/
A GENERALIZED KHARITONOV THEOREM FOR QUASIPOLYNOMIALS ENTIRE FUNCTIONS AND MATRIX POLYNOMIALS A GENERALIZED KHARITONOV THEOREM FOR QUASIPOLYNOMIALS ENTIRE FUNCTIONS AND MATRIX POLYNOMIALS

A GENERALIZED KHARITONOV THEOREM FOR QUASIPOLYNOMIALS ENTIRE FUNCTIONS AND MATRIX POLYNOMIALS - PDF document

alexa-scheidler
alexa-scheidler . @alexa-scheidler
Follow
508 views
Uploaded On 2014-12-17

A GENERALIZED KHARITONOV THEOREM FOR QUASIPOLYNOMIALS ENTIRE FUNCTIONS AND MATRIX POLYNOMIALS - PPT Presentation

The classical Kharitonov theorem on interval stability cannot be carried over from polynomials to arbitrary entire functions In this paper we identify a class of entire functions for which the desired generalization of the Kharitonov theorem can be ID: 25226

The classical Kharitonov theorem

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "A GENERALIZED KHARITONOV THEOREM FOR QUA..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

AGENERALIZEDKHARITONOVTHEOREMFORQUASI-POLYNOMIALS,ENTIREFUNCTIONS,ANDMATRIXPOLYNOMIALSVADIMOLSHEVSKYLEVSAKHNOVICHTheclassicalKharitonovtheoremonintervalstabilitycannotbecarriedoverfrompolynomialstoarbitraryentirefunctions.Inthispaperweidentifyaclassofentirefunctionsforwhichthedesiredgeneralizationof SomeearlyresultsonthestabilityofsuchintervalpolynomialswereobtainedbyFaedoin  ifthefollowingfourpolynomialsarestable:where 0+ f2x2+f 4x4+ f6x6+x 0+f 2x2+ f4x4+f 6x6+x 1x+ f3x3+f 5x5+ f7x7+x 1x+f 3x3+ p5x5+f ThenotationsintheKharitonov’stheoremhavethefollowingmeaning.Ifwepartition eventerms oddterms Fo( F Thelattertheoremwasimmediatelyfollowedbyavastliterature;theresulthasbeengen-eralizedinmanyways,anditenjoyedanumberofapplicationsinmechanicalandelectrical1.2.Entirefunctions,quasi-polynomials,andstability.Stabilityproblemsforpoly-nomialswereintensivelystudiedformanydecades,andbynowtheyarequitewellunder-stood.Similarproblemsforentirefunctionsappearinseveralapplications.However,theyaretypicallymuchmoreinvolvedandmuchmorechallenging.LetusÞrstconsideraverytransparentscalarexample.Consideradifferentialequationwithatimedelay,i.e., zy,yThesolutionclearlyhastheformwhereisarootofthespecialentirefunction)=1+(calledbelowaquasi-polynomial).Oneseesthatthesystem(1.6)isstableiftherootsoftheentirefunctionalllieinthelefthalfplane.Theabovefunctionbelongstoamoregeneralclassofquasi-polynomialsdeÞnednext.EFINITIONbepolynomials.Afunctionoftheform iscalleda.(Pontryagyn[P42]usedthetermforthemorenarrowclassoffunctionsoftheformx,e,wherex,zisapolynomialintwovariables.)Letusnowconsideramorepracticalexamplegivingrisetoquasi-Manyproblemsincontrolengineeringinvolve(multiple)timedelaysmod-elledby Thismodelcanbeconstruedasarepresentativedynamicsoffullstatefeedbacksystemswithmultiplecomputationalandactuationdelays.Thedynamicsin(1.8)isalsocalledretardedtimedelaysystem,becausethehighestorderderivativetermsarenotaffectedbythedelays.AftertheLaplacetransformationonegetsthecharacteristicequation)=det(givingrisetothequasi-polynomialoftheformwherearepolynomials.Again,thestabilityofthefeedbacksystemwithmultipledelays(1.8)isequivalenttothelocationofalltherootsoftheentirefunctioninthelefthalfplane.TheÞrstresultsonstabilityofquasi-polynomialsandentirefunctionswereobtainedinthepioneeringworksofPontryagin[P42]andofChebotarev-Meiman[CM49].Theyweremotivatedbycontrollerdesign[speciÞcally,ofregulatorsandservomechanismsdrivingthetrackingerrortozero];modellingahitinapipeline.Themorerecentrelevantliteratureisnotexhaustive,andreading[BC63],[L80],[HVL93],[BCK95],[L96],[KZ97],[DV98],[OS02][DHB03],[KTMOM03]givesanintroductioninthecurrentstateofartinthisarea[seealsothereferencestherein,nopossibleomissionsareintentional].1.3.Mainresultsandthestructureofthepaper.AverycloseproblemofstudyingthestabilityofcertainÒperturbedÓfamiliesofentirefunctionswasaddressed,e.g.,in[BCK95],[DHB03],[KTMOM03].However,theßavoroftheirresultsseemstobedifferent.Firstly,theyconsideredÒuncertainfamiliesÓthatarenotintervalperturbationsasin(1.2).Secondly,theirsufÞcientconditionsarearenotoftheform(1.3),andmoreovertheirnumbercanbelarge.Themainresultofthispaperisdifferent:itisadirectgeneralizationoftheKharitonovÕstheorem.Inparticular,weconsiderexactlythestabilityofintervalentirefunctionsofthetype(1.2),andweshowthatfulÞllmentofthefourconditionsexactlyofthetype(1.3)sufÞcesforstability.Thepaperisstructuredasfollows.InSec2welaythegroundworkforfurthergener-alizationsbyrecallingthestandardproofoftheKharitonovtheorembasedontheclassicalHermite-Biehlercriterion[B1879].Simpleexamplesareincludedtorecallthatthelattercriterioncannotbecarriedovertoarbitraryentirefunctions.ThesectionidentiÞestwodifÞ-cultiestoovercomeinthenexttwosections. Suchconditionsinvolvecertainhyperplanes[BCK95],ortheyareoftheso-calledsomevertex-type InSec3wediscussthepropertiesoftheclassforwhichweshallprovethegeneralizedKharitonovtheorem.WeÞrstrecallhowtoovercometheÞrstdifÞcultybydeÞningtheHBclassofentirefunctions.Secondly,weshowhowtoovercometheseconddifÞcultyandsuggestananalogofnotchangingdegreeproperty.InSec4weusetheresultsofthetwopreceedingsectionstoformulateageneralizationoftheKharitonovtheoremforaclassofentirefunctions.Sec5containsproofsofthemainresults.InSec6wesuggestatechniquethatisusefulforsolvingsomeKharitonov-likeproblemsformatrixpolynomialsandmatrixentirefunctions.2.TwodifÞculties.2.1.TheHermite-BiehlertheoremandtheproofofthepolynomialKharitonovthe-orem.First,werecalltheclassicalHermire-Biehlertheorem,itplaysanimportantroleinestablishingtheKharitonovÕsresultforthepolynomialsandinextendingittoentirefunc-beapolynomialin(1.1)anddenetwopolynomials,andeven,andanoddanddenote Thenthepolynomialisstableifandonlyifthefollowingtwoconditionsholdtrue.Therootsofthepolynomialsareallrealandtheyinterlace.ThereisatleastonepointsuchthatThecondition1isequivalenttothefactthatthattherootsofthepolynomialsareallpurelyimaginaryandtheyinterlace.Ifthe(2.2)isfullledjustforonepointthenitisvalidforallFortherealthecondition(2.2)simplymeansthatwherearethecoefcientsofin(1.1).TheproofoftheKharitonovtheoremisnowimmediate.Figure1(thatillustratestheremark1andtheorem2.1)showsthatanyintervalperturbationoftheoddtermsgivesusastablepolynomial.FixingtheperturbedoddpartandapplyingasimilarargumenttotheevenpartoneÞnallyobtainsthetheorem1.1.Inthenexttwosubsectionsweshowthatthereareatleasttwoproblemsincarryingovertheaboveargumentstoarbitraryentirefunctions.2.2.TheÞrstdifÞculty.TheÞxeddegreepropertyandthenumberofroots.1indicatesthatintervalperturbationsdonotdestroyinterlacingoftherootsof.However,itisimplicitlyassumedthattheallpolynomialsin(1.1)and(1.2)havethesamedegree.Hencethenumberoftherootsofeachofthepolynomialsin(2.1)staysthesame. Fo,max