This work was supported at part of the Center for Excitonics, an Energy Frontier Research Center
29K - views

This work was supported at part of the Center for Excitonics, an Energy Frontier Research Center

Similar presentations


Download Presentation

This work was supported at part of the Center for Excitonics, an Energy Frontier Research Center




Download Presentation - The PPT/PDF document "This work was supported at part of the C..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.



Presentation on theme: "This work was supported at part of the Center for Excitonics, an Energy Frontier Research Center"— Presentation transcript:

Slide1

This work was supported at part of the Center for Excitonics, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences (BES) under award number: DE-SC0001088

Zhou Lin, Hikari Iwasaki and Troy A. Van VoorhisDepartment of Chemistry, Massachusetts Institute of Technology06/21/2017

Photochemical

Dynamics

for

Intramolecular Singlet Fission I

Energy Levels

and

Non-Adiabatic Couplings

Slide2

Singlet fission (SF) converts one singlet into two triplets.[1]1[1] Smith and Michl, Chem. Rev. 110

, 6891 (2010).

Slide3

Singlet fission (SF) converts one singlet into two triplets.[1]2

S

0

S

0

[1] Smith and

Michl

,

Chem. Rev.

110

, 6891 (2010).

S

0

T

1

S

1

Slide4

Singlet fission (SF) converts one singlet into two triplets.[1]incident photon3

S

0

S

0

S

1

S

0

[1] Smith and

Michl

,

Chem. Rev.

110

, 6891 (2010).

S

0

T

1

S

1

S

0

T

1

S

1

Slide5

Singlet fission (SF) converts one singlet into two triplets.[1]incident photon4

S

0

S

0

S

1

S

0

T

1

T

1

[1] Smith and

Michl

,

Chem. Rev.

110

, 6891 (2010).

S

0

T

1

S

1

S

0

T

1

S

1

S

0

T

1

S

1

singlet

fission

Slide6

Singlet fission (SF) converts one singlet into two triplets.[1]incident photon5

S

0

S

0

S

1

S

0

T

1

T

1

[1] Smith and

Michl

,

Chem. Rev.

110

, 6891 (2010).

S

0

T

1

S

1

S

0

T

1

S

1

S

0

T

1

S

1

singlet

fission

 

Slide7

[2] Tabachnyk, Musser, and Rao, SPIE Nanotechnology, “Beyond the Shockley-Queisser limit with singlet exciton fission.”Singlet fission promotes efficiency of photovoltaics.[2]

6

Slide8

[2] Tabachnyk, Musser, and Rao, SPIE Nanotechnology, “Beyond the Shockley-Queisser limit with singlet exciton fission.”Singlet fission promotes efficiency of photovoltaics.[2]

7direct relaxation to band edge 

relaxation

S

1

S

1

'

Slide9

[2] Tabachnyk, Musser, and Rao, SPIE Nanotechnology, “Beyond the Shockley-Queisser limit with singlet exciton fission.”Singlet fission promotes efficiency of photovoltaics.[2]

 

relaxation

 

singlet fission

relaxation

8

direct relaxation

to band edge

singlet fission

before relaxation

S

1

S

1

T

1

T

1

T

1

'T

1

'

S

1

'

Slide10

S0T1S1Singlet

fission has two possible mechanisms.[3]9

S

1

S

0

S

0

T

1

S

1

T

1

T

1

[3]

Berkelbach

,

Hybertsen

, and

Reichman

J. Chem. Phys.

,

138

, 114103 (2013).

?

