor.(a)theresonanceofforwardimpacters,(b)theresultingforwardslidingmotionandtheresonanceofthebackwardimpacters,(c)theresultingbackwardslidingmotion. qgzxy Figure5.Aclosed-upviewofaimpactermassandtheslidersidewall.di erentresonancefrequencies,eachlinearmicrovibromotorinthearraycanbeoperatedindependentlybytheexternalpiezoelectricvibrationsdrivenbythesumofthesignalswithappropriateresonancefrequencies.InFigure4,notethatthedirectionoftheexternalvibrationisnotparalleltothedirectionofimpacters'oscillation,thedirectionofimpact).Therefore,itisthecomponentoftheexternalvibrationparalleltothedirectionofimpactthatcausestheresonanceinthemicroimpacters.Anothercomponentofexternalvibrationcausestheimpacterstodeformperpendiculartothedirectionofimpact,whichisundesirableforecientoperationofthelinearmicrovibromotor.Themicrocantileverimpacters,therefore,shouldhavehighsti nessinthedirectionperpendiculartothedirectionofimpact,whilekeepingtherelativelylowsti nessinthedirectionofimpact.Toachievethisgoal,thedouble-Vbeamsuspensiondesignisemployedinthemicrocantileverimpacters,whichrealizeshighertransversalsti nessthantheconventionalfoldedparallelbeamdesignwithouta ectingthelateralsti ness.3.2.ModelingEquationsofmotionsofalumpedparametermodeloftheimpacter-slidersystemillustratedinFigure3isderivedinordertoobtainanoptimaldesignwhichmaximizestranslationspeedofthelinearslideratdesiredexternalinputfrequencies.Figure5showstheclosed-upviewofaimpactermassandtheslidersidewall,where(x;y)denotethecoordinatesystemfortheimpacterposition,and(; )denotethecoordinatesystemforthesliderposition.Theaxesarerotatedfromaxesbytheimpactangle.Thefollowingassumptionsaremadeinderivationofthelumpedparametermodel:Theimpactersandthesliderdonotmoveinthedirectionperpendiculartothesubstrate.Theimpactersarecompletelyrigidindirection.Theslideriscompletelyrigid,andthereisnoclearanceindirectionbetweenthe angeandtheslider. Thereisnofrictionbetweenthesubstrateandtheimpactermass.Animpactbetweentheimpactermassandtheslidersidewalloccursinstantaneously.Impactsbythetwoimpactersinapairoccursimultaneously.Giventheseassumptions,animpactercanbemodeledasasimplemass-spring-dampersystemwithanexternalforceinputextext)(1),andarethemass,viscousdampingcoecient,andspringconstantofaimpacter,respectively.AssumingCoutetteair owbetweenthesubstrateandtheimpactermass,andsmalllateraldisplacementofthefoldedbeams,theseparametersareexpressedas14,4hwl(2) (3) l3 (4)isthemassdensityoftheimpactermaterial(polysilicon);andaretheplanerarea(includingtheareaofthejoiningmemberoftwofoldedbeams)andthicknessoftheimpactermass,respectively;,andaretheheight,width,andtotallengthofthetwosegmentsofaV-beam,respectively;istheviscosityoftheair;istheverticalgapbetweenthesubstrateandtheimpactermass;isYoung'smodulusofthebeammaterial(polysilicon);andisthehalfoftheanglebetweenthetwosegmentsofaV-beam.Assumingthesubstrateisshakenwiththeexternalvibration)indirection,theinertialforceext)exertedtoaimpacteris:extcos()(5)Similarly,theequationofmotionofthelinearsliderisgivenas:)(6)isthemassofthesliderandisanetforceexertedtotheslider:0if=0andextext)otherwise(7)istheviscousdampingcoecientoftheslider;extcos()istheinertialforceexertedtotheslider;andarestaticanddynamicfrictionalforces,respectively.TheparametersandaregivensimilarlytoEquations2and3.Anobliqueimpactoftheimpactertipstotheslidersidewallismodeledasanimpactwithrestitutionindirection,andanimpactwithinstantaneousmomentumtransferindirection.bethedistancebetweentheimpactertipandtheslidersidewallmeasuredindirectionasshowninFigure5.Ifxc,thereisnoimpact.At,theimpactertipcontactstheslidersidewall.Inindirection,thefollowingboundaryconditionmodelstheenergydissipationoftheimpacteratanimpact:(8)andareimpactervelocitiesindirectionrightbeforeandrightaftertheimpact,andisthecoecientofrestitution.Indirection,linearmomentumistransferredfromtheimpacterstotheslider.Consideringtherearetwoimpacterstodrivetheslider:(9)andareslidervelocitiesindirectionrightbeforeandrightaftertheimpact.RearrangingEquations8and9givestheboundaryconditiontomodeltheenergytransfertotheslideratanimpact: (1+(10) Table1.Thephysicalconstantvaluesusedinthesimulation Parameter Value[unit] Note  33[g=cm LPCVDpolysilicon 1:5[s] airat20 E 169[GPa Polysilicon s 20[ betweenLPCVDpolysiliconlayers Fd betweenLPCVDpolysiliconlayers e 0:5 betweenLPCVDpolysiliconsidewalls Theequationsofmotionde nedasEquations1through10arenumericallyintegratedwiththeforth-orderRungeKuttamethodtopredictandoptimizeadesignoftheexternally-resonatedlinearmicrovibromotor.Thevaluesofandusedinthenumericalsimulationare15and45,respectively.Thevaluesof,andareconstrainedbytheMUMPsprocessprovidedbyMCNCusedfordevicefabricationdiscussedinSection4.Theyaresettobe,and3,respectively.ThephysicalconstantvaluesusedinthesimulationareshowninTable1.Thevaluesofandaccountfornotonlythefrictionbetweenthesubstrateandthesliderbutalsotheslopbetweentheslideranditsguide,andareestimatedbasedonsincetheslidersizeanditsfabricationprocessarevirtuallyidentical.Inordertofacilitatefaircomparisonofdeviceperformanceswithdi erentinputfrequencies,thepowerinputfromtheexternalvibrationiskeptconstant.Sincethepowerinputfromtheexternalvibrationisproportionalto,thisquantityiskeptataconstantvalueof50Figure6showsresultsofnumericalintegrationoftheaboveequationsofmotion1through10inthetimeperiodfromrommsec]toomsec]withtwoexternalinputfrequencies:(a))kHz]and(b))kHz].Foreachinputfrequency,thetop gureshowsthetimeplotofthesliderposition,andthebottom gureshowsthetimeplotoftheimpacterposition.Theparametervaluescommontoboth guresarearem2],w=4:0[m],l=600[[m],andthesliderareais88m].ThesevaluesgivetheimpacternaturalfrequencycykHz],where k=m.Theinitialcondition(is(00)inbothcases.Notethattheslidermovesapproximatelythreetimesfasterwhendrivenwith6kHz(Figure6(b))thanwhendrivenwith5kHz,anaturalfrequencyoftheimpacter(Figure6(a)).Thisincreaseinthesystemresonancefrequencyisduetothenonlinear\hardeningspring"behaviorobservedinmanydynamicsystemsinvolvingimpactsoftenapproximatedbyadampedDungoscillator)(11) ; ;�0areconstantsand)isaperiodicfunctionoftimeAsothernonlinearoscillatorysystems,theDung-likenonlinearsystemsexhibitinstabilitieswhereasmallperturbationoftheinitialcondition())completelychangesthefrequencyresponseofthesystem.Suchinstabilitiescanoccurintheimpacter-slidersystemasde nedinEquations1through10,sinceitislikelythattheinitialpositionoftheimpactermassvariesateveryoperationofthedeviceduetothestickingbetweentheimpactermassandthesubstrate,andbetweentheimpactertipsandtheslidersidewall.Figure7showsthefrequencyresponsesoftheimpacter-slidersystemwiththesameparameterasinFigure6withtheinitialimpacterpositions)=00m].Thesystemfrequencyresponseinthiscaseistheaveragesliderspeedduringthegiventimeperiod.Basedontheobservationthatthechangeinthesliderpositionatanimpactisamonotonouslyincreasingfunctionofthelinearmomentumoftheimpactersrightbeforetheimpact,thesystemresponseisde