Fo Fo,min Fe .2.1.IllustrationfortheProofoftheclassicalKharitonovtheoremforpolynomialsviatheHermite-Biehler.However,ifwereanentirefunctionthenitsdegreeisÒinÞnite,Óandhenceonehastotakecareofpreventingnewrootsfromoccurring.Graphically,onehastopreventthephenomenonshowninFigre2bymeansofimposingcertainadditionalconstrainstotheÞxed-degreeproperty. eFoFo,minFo,max .2.2.AnillustrationfortheÞrstdifÞculty.Onehastoimposeadditionalconditionspreventingarisingofthenewrootsof2.3.TheseconddifÞculty.TheHermite-Biehlertheoremdoesnotcarryovertoentirefunctions.Interlacingoftherootsisnotnecessary.Thefunction doesnothaverootsatallandhencestable.However,usingthedenition(2.3)weseethat)=cos)=sinhavenon-realroots,e.g., InterlacingoftherootsisnotsufÞcient.Again,usingthedenition(2.3)weseethatdonothaverootsatall,andhencetheinterlacingpropertyisfullled.Moreover,forany.Nevertheless Again,theseconddifÞcultyalsoindicatesthatitishopelesstoextendtheKharitonovÕstheoremtotheclassofallentirefunctions.Similarlytotheremarkmadeattheendofthesubsection2.2,thechallengehereistoidentifyaclassofentirefunctionsforwhichthetwodifÞcultiescanberemoved,andthentotrytoprovetheKharitonovÕstheoremforthatclass.Thisispreciselywhatisdoneintherestofthepaper.3.RemovingthetwodifÞculties.3.1.RemovingtheFirstDifÞculty.AnanalogueoftheÞxeddegreeproperty.thatevenforpolynomialstheconditions)=deg)=degareimplicitlyincludedintheclassicalKharitonovtheoremandtheyarecrucialforitsvalidity.(HereweusedthedeÞnitionin(2.3).)InourgeneralizedKharitonovtheoremtheseconditionswillbeincludedinadifferentform Fz)=OFe(z) thatappliesnotonlytopolynomialsbuttoentirefunctionsaswell.Thelatterexpressionsmakesenseforsincealltherootsofarepurelyimaginary,cf.withtheremark2.3.2.RemovingtheSecondDifÞculty.TheclassHP.Theindicatorfunctionproperty.3.2.1.Classicalresults.TheclassP.InthissubsectionwerecallthebasicdeÞnitionsandresultsthatcanbefoundin[CM49]and[L80],[L96].Theywillbeusedinwhatfollows.Wediscussherethesituationinwhichdoesnothaverootsinthelowerhalfplane.Inthenextsectionsthesesettingswillbeadjustedforstabilityof)=(EFINITIONbeanentirefunctionofniteexponentialtype.TocharacterizethegrowthofPhragmenandLindelofintroducedthefunction | whichiscalledanindicatorfunction Thequantity 2)Šh( iscalledtheofthefunctionAnentirefunctionofniteexponentialtypeissaidtobeintheclassPifithasnozerosintheopenlowerhalf-planeandTheindicatorfunctionplaysacrucialroleontherestofthepaper.Onereasonisthatitsbehaviorisconnectedwithinterlacingoftheroots,asdescribednext.