Slide11

S0T1S1Singlet

fission has two possible mechanisms.[3]10

S

1

S

0

S

0

T

1

S

1

T

1

T

1

[3]

Berkelbach

,

Hybertsen

, and

Reichman

J. Chem. Phys.

,

138

, 114103 (2013).

direct

Slide12

S0T1S1

S0T1S1Singlet fission has two possible mechanisms.[3]11

S

1

S

0

S

0

T

1

S

1

T

1

T

1

C

+

A

[3]

Berkelbach

,

Hybertsen

, and

Reichman

J. Chem. Phys.

,

138

, 114103 (2013).

charge-transfer-mediated

CT

CT

Slide13

12Model molecules for intramolecular fission:[4]

o−2m−2p

−2

X-TIPS-

Pyl

=

ortho

-/meta

-/para

-

bis(6,13-bis(triisopropylsilylethynyl)pentacene)benzene

[4]

Zirzlmeier

,

Lehnherr

,

Coto

,

Chernick

, Casillas, Basel,

Thoss

,

Tykwinski

, and

Guldi

Proc. Natl. Acad. Sci. U.S.A.

112

, 5325 (2015).

Slide14

13We proposed an non-adiabatic fission dynamics.[5][5] Yost, Lee, Wilson, Wu, McMahon, Parkhurst, Thompson, Congreve, Rao, Johnson, Sfeir, Bawendi

, Swager, Friend, Baldo and Van Voorhis, Nat. Chem. 6, 492 (2014).

Slide15

14

S1S0C+A–

T

1

T

1

We proposed an non-adiabatic fission dynamics

.

[5]

[5]

Yost, Lee, Wilson, Wu, McMahon, Parkhurst, Thompson, Congreve, Rao, Johnson,

Sfeir

,

Bawendi

, Swager, Friend,

Baldo

and Van Voorhis, 

Nat. Chem.

6

, 492 (2014).

Slide16

15

 

S

1

S

0

C

+

A

T

1

T

1

We proposed an non-adiabatic fission dynamics

.

[5]

[5]

Yost, Lee, Wilson, Wu, McMahon, Parkhurst, Thompson, Congreve, Rao, Johnson,

Sfeir

,

Bawendi

, Swager, Friend,

Baldo

and Van Voorhis, 

Nat. Chem.

6

, 492 (2014).

Slide17

16

 

S

1

S

0

C

+

A

T

1

T

1

We proposed an non-adiabatic fission dynamics

.

[5]

[5]

Yost, Lee, Wilson, Wu, McMahon, Parkhurst, Thompson, Congreve, Rao, Johnson,

Sfeir

,

Bawendi

, Swager, Friend,

Baldo

and Van Voorhis, 

Nat. Chem.

6

, 492 (2014).

Slide18

17

S1S0C+A–

T

1

T

1

We proposed an non-adiabatic fission dynamics

.

[5]

[5]

Yost, Lee, Wilson, Wu, McMahon, Parkhurst, Thompson, Congreve, Rao, Johnson,

Sfeir

,

Bawendi

, Swager, Friend,

Baldo

and Van Voorhis, 

Nat. Chem.

6

, 492 (2014).

 

non-adiabatic

coupling

energy

gap,

absolute

value

reorganization

energy

Slide19

18

S1S0C+A–

T

1

T

1

We proposed an non-adiabatic fission dynamics

.

[5]

[5]

Yost, Lee, Wilson, Wu, McMahon, Parkhurst, Thompson, Congreve, Rao, Johnson,

Sfeir

,

Bawendi

, Swager, Friend,

Baldo

and Van Voorhis, 

Nat. Chem.

6

, 492 (2014).

 

off-diagonal elements

diagonal elements

 

Slide20

19

S1S0C+A–

T

1

T

1

We proposed an non-adiabatic fission dynamics

.

[5]

[5]

Yost, Lee, Wilson, Wu, McMahon, Parkhurst, Thompson, Congreve, Rao, Johnson,

Sfeir

,

Bawendi

, Swager, Friend,

Baldo

and Van Voorhis, 

Nat. Chem.

6

, 492 (2014).