nedasfollows: (12)))istheinitialcondition,isavectorofthesystemparameters,istheinputfrequency,isthenumberofimpactsoccurredduringthetimeperiodfrom,and;:::;nisthetimewhen Forinstance,thisvaluegivestheexternalvibrationamplitudeatthefrequencykHz,whichisreasonableforactuationwithapiezoelectricstackvibrator. a)b) 0 0.5 1 1.5 2 2.5 3 0 0.05 0.1 0.15 0.2 0.25 0.3 time [msec]slider position [um] 0.5 1 1.5 2 2.5 3 -4 -2 0 2 4 time [msec]impactor position [um] impact point 0.5 1 1.5 2 2.5 3 0 0.05 0.1 0.15 0.2 0.25 0.3 time [msec]slider position [um] 0.5 1 1.5 2 2.5 3 -4 -2 0 2 4 time [msec]impactor position [um] impact point Figure6.Thesimulatedvibromotorperformances.(a)a)kHz];and(b)b)kHzThetop gureshowsthetimeplotofthesliderposition,andthebottom gureshowsthetimeplotoftheimpacterposition. 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0 100 200 300 400 500 600 700 800 900 normalized input frequency (omega/omegan)response [um/msec2]x(t0) = 0.0 [um] x(t0) = 1.0 [um] x(t0) = 2.0 [um] x(t0) = 3.0 [um] Figure7.Thefrequencyresponsesoftheimpacter-slidersystemfortheinitialimpacterpositionsnsm].thesecondimpact,thethirdimpact,etc.occurred.Notethat)isnotincludedintheabovesumtoavoidaccountingforthe rstimpactduetotheinitialimpacterposition.AsshowninFigure7,theinputfrequenciesatwhichthesuddentransitionsinthesystemresponseoccur(bifurcationpoints)variesfordi erentinitialimpacterpositions.Althoughtheabovedynamicmodelsharessomesimilaritiestotheonepresentedinet.altherearetwoessentialdi erencestobenoted.First,themodelinwassolvedbypiercingtogethertheindependently-solvedanalyticalsolutionsforimpactandnon-impactcases,whereastheabovesolutionisobtainedthroughnumericalintegrationofthesystemmodel.In,piercingtogethertwoanalyticalsolutionswasfeasiblesincetheimpacterneutralpositioncouldbeadjustedwiththeDCbiastothecombactuatorssuchthattheimpacttotheslidersidewalloccursjustatthefreeoscillationamplitudeoftheimpacters,minimizingthenonlineare ectsduetothe impact.Ontheotherhand,thesystemmodelneedstobenumericallysolvedintheabovesinceourinterestisthefulldynamicbehaviorofthesystemin\early"impactcases,wheretheimpactsoccurfarbeforetheimpactersreachtheirfreeoscillationamplitudes.Insuchcases,piercingtogethertwoanalyticalsolutionscannotpredictthedynamicbehaviorofthesystem,mostnotablythenonlineare ectsillustratedinFigure7.Second,in,theslidersidewallwasmodeledasaverysti springandadamper,whereasintheaboveitismodeledasarigidwallwithrestitution.Modelingthesidewallasasti springandadamperprovidesastraightforwardanalyticalsolutionduringimpact,16,17,1althoughnumericalintegrationofsuchamodelrequiressmalltimestepduringimpact,resultinginincreasedcomputationaltime.Ontheotherhand,therestitutionmodel,employedinnumerousworkonimpactdynamicsmodeling(18,19,2)requiresmuchlesscomputationaltimefornumericalintegrationduetotheassumptionoftheinstantaneousimpact.Thesimplerestitutionmodelisemployedintheabovesinceinourworknumericallysolvingthesystemmodelisessential,andalsothenumericalsimulationisrepeatedlyusedduringdesignoptimizationdiscussesinthenextsection.3.3.DesignoptimizationThesystemfrequencyresponseasde