([CM49],[L96],[K])Letuspartitiontheentirefunctionofniteexpo-nentialtypesothatarerealentirefunctions.belongstotheclassPifandonlyif1.therootsofareallrealandinterlacing;2.theindicatorfunctionsof3.atsomerealpointwehave(Ifthelatterconditionisfullledjustforonepointthenitisvalidforall3.2.2.AslightmodiÞcation.TheclassHP.Applicationtostability.ItisconvenienttoexplicitlytranslatetheresultsofSec3.2.1tothelefthalfplanecase(stability)andtousethemthereafter.EFINITIONbeanentirefunctionofniteexponentialtype.WesuggesttorefertothequantityastheofthefunctionWeshallreservethenametheHPclassforentirefunctionsofniteexponentialtypewithnozerosintheopenlefthalf-planeandsatisfying(cf.withtheorem3.2)Letuspartitiontherealentirefunctionofniteexponentialtype evendegreeterms odddegreetermsbelongstotheclassHPifandonlyif1.therootsofareallpurelyimaginaryandinterlacing; 2.theindicatorfunctionsof3.WehaveTheorem3.4yieldsthefollowingresult.(cf.with[L80],Ch.VI,sec.4.thm8.)Letbeanentirefunctionofniteexponentialtypewithnorootsontheimaginaryaxissatisfyingisstableifandonlyiftherootsofin(3.7)alllieontheimaginaryaxisandinterlace.Stabilityofquasi-polynomials.wherearerealpolynomials,and... 2 2Š1 23 Ifweassume(0)=i.e.,Inaccordancewiththeorem3.5,inthisexampleinterlacingoftherootsof(thatareallpurelyimaginary)isthenecessaryandsufcientconditionforthestabilityof)=sinh()+cosh(wherearepolynomials.InthiscaseInthelatterexamplethecondition(3.10)isnotfulÞlledwhichshowsthatthetheorem3.5isnotuniversal.HencetoderiveageneralizationoftheKharitonovtheoremwemayneedtousetheorem3.4,e.g.,itscondition(3.8).Thisisasubjectofthenextsubsection.3.2.3.RemovingtheSecondDifÞculty.Theindicatorfunctionproperty.Theclassoffunctionssatisfying(3.6)isanaturalgeneralizationofpolynomials.Indeed,thedeÞnition(3.10)immediatelyyieldsthatifisapolynomialthenandhenceHence,theclassofstablepolynomialscoincideswithpolynomialsbelongingtoThisobservationisoneindicationastowhytheindicatorfunctionproperty(triviallyfulÞlledforpolynomials)wouldbequitenaturalinthecontextofthegeneralizationoftheKharitonovtheoremtoentirefunctions. Alternatively,alltherootsof arerealandinterlace. 4.ThegeneralizedKharitonovtheorem.4.1.Mainresults.Throughoutthissectionweuseadecomposition evendegreeterms odddegreetermsofanarbitraryentirefunction F( betwoentirefunctionsofniteexponentialtypethatbelongtotheclassHPandsatisfy Fz)oforz= Thenallthefunctionsoftheform Fo( F (4.5)(for= )simultaneouslybelongtotheclassHPprovidedthefollowingconditionsare1.Thefunctionsarealloftheniteexponentialtypeandtheysatisfytheindica-torfunctionproperty:2.Ananalogofthexed-degree-property: Fz)=Oz= Weshallprovetheabovelemmaattheendofthissection.Theresultdualtothelemma4.1isstatednext. Thisisananalogoftheintervaluncertainty(1.4). betwoentirefunctionsofniteexponentialtypethatbelongtotheclassHPandsatisfy Fz)eforz= Thenallthefunctionsoftheform )simultaneouslybelongtotheclassHPprovidedthefollowingconditionsare1.Thefunctionsarealloftheniteexponentialtypeandtheysatisfytheindica-torfunctionproperty:2.Ananalogofthexed-degree-property: Fz)=Oz= Thelemmas4.1and4.2implythefollowingresult.GeneralizedKharitonovtheorem.Lettheconditions(4.4),(4.5),and(4.10),(4.11)andtheconditions1)-2)ofeachofthelemmas4.1and4.2befullled.IfonlyfourfunctionsbelongtotheclassHPthenallthefunctionsbelongtotheclassHPaswell.RecallthatforpolynomialswehavesothattheclassHPissimplytheclassofstablepolynomials.Hencetheorem4.3isadirectgeneralizationoftheKharitonovtheorem1.1.Recallthatforthequasi-polynomialsthevalueisgivenbytheclosedformexpression(3.12).Henceitisoftenpossibletoseethattheperturbations(4.5)and(4.11)yieldafamilysatisfyingthecondition(3.10).Ifitisthecasethenalltheresultsofthissubsectionarevalidinastongerformulation,i.e.,inwhichonereplaceatheclassHPbytheclassofstablequasi-polynomials.4.2.Someexamples.ChebotarevandMeiman.Addresingamechani-calproblemsuggestedbyVoznesenskyChebotarevandMeiman[CM49]consideredthefunc- wherewerepolynomialsofdegree5.LetusconsiderherethemoregeneralcasewithThinkingofasofaxedpolynomial,andofasofanintervalpolynomialweconstructforthefourcorrespondingpolynomialsbytheKharitonovrule.Thenthefollowingassertionisvalid.Ifthefourfunctionsarestablethenallarestable,too.wherearepolynomialssatisfyingAgain,letusthinkingofazofaxedpolynomial,andofasofanintervalpolynomials,andletusconstructthefourpolynomialsandthefourpolynomialsusingtheKharitonovrecipe.ROPOSITIONIfthesixteenfunctionsk,larestablethanallofthequasi-polynomialin(4.14)arestable.5.Proofofthelemma4.1..SincebothbelongtotheclassHP,therootsofeachoftheinterlacewiththeonesofbytheorem3.4.Now,(4.5)impliesthefollowingstatement.Betweenanytwosuccessivezerosoftherecouldbeeitherone(cf.withÞgure2.1)ormore(cf.withÞgure2.2)zerosof .Weprovethatthereisalwaysonlyonezero.Denotethepositiverootsofthefollowingfunctionsasfollows: functionsafter their(real)roots Fe( {ak} Fo,min( b1k} Fo( bk} F b2k} 11 sothatwehaveWedonotknowyetthatthereisonlyone.Soletusthinkforamomentthattherearemore,butweworkwithonlyasubsetoftherootsof/jzchoosingonlyonesuch.Sincetherootsofthefunc-areimaginaryandsymmetricwithrespecttotheorigin,theirHadamarddecompositions[L96]havetheform(1+ (1+ Letusconstructthefunction(1+ Itfollowsfrom(4.5)thatSincethearethesubsetofalltherootsofisanentirefunction.Now,therelations(4.4),(4.5),and(5.2)-(5.4)imply Fo(z)oforz= Clearly,(5.7)and(5.8)meanthat isboundedon .Interlacingoftherootsandlemma2ofsec27.3in[L96]implySimilarly,interlacingoftherootsof[L96]impliesThelattertwoequations(5.9),(5.10)andthecondition(4.6)yield Now,alltherootsarepurelyimaginaryand HencethefunctionbytheresultofLecture5in[L96]musthavethecompletelyregulargrowthSinceoneofthefactorsin(5.7)hascompletelyregulargrowth,bytheorem5ofChapterIIIin[L80]wehaveThelatterequationmeanthatthefunctionisoftheminimaltype.BythePhragmofprinciple[L96]isboundedeverywhereentirefunctionandhenceaconstant.Inviewof(5.4)and =lim wehave(0)=1.Hencetherootsofdointerlacewiththeonesofyieldingthecondition1)oftheorem3.4.Secondly,thecondition(3.8)followsfrom(4.6)andthefactthatisintheHPFinally,(3.9)isfulÞlledthanksto(5.5)andexpressions(5.2),(5.3),(5.4).belongtotheclassHPbytheorem3.4Thelemmaisproven.6.Thematrixcase.Inmanyappliedproblemsquasi-polynomialsoccurascharacteris-ticpolynomialsofacertainsystem.However,theintervalfamilytheoriginalsystemsisnottranslatedimmediatelyintotheintervalfamilyofthecorrespondingquasi-polynomials.Herewesuggestacertainalternative,namelytotrytoconstructtheÒedgeÓpolynomialsfortheintervalfamilyofquasi-polynomialsdirectlyintermsoftheoriginalsystem.WeÞrstformulatethegeneralsuggestion,andthenconsidercertainexamples.6.1.Ageneralsuggestion.isanarbitraryentirefunctionsuchthat Again,werepresent evendegreeterms odddegreetermsNow,supposethatonesucceededtoconstructfourmatricessuchthatforallvectorsz,hh,k