 

large

non-adiabatic

coupling

small

energy

gap

large

rate

Slide21

10We constructed relevant diabatic states ()

 

Slide22

10We constructed relevant diabatic states (

) LUMO1LUMO2HOMO1HOMO2

Slide23

10

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

We

constructed

relevant

diabatic

states (

)

 

LUMO1

LUMO2

HOMO1

HOMO2

Slide24

23We constructed relevant diabatic states ()

 

Slide25

24S0S0 state:

 We constructed relevant diabatic states () 

0

Slide26

25S0S0 state:

S1S0-like states:

 

We

constructed

relevant

diabatic

states (

)

 

0

1

2

3

4

Slide27

26S0S0 state:

S1S0-like states:C+A

–-like

states:

 

We

constructed

relevant

diabatic

states (

)

 

0

1

2

3

4

5

6

7

8

Slide28

27S0S0 state:

S1S0-like states:C+A–-like

states:

T

1

T

1

-like

states:

 

We

constructed

relevant

diabatic

states (

)

 

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Slide29

28We constructed relevant diabatic states ()

 

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

I:

δ

-SCF

[6]

electronic configuration

.

 

[6]

Kowalczyk

, Yost, and Van

Voorhis

,

J. Chem. Phys.

,

134

, 054128 (2011). [7]

Kaduk, Kowalczyk, and Van Voorhis

Chem. Rev.

112

, 321 (2012).

Slide30

29We constructed relevant diabatic states ()

 

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

I:

δ

-SCF

[6]

electronic configuration

.

II: constrained DFT (CDFT)

[7]

charge and spin for

monomer

.

 

[6]

Kowalczyk

, Yost, and Van

Voorhis

,

J. Chem. Phys.

,

134

, 054128 (2011). [7]

Kaduk, Kowalczyk, and Van Voorhis

Chem. Rev.

112

, 321 (2012).

Slide31

30We constructed relevant diabatic states ()

 

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

I:

δ

-SCF

[6]

electronic configuration

.

II: constrained DFT (CDFT)

[7]

charge and spin for

monomer

.

III: Non-orthogonal configuration interaction (NOCI)

[7]

energy

gap

non-adiabatic coupling

.

 

[6]

Kowalczyk

, Yost, and Van

Voorhis

,

J. Chem. Phys.

,

134

, 054128 (2011). [7]

Kaduk, Kowalczyk, and Van Voorhis

Chem. Rev.

112

, 321 (2012).

Slide32

31m−2We obtained diabatic states!

Slide33

32m−2We obtained spin-purified singlet diabatic states!

Slide34

33

m

−2

We obtained

spin-purified singlet

diabatic

states!

Slide35

34m−21(C+A–

)1(S1S0–S0S1)

1

(S

1

S

0

+S

0

S

1

)

1

(

A

C

+

)

1

(T

1

T

1

)

1

(S

1

S

1

)

We obtained

spin-purified singlet

diabatic

states!

Slide36

35

S1S0C+A–

T

1

T

1

We proposed an non-adiabatic fission dynamics

.

[5]

[5]

Yost, Lee, Wilson, Wu, McMahon, Parkhurst, Thompson, Congreve, Rao, Johnson,

Sfeir

,

Bawendi

, Swager, Friend,

Baldo

and Van Voorhis, 

Nat. Chem.

6

, 492 (2014).

 

large

non-adiabatic

coupling

small

energy

gap

reorganization

energy

large

rate

Slide37

36We ordered energies and non-adiabatic couplings.

E

(eV)

0.0

1.0

2.0

3.0

0.5

1.5

2.5

3.5

1

(S

1

S

0

)

1

(S

0

S

1

)

1

(S

0

S

0

)

1

(S

0

S

0

)

1

(S

0

S

0

)

1

(

S

1

S

0

+S

0

S

1

)

1

(

S

1

S

0

S

0

S

1

)

1

(

S

1

S

0

+S

0

S

1

)

1

(C

+

A

)

1

(C

+

A

)

1

(C

+

A

)

1

(A

C

+

)

1

(A

C

+

)

1

(A

C

+

)

1

(

S

1

S

0

S

0

S

1

)

o

−2

m

−2

p

−2

:

m

−2

p

−2

o

2

[5]

:

o

−2

m

−2

p

−2

:

m

−2

p

−2

o

−2

 

Charge-transfer-mediated

mechanism

first

step

S

1

S

0

C

+

A

 

[4]

Zirzlmeier

,

Lehnherr

,

Coto

,

Chernick

, Casillas, Basel,

Thoss

,

Tykwinski

, and

Guldi

Proc. Natl. Acad. Sci. U.S.A.