nedinEquation12providesanobjectivefunctionforanoptimalvibromotordesignthatmaximizestranslationspeedofthelinearslideratadesiredexternalinputfrequency.Forreliableoperationofthedevice,thedesignshouldbeoptimizedformaximumsliderspeedinthepresenceofsmallperturbationoftheinitialconditions.TheinstabilityofthesystemresponseillustratedinFigure7requirestheoptimizationtomaximizethesystemresponseattheworstcasescenario,,tomaximizetheminimumresponseamongpossibleperturbationoftheinitialcondition.Inaddition,theforwardimpactersshouldnotrespondtotheinputfrequencyforthebackwardimpacters,andviseversa.Theseconsiderationssuggestthefollowingmax-minformulationofanoptimaldesignproblemoftheforwardimpacters:max)(13)s.t.max)=0(14)(15)(16)isthesystemfrequencyresponseasde nedinEquation12,andandaretheinputfrequenciesfortheforwardandbackwardimpacters,respectively.Equation14constraintsthatafeasibledesignshouldnotrespondtothebackwardinputfrequencyregardlessoftheinitialcondition.SwitchinginEquation13andEquation14givesaformulationforthebackwardimpacters.Notethattheevaluationof)requiresonlytheimpacterdynamicsasde nedinEquations1,4,5,and8.Thedesignparameters,therefore,onlyconsistsoftheonesfortheimpacters:theplanerareaoftheimpactermass;thewidthandthetotallengthofthetwosegmentsofaV-beam;andthedistancebetweentheimpactertipandtheslidersidewallmeasuredindirection.ThelowerboundsoftheseparametersaregivenbytheimpactergeometryillustratedinFigure5andtheminimumfeaturelength2,asspeci edbytheMUMPSprocess.Sincetheseparametersarenotupperbounded,thesetisde nedasfollows:A;w;l;c(17)Itisassumedthattheperturbationintheinitialconditionisonlyintheinitialimpacterpositionduetothestickingbetweentheimpactermassandthesubstrateandbetweentheimpactermassandtheslidersidewall,andisboundedand.Inotherwords,c;v)=0(18)Using)asanobjectivefunctionratherthanmoredirectmeasuresofthesliderspeed,),hastwopracticaladvantagesfordesignoptimization.First,theevaluationofisfarlesscomputationallyexpensivethantheevaluationofthequantitiesinvolvingthesliderdynamicssuchas).Second,thepredictionofthedeviceperformancebasedonisnotnecessarilylessaccuratethanthepredictionbasedonthesliderdynamics,sinceitdoesnotinvolvephenomenologicalconstantssuchasand,whoseaccurateestimatesareextremelydiculttoobtain. Table2.ResultfromanoptimizationforrkHz]anddkHz Parameter[unit] Forwardimpacter Backwardimpacter A[ 45446 [ 5.6774 4.0354 [ 795.74 795.27 [ 5.2046 2.6676 kHz 5.8199 2.0385 (t0 -2.6000 -2.6676 1 2 3 4 5 6 7 8 0 50 100 150 200 250 300 350 400 450 500 input frequency [kHz]response [um/msec2] forward inputfrequency forward naturalfrequency backward inputfrequency backward naturalfrequency Figure8.Frequencyresponsesoftheforward(right)andbackward(left)impactersoptimizedforrkHzanddkHzSincethegradient-basednonlinearprogrammingalgorithmsfailduetothediscontinuouschangeinthesystemresponseillustratedinFigure7,theaboveoptimizationproblemissolvedusingtheSimulatedAnnealingalgorithm.Table2showstheresultfromanoptimizationoftheforwardandbackwardimpactersfortheforwardinputfrequencyequencykHz]andthebackwardinputfrequencyequencykHz].Notethattheinitialimpacterposition)oftheforwardimpacterthatgivesminimumresponseisapproximately,nottheminimumpossiblevalueforthebackwardimpacter.ThiscontradictsthetrendillustratedinFigure7,wherethesystemresponsebecomessmalleras)decreases.Furtheranalysesrevealthatfor,the rstimpactduetothelargeinitialde