PPT-10 Years of Probabilistic Querying

Author : alexa-scheidler | Published Date : 2017-07-07

What Next Martin Theobald University of Antwerp Joint work with Maximilian Dylla Sairam Gurajada Angelika Kimmig Andre Melo Iris Miliaraki Luc de Raedt

Presentation Embed Code

Download Presentation

Download Presentation The PPT/PDF document "10 Years of Probabilistic Querying" is the property of its rightful owner. Permission is granted to download and print the materials on this website for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.

10 Years of Probabilistic Querying: Transcript


What Next Martin Theobald University of Antwerp Joint work with Maximilian Dylla Sairam Gurajada Angelika Kimmig Andre Melo Iris Miliaraki Luc de Raedt Mauro Sozio. Bhargav Kanagal & Amol Deshpande. University of Maryland. Introduction. Correlated Probabilistic data generated in many scenarios. Data Integration [AFM06]: Conflicting information best captured using “mutual exclusivity”. (goal-oriented). Action. Probabilistic. Outcome. Time 1. Time 2. Goal State. 1. Action. State. Maximize Goal Achievement. Dead End. A1. A2. I. A1. A2. A1. A2. A1. A2. A1. A2. Left Outcomes are more likely. Asma. . Souihli. Oct. . 24. th. . 2012. Network and Computer Science . Department. XML. for semi-structured . data (. tree-like. structure). 2. Probabilistic Data - . PrXML. Jung-. Hee. Yun and Chin-Wan Chung, 2012.. Ashish Srivastava. Harshil Pathak. Introduction to Probabilistic Automaton. Deterministic Probabilistic Finite Automata. Probabilistic Finite Automaton. Probably Approximately Correct (PAC) learnability. Ashish Srivastava. Harshil Pathak. Introduction to Probabilistic Automaton. Deterministic Probabilistic Finite Automata. Probabilistic Finite Automaton. Probably Approximately Correct (PAC) learnability. Prithviraj Sen Amol Deshpande. outline. General Info. Introduction. Independent tuples . model. Tuple . correlations. Representing Dependencies. Query . evaluation. Experiments. Conclusions & Work to be done. Chapter 1: An Overview of Probabilistic Data Management. 2. Objectives. In this chapter, you will:. Get to know what uncertain data look like. Explore causes of uncertain data in different applications. Indranil Gupta. Associate Professor. Dept. of Computer Science, University of Illinois at Urbana-Champaign. Joint work with . Muntasir. . Raihan. . Rahman. , Lewis Tseng, Son Nguyen, . Nitin. . Vaidya. Chapter 3: Probabilistic Query Answering (1). 2. Objectives. In this chapter, you will:. Learn the challenge of probabilistic query answering on uncertain data. Become familiar with the . framework for probabilistic . Chapter 3: Probabilistic Query Answering (1). 2. Objectives. In this chapter, you will:. Learn the challenge of probabilistic query answering on uncertain data. Become familiar with the . framework for probabilistic . Chapter 5: Probabilistic Query Answering (3). 2. Objectives. In this chapter, you will:. Learn the definition and query processing techniques of a probabilistic query type. Probabilistic Reverse Nearest Neighbor Query. Chapter 7: Probabilistic Query Answering (5). 2. Objectives. In this chapter, you will:. Explore the definitions of more probabilistic query types. Probabilistic skyline query. Probabilistic reverse skyline query. Denis Krompaß. 1. , Maximilian Nickel. 2. and Volker Tresp. 1,3. 1. . Department of Computer Science. Ludwig Maximilian University, . 2. MIT, Cambridge and . Istituto. . Italiano. . di. . Tecnologia. Nathan Clement. Computational Sciences Laboratory. Brigham Young University. Provo, Utah, USA. Next-Generation Sequencing. Problem Statement . Map next-generation sequence reads with variable nucleotide confidence to .

Download Document

Here is the link to download the presentation.
"10 Years of Probabilistic Querying"The content belongs to its owner. You may download and print it for personal use, without modification, and keep all copyright notices. By downloading, you agree to these terms.

Related Documents