112

, 5325 (2015).

Slide38

37We ordered energies and non-adiabatic couplings.

E

(eV)

0.0

1.0

2.0

3.0

0.5

1.5

2.5

3.5

1

(S

1

S

0

)

1

(S

0

S

1

)

1

(S

0

S

0

)

1

(S

0

S

0

)

1

(S

0

S

0

)

1

(

S

1

S

0

+S

0

S

1

)

1

(

S

1

S

0

S

0

S

1

)

1

(

S

1

S

0

+S

0

S

1

)

1

(C

+

A

)

1

(C

+

A

)

1

(C

+

A

)

1

(A

C

+

)

1

(A

C

+

)

1

(A

C

+

)

1

(

S

1

S

0

S

0

S

1

)

o

−2

m

−2

p

−2

:

m

−2

p

−2

o

2

[5]

:

o

−2

m

−2

p

−2

:

m

−2

p

−2

o

−2

 

Charge-transfer-mediated

mechanism

is

probably

more

important!

[4]

Zirzlmeier

,

Lehnherr

,

Coto

,

Chernick

, Casillas, Basel,

Thoss

,

Tykwinski

, and

Guldi

Proc. Natl. Acad. Sci. U.S.A.

112

, 5325 (2015).

Slide39

38We ordered energies and non-adiabatic couplings.

E

(eV)

0.0

1.0

2.0

3.0

0.5

1.5

2.5

3.5

1

(T

1

T

1

)

1

(S

0

S

0

)

1

(S

0

S

0

)

1

(S

0

S

0

)

1

(T

1

T

1

)

1

(T

1

T

1

)

1

(C

+

A

)

1

(C

+

A

)

1

(C

+

A

)

1

(A

C

+

)

1

(A

C

+

)

1

(A

C

+

)

o

−2

m

−2

p

−2

:

m

−2

p

−2

o

2

[5]

:

o

−2

p

−2

m

−2

:

m

−2

o

−2

p

−2

 

Charge-transfer-mediated

mechanism

second

step

C

+

A

T

1

T

1

 

[4]

Zirzlmeier

,

Lehnherr

,

Coto

,

Chernick

, Casillas, Basel,

Thoss

,

Tykwinski

, and

Guldi

Proc. Natl. Acad. Sci. U.S.A.

112

, 5325 (2015).

Slide40

39We ordered energies and non-adiabatic couplings.

E

(eV)

0.0

1.0

2.0

3.0

0.5

1.5

2.5

3.5

1

(T

1

T

1

)

1

(S

0

S

0

)

1

(S

0

S

0

)

1

(S

0

S

0

)

1

(T

1

T

1

)

1

(T

1

T

1

)

1

(C

+

A

)

1

(C

+

A

)

1

(C

+

A

)

1

(A

C

+

)

1

(A

C

+

)

1

(A

C

+

)

o

−2

m

−2

p

−2

:

m

−2

p

−2

o

2

[5]

:

o

−2

p

−2

m

−2

:

m

−2

o

−2

p

−2

 

Charge-transfer-mediated

mechanism

is

probably

more

important!

[4]

Zirzlmeier

,

Lehnherr

,

Coto

,

Chernick

, Casillas, Basel,

Thoss

,

Tykwinski

, and

Guldi

Proc. Natl. Acad. Sci. U.S.A.

112

, 5325 (2015).

Slide41

40We ordered energies and non-adiabatic couplings.