ectiontriggersbifurcationintheresponsewhichresultsintheresponselargerthanforFigure8showsthefrequencyresponsesoftheforward(right)andbackward(left)impactersinTable2.Alsoplottedonthe gurearetheforwardandbackwardinputfrequencies,andthenaturalfrequenciesoftheoptimalimpacters.Itcanbeeasilyseenfromthe gurethattheshapesandtherelativelocationofthetworesponsecurvesareoptimizedsuchthattheforwardimpacterhasamaximumresponseattheforwardinputfrequencywhileachievingzeroresponseatthebackwardinputfrequency,andviseversa4.FABRICATIONANDTESTINGPrototypesofexternally-resonatedlinearmicrovibromotorsarefabricatedusingthethree-layerpolysiliconsurfacemicromachiningprocessprovidedbytheMCNCMUMPSservice,wherethebottompolysiliconlayerservesasagroundplane,andthemiddleandthetoppolysiliconlayersareusedformicromechanicalstructures.Figure9 f) Figure9.Abasic owoftheMUMPSprocess.(a)Depositandpatternthebottompolysiliconlayer;(b)Depositandpatternthe rstPSGsacri ciallayer;(c)Depositandpatternthemiddlepolysiliconlayer;(d)DepositandpatternthesecondPSGsacri ciallayer;(e)depositandpatternthetoppolysiliconlayer;(f)Dissolvethesacri ciallayersinHFsolution. a)b)Figure10.Fabricatedprototypesoftheexternally-resonatedtolinearmicrovibromotorwithapproximately600inthesliderlength.Preliminarytestingsuggestedtheseveralmodi cationstoproducethedesigncon gurationshowninFigures3.illustratesabasic owoftheMUMPSprocess.Aseriesof guresshowstransversalcrosssectionsofthemicrolinearsliderbeingfabricated.First,thebottompolysiliconlayer(referredtoasPoly0)isdepositedandpatternedonasiliconsubstrateusinglowpressurechemicalvapordeposition(LPCVD),asshowninFigure9(a).Thisisfollowedbythedepositionandpatterningofa0thicksacri ciallayerofLPCVDphosphosilicateglass(PSG).DimplesarewetetchedonthisPSGlayertoreducefrictionbetweenthebottomandmiddlepolysiliconlayersatthecompletionofthefabricationprocess(Figure9(b)).OntopofthePSGlayer,a2thickLPCVDpolysiliconlayer(referredtoasPoly1)isdepositedandpatterned.Figure9(c)showsthecrosssectionalpatternoftheslidermadeofPoly1.AfterthedepositionandpatterningofanotherPSGsacri ciallayer(showninFigure9(d)),andapolysiliconlayer(referredtoasPoly2:showninFigure9(e))),thePSGlayersaredissolvedinanetchingsolution(HF),releasingthemechanicalstructuremadeofPoly1andPoly2(Figure9(f)).Priortothefabricationoftheoptimaldevicedesigns,twotypesofprototypesarefabricatedforpreliminarytesting,whosephotosareshowninFigure10.Theseprototypesaretestedfortheforwardandbackwardmotionviaexternalvibrationappliedbyanpiezoelectricstackvibratorgluedtothedicewithdryepoxy.Thispreliminarytestingsuggestedtheseveralmodi cationstoproducethedesigncon gurationshowninFigure3.Figure11showamasklayoutofanarrayofthesedevices,eachoptimizedforadi erentinputfrequency,with\dummy"microcomponents.Thesizeofthedummysquarecomponentsis500,madewithPoly1layerintheMUMPSprocess.Thesedummymicrocomponentsareanchoredtothesubstratewithaverythinpolysiliconstructurewhichcanbeeasilybrokenwithaprobetipatthetesting.Thefabricationofthesedevicesarecurrentlyinprogress.Uponthecompletionoffabrication,testingistobedoneonthepositioningandreleaseofthedummymicrocomponentsagainsttheanchored xtureelements,aswellasonthecrosstalkamongtheimpactersofdi erentvibromotorsonasubstrate. http://mems.mcnc.org/mumps.htmlfordetails. Figure11.Anarrayoftheexternally-resonatedmicrovibromotorswith\dummy"microcomponents,eachofwhichisoptimizedforadi erentinputfrequency.Thesizeofthesquaremicrocomponentsis5005.DISCUSSIONANDFUTUREWORKThisworkpresenteddesign,analysis,andoptimizationofalinearmicrovibromotorforon-substrate nepositioningofmicro-scalecomponents,whereamicrolinearsliderisactuatedbyvibratoryimpactsexertedbymicrocantileverimpacters.Thesemicrocantileverimpactersareselectivelyresonatedbyshakingtheentiresubstratewithapiezo-electricvibrator,requiringnoneedforbuilt-indrivingmechanismssuchaselectrostaticcombactuatorsasreported1,2Thisselectiveresonanceofthemicrocantileverimpactersviaanexternalvibrationenergy eldprovideswithaverysimplemeansofcontrollingforwardandbackwardmotionofthemicrolinearslider,facilitatingassemblyanddisassemblyofamicrocomponentonasubstrate.Ananalyticalmodelofthedeviceisderivedinordertoobtain,throughtheSimulatedAnnealingalgorithm,anoptimaldesignwhichmaximizestranslationspeedofthelinearslideratdesiredexternalinputfrequencies.Prototypesoftheexternally-resonatedlinearmicrovibromotorarefabricatedusingthethree-layerpolysiliconsurfacemicromachiningprocessprovidedbytheMCNCMUMPSAsdiscussedinSection1,grosspositioningofamicrocomponentneedstobedonepriortoon-substrate nepositioningusinganexternally-resonatedlinearmicrovibromotor.Althoughthegrosspositioningcouldbedonesequentiallyinpick-and-placefashion,vibratorypalletization,apartorientingmethodcommontocentimeter-scalemechanicalparts,couldprovideecientmeansofparallelgrosspositioningofmicrocomponents.Duringthepalletization,surfaceadhesionforcescanbevirtuallyeliminatedbyapplyingverticalvibrationinultrasonicrangeasrecentlyreportedin.Suchverticalvibrationcanalsofacilitatetheoperationofthelinearmicrovibromotorbyreducingthefrictionbetweenamicrocomponentandthesubstrate.Thecurrent nepositioningscheme,however,lacksapositivefasteningmeanstosecuretheattachmentofthecomponenttothesubstrate.Therefore,thedesignmodi cationofthelinearslider,theetchedcavity,and/oranchored xtureshouldbeinvestigatedinordertoachieveselectivefasteningandreleaseofacomponent.Forthis,theapplicationofremovablemicromechanicallatchingfasteners,ormicro\mousetraps,"willbeconsideredasapossiblefasteningmeans.Oneofthemostpromisingapplicationsofthemicroassembly/disassemblyasdescribedinthispaperisbare-chipinterconnectioninmulti-chipmodule(MCM),whichrequiresaprecisionassembly/disassemblyofmeso-scalecomponentswithhighdensityelectricalinterconnection.AlthoughthechipscurrentlyusedinMCMsaretypicallyin5{10mmscale,theadventoftheassembly/disassemblymethodbyusingtheexternally-resonatedlinearmicrovibromotorpresentedinthispaperwouldstimulatefurtherdisintegrationofsubsystemcomponentstoimprovetheoverallsystemmodularity,whichinturnwouldreducethesizesofthecomponentstobeassembled. ACKNOWLEDGMENTSThisworkwascarriedoutusingfacilitiesattheComputationalDesignLaboratoryandMEMSLaboratoryintheDepartmentofMechanicalEngineeringandAppliedMechanics,theUniversityofMichigan.Thesesourcesofsupportaregratefullyacknowledged.REFERENCES1.M.J.Daneman,N.C.Tien,O.Solgaard,A.P.Pisano,K.Y.Lau,andR.S.Muller,\Linearmicrovibromotorforpositioningopticalcomponents,"JournalofMicroelectromechanicalSystems,pp.159{165,September1996.2.A.P.LeeandA.P.Pisano,\Polysiliconangularmicrovibromotors,"JournalofMicroelectromechanicalSystems,pp.70{76,June1992.3.T.Yasuda,I.Shimoyama,andH.Miura,\Microrobotactuatedbyavibrationenergy