E

(eV)

0.0

1.0

2.0

3.0

0.5

1.5

2.5

3.5

1

(S

1

S

0

)

1

(S

0

S

1

)

1

(T

1

T

1

)

1

(S

0

S

0

)

1

(S

0

S

0

)

1

(S

0

S

0

)

1

(T

1

T

1

)

1

(

S

1

S

0

+S

0

S

1

)

1

(

S

1

S

0

S

0

S

1

)

1

(

S

1

S

0

+S

0

S

1

)

1

(T

1

T

1

)

1

(

S

1

S

0

S

0

S

1

)

o

−2

m

−2

p

−2

:

m

−2

p

−2

o

2

[5]

:

p

−2

m

−2

o

−2

:

m

−2

p

−2

o

−2

 

Direct

mechanism

S

1

S

0

T

1

T

1

 

[4]

Zirzlmeier

,

Lehnherr

,

Coto

,

Chernick

, Casillas, Basel,

Thoss

,

Tykwinski

, and

Guldi

Proc. Natl. Acad. Sci. U.S.A.

112

, 5325 (2015).

Slide42

41We ordered energies and non-adiabatic couplings.

E

(eV)

0.0

1.0

2.0

3.0

0.5

1.5

2.5

3.5

1

(S

1

S

0

)

1

(S

0

S

1

)

1

(T

1

T

1

)

1

(S

0

S

0

)

1

(S

0

S

0

)

1

(S

0

S

0

)

1

(T

1

T

1

)

1

(

S

1

S

0

+S

0

S

1

)

1

(

S

1

S

0

S

0

S

1

)

1

(

S

1

S

0

+S

0

S

1

)

1

(T

1

T

1

)

1

(

S

1

S

0

S

0

S

1

)

o

−2

m

−2

p

−2

:

m

−2

p

−2

o

−2

[5]

:

p

−2

m

−2

o

−2

:

m

−2

p

−2

o

−2

 

Direct

mechanism

might

work

for

p

2

!

[4]

Zirzlmeier

,

Lehnherr

,

Coto

,

Chernick

, Casillas, Basel,

Thoss

,

Tykwinski

, and

Guldi

Proc. Natl. Acad. Sci. U.S.A.

112

, 5325 (2015).

Slide43

We evaluated the energies for relevant states and non-adiabatic couplings between them.42What can

we conclude from the study?[6] Tomasi, Mennucci and Cammi,  

Chem.

Rev.

105, 2999 (2005).

[7]

Warshel

and

Levitt,

J.

Mole.

Bio.

103

,

227

(1976).

[8]

Car and

Parrinello

,

Phys.

Rev.

Lett.

55

,

2471

(1985).

[9]

Vaissier

 and 

Van Voorhis,

J. Chem. Theory Comput

.

12

,

5111

(2016).

[10]

Mavros

,

Hait

and

Van

Voorhis,

J.

Chem.

Phys.

145

,

214105

(2016).

Slide44

We evaluated the energies for relevant states and non-adiabatic couplings between them.Our results support the trend that : m

−2 p−2 o−2. 43What can we conclude

from

the

study?

[6

]

Tomasi

,

Mennucci

 and 

Cammi

,

 

Chem.

Rev.

105

, 2999 (2005).

[7]

Warshel

and

Levitt,

J.

Mole.

Bio.

103

,

227

(1976).

[8]

Car and

Parrinello

,

Phys.

Rev.

Lett.

55

,

2471

(1985).

[9]

Vaissier

 and 

Van Voorhis,

J. Chem. Theory Comput

.

12

,

5111

(2016).

[10]

Mavros

,

Hait

and

Van

Voorhis,

J.

Chem.

Phys.

145

,

214105

(2016).

Slide45

We will obtain more quantitative results for energy

gaps and non-adiabatic couplings.44What should we do next?[6] Tomasi,

Mennucci

 and 

Cammi,

 

Chem.

Rev.

105, 2999 (2005).

[7]

Warshel

and

Levitt,

J.

Mole.

Bio.

103

,

227

(1976).

[8]

Car and

Parrinello

,

Phys.

Rev.

Lett.

55

,

2471

(1985).

[9]

Vaissier

 and 

Van Voorhis,

J. Chem. Theory Comput

.

12

,

5111

(2016).

[10]

Mavros

,

Hait

and

Van

Voorhis,

J.

Chem.

Phys.

145

,

214105

(2016).

Slide46

We will obtain more quantitative results for energy

gaps and non-adiabatic couplings.We will study the solvation effects, using both the polarizable continuum model (PCM)[6] and the quantum mechanical/molecular mechanical (QM/MM)[7] model.45What

should we do next?

[6

]

Tomasi

,

Mennucci

 and 

Cammi

,

 

Chem.

Rev.

105

, 2999 (2005).

[7]

Warshel

and

Levitt,

J.

Mole.

Bio.

103

,

227

(1976).

[8]

Car and

Parrinello

,

Phys.

Rev.

Lett.

55

,

2471

(1985).

[9]

Vaissier

 and 

Van Voorhis,

J. Chem. Theory Comput

.

12

,

5111

(2016).

[10]

Mavros

,

Hait

and

Van

Voorhis,

J.

Chem.

Phys.

145

,

214105

(2016).

Slide47

We will obtain more quantitative results for energy gaps

and non-adiabatic couplings.We will study the solvation effects, using both the polarizable continuum model (PCM)[6] and the quantum mechanical/molecular mechanical (QM/MM)[7] model.We will perform ab initio molecular dynamics

(AIMD)[

8]

or QM/MM dynamics

[9]

for geometries and spectral densities.

46

What

should we do next?

[6

]

Tomasi

,

Mennucci

 and 

Cammi

,

 

Chem.

Rev.

105

, 2999 (2005).

[7]

Warshel

and

Levitt,

J.

Mole.

Bio.

103

,

227

(1976).

[8]

Car and

Parrinello

,

Phys.

Rev.

Lett.

55

,

2471

(1985).

[9]

Vaissier

 and 

Van Voorhis,

J. Chem. Theory Comput

.

12

,

5111

(2016).

[10]

Mavros

,

Hait

and

Van

Voorhis,

J.

Chem.

Phys.

145

,

214105

(2016).

Slide48

We will obtain more quantitative results for energy gaps

and non-adiabatic couplings.We will study the solvation effects, using both the polarizable continuum model (PCM)[6] and the quantum mechanical/molecular mechanical (QM/MM)[7] model.We will perform ab initio molecular dynamics (AIMD

)[8] or QM/MM

dynamics

[9]

for geometries and spectral densities.

We will evaluate Condon/non-Condon dynamics using

spin

boson Hamiltonian.

[10]

47

What

should we do next?

[6

]

Tomasi

,

Mennucci

 and 

Cammi

,

 

Chem.

Rev.

105

, 2999 (2005).

[7]

Warshel

and

Levitt,

J.

Mole.

Bio.

103

,

227

(1976).

[8]

Car and

Parrinello

,

Phys.

Rev.

Lett.

55

,

2471

(1985).

[9]

Vaissier

 and 

Van Voorhis,

J. Chem. Theory Comput

.

12

,

5111

(2016).

[10]

Mavros

,

Hait

and

Van

Voorhis,

J.

Chem.

Phys.

145

,

214105

(2016).

Slide49

48AcknowledgementPrincipal Investigator: Troy Van VoorhisPostdoctoral associates: James Shepherd,

Piotr de Silva, Tamar Goldzak.Graduate students: Nadav Geva, Alexander Kohn, Nathan Ricke, Tianyu Zhu, Hongzhou Ye, Lexie McIsaac.

Undergraduate

students

:

Hikari

Iwasaki.

Alumni:

Valerie

Vaissier

,

Pedro Neto,

Michael

Mavros

, Matthew

Welborn

,

Diptarka

Hait

.

Funds:

U.S. Department of Energy

Software:

Q-Chem 4.4