eld,"SensorsandActuatorsA,pp.366{370,1994.4.L.Saggere,S.Kota,andS.B.Crary,\Anewdesignforsuspensionsystemsoflinearmicroactiators,"inProceedingsofthe1994InternationalMechanicalEngineeringCongressandExposition,vol.DSC55-2,pp.671{675,AmericanSocietyofMechanicalEngineers,1994.5.C.G.KellerandR.T.Howe,\Hexsiltweezersforteleoperatedmicroassembly,"inMicroelectromechanicalSystemspp.72{77,IEEE,1997.6.R.S.Fearing,\Surveyofstickinge ectsformicropartshandling,"inMicroelectromechanicalSystems,pp.212{217,IEEE,1995.7.H.J.YehandJ.S.Smith,\Fluidicself-assemblyofGaAsmicrostructuresonSisubstrates,"SensorsandMaterials(6),pp.319{332,1994.8.M.B.Cohn,C.-J.Kim,andA.P.Pisano,\Self-assemblingelectricalnetworks:anapplicationofmicromachiningtech-nology,"inTransducers'91:1991IEEEInternationalConferenceonSolid-StateSensorsandActuators,pp.490{493,(Sanfeansisco,CA),1991.9.K.Hosokawa,I.Shimoyama,andH.Miura,\Two-dimensionalmicro-self-assemblyusingthesurfacetensionofwater,"IEEEMicroelectromechanicalSystems,1996.10.K.Bohringer,K.Goldberg,M.Cohn,R.Howe,andA.Pisano,\Parallelmicroassemblywithelectrostaticforce elds,"Proceedingofthe1997IEEEInternationalConferenceonRoboticsandAutomation,IEEE,1997.11.M.W.Judy,Y.-H.Cho,R.T.Howe,andA.P.Pisano,\Self-adjustingmicrostructures(SAMS),"inIEEEMicroElectroMechanicalSystems,pp.51{56,1991.12.S.R.Burgett,K.S.J.Pister,andR.S.Fearing,\Threedimensionalstructuresmadewithmicrofabricatedhinges,"inASMEInternationalMechanicalEngineeringCongressandExposition,pp.1{11,1992.13.R.Prasad,K.-F.Bohringer,andN.C.MacDonald,\Design,fabrication,andcharacterizationofsinglecrystalsiliconlatchingsnapfastenersformicroassembly,"inASMEInternationalMechanicalEngineeringCongressandExposition14.Y.-H.Cho,A.P.Pisano,andR.T.Howe,\Viscousdampingmodelforlaterallyoscillatingmicrostructures,"JournalofMicroelectromechanicalSystems,pp.81{87,June1994.15.J.W.N.Sharpe,B.Yuan,andR.Vaidyanathan,\MeasurementsofYoung'smodulus,Possisson'sratio,andtensilestrengthofpolysilicon,"inProceedingsoftheIEEEMicroelecrtromechanicalSystems,pp.424{429,1996.16.S.W.ShawandP.J.Holmes,\Aperiodicallyforcedpiecewiselinearoscillator,"JournalofSoundandVibration(1),pp.129{155,1983.17.S.W.Shaw,\Forcedvibrationsofabeamwithone-sidedamplitudeconstraint:theoryandexperiment,"JournalofSoundandVibration,pp.199{211,1985.18.M.S.Heiman,P.J.Sherman,andA.K.Bajaj,\Onthedynamicsandstabilityofaninclinedimpactpair,"JournalofSoundandVibration(3),pp.535{547,1987.19.T.O.Dalrymple,\Numericalsolutionstovibroimpactviaaninitialvalueproblemformulation,"JournalofSoundandVibration(1),pp.19{32,1989.20.S.H.Strogatz,NonlinearDynamicsandChaos:withApplicationstoPhysics,Biology,Chemistry,andEngineeringAddisonWesley,Reading,Massachusetts,1994.21.P.Y.PapalambrosandD.J.Wilde,PrinciplesofOptimalDesign,CambrigeUniversityPress,1988.22.S.Kirkpatrick,C.D.Gellat,andM.P.Vecchi,\Optimizationbysimulatedannealing,"Science,pp.671{680,1983.23.P.H.Moncevicz,M.J.Jakiela,andK.T.Ulrich,\Orientationandinsertionofrandomlypresentedpartsusingvibratoryagitation,"inProceedingsoftheASME3rdConferenceonFlexibleAssemblySystems,A.H.Soni,ed.,pp.41{47,TheAmericanSocietyofMechanicalEngineers,(NewYork,NY),September1991.DE-Vol.33.24.K.SaitouandM.J.Jakiela,\Designofaself-closingcompliant\mousetrap"formicroassembly,"in1996ASMEInternationalMechanicalEngineeringCongressandExposition,DSC-Vol.59,pp.421{426,1996.