Anentirefunctionisreferredtoasafunctionofcompletelyregulargrowthifthefunctionr, uniformlyconvergestoalmosteverywhere. z,hh,kz,hsatisfytheconditionsofthegeneralizedKharitonovtheorem.Thenisastablematrix6.2.Someexamples.Retardeddifferentialequation. whereisanvectorfunctionandisanmatrix,andisanumber.ThecharacteristicmatrixofthisequationhastheformwhereWesupposethatthereexisttwonumberssuchthatROPOSITIONThematrixfunctionisstableifwhere andifistherootoftheequationLetusprovethelatterproposition.Indeed,usingaresultofHyes[H50](seealso[HVL93])wededucethatthefunctionsareallstable.TheprooffollowsimmediatelyfromthematrixversionofthegeneralizedKharitonovtheorem.LetusconsiderthematrixfunctionwherearematricessatisfyingwithcertainnumbersROPOSITIONThematrixfunctionisstableif 2,14 wherearetherootsof ±,0 TheprooffollowsimmediatelyfromthematrixversionofthegeneralizedKharitonovtheoremandthefactthatallthefunctionsarestable.Thestabilityofthefourscalarquasi-polynomialsin(6.3)followsfrom13.9of[BC63],andmoreove,theresultoftheabovepropositionmakessenseeveninthesimplestscalarcase.[B1879]M.Biehler,Suruneclassedequationsalgebriquesdonttouteslesracinessontr,J.ReineAngew.Math.87(1879)350352.[BC63]R.BellmanandK.Cooke,Differential-DifferenceEquations,AcademicPress,1963.[BCK95]S.P.Bhattacharyya,H.Chapellat,L.H.Keel,RobustControl-TheParametricApproach,PrenticeHall,1995.[CM49]N.Chebotarev,N.Meiman,TheRouth-Hurwitzprobelmforpolynomialsandentirefunctions,TrudyMIAN,1949,vol.26.[DHB03]A.Datta,M.-T.HoandS.P.Bhattacharyya,StructureandSynthesisofPIDControllers,SpringerVerlag,2003.[DV98]L.DugardandE.Verriest(eds),Stabilityandcontroloftime-delaysystems,SpringertVerlag1998,[F53]S.Faedo,Unnuovoproblemadistabilitaperleequazionialgebricheecoefcientreali,Ann.Scuolanormalesuperiore,Pisa,Sci.fos.mat.,1953,vol,7,no1-2.p.53-63[H1856]Hermite,C.,ExtraitdÕunelettredeMr.Ch.HermitedeParisaMr.BorchardtdeBerlin,surlenom-bredesracinesdÕuneequationalgebriquecomprisesentredeslimitsdonJ.ReineAngew.(1856),39-51.[H1895]A.Hurwitz,UberdieBedingungen,unterwelcheneineGleichungnurWurzelnmitnegativenreellenTeilenbesitzt,Math.Ann.46(1895)273284.[H50]N.D.Hayes,Rootsofthetranscedentalequationassociatedwithacertaindifferentialdifference,J.LondonMath.Society,25(1950),226-232.[HVL93]J.K.HaleandS.VerdunLunel,IntroductiontoFunctionalDifferentialEquations,Springer-Verlag,NewYork,AppliedMathematicalSciencesVol.99,1993.[K]M.G.Krein.Asremarkedin[L96]thetheorem3.2wasalsoobtainbyM.G.Krein,butitwasneverpublishedbyhim.[K78]KharitonovV.L.,Asymptoticstabilityofanequilibriumpositionofafamilyofsystemsofdifferen-tialequations,DifferenzyalÕnyeuravneniya,(1978),2086-2088.[KTMOM03]Kharitonov,V.L.;Torres-Munoz,J.A.;Ortiz-Moctezuma,M.B.;Polytopicfamiliesofquasi-polynomials:vertex-typestabilityconditions,CircuitsandSystemsI:FundamentalTheoryandApplications,IEEETransactionson[seealsoCircuitsandSystemsI:RegularPapers,IEEETransactionson],Volume:50,Issue:11,Nov.2003Pages:1413-1420[KZ97]Kharitonov,V.L.andZyabkoA.,RobustStabilityofTimeDelaySystems,IEEETrans.onAuto-maticControl,39(1994),2388-2397.[L80]B.Ya.Levin.Distributionofzerosofentirefunctions.Revisededition.Amer.Math.Soc.Providence,RI,1980.[L96]B.Ya.Levin,LecturesonEntireFunctions,AMSpublications,1996.onlineversion:http://www.ams.org/online [M1868]J.Maxwell.OnGovernors,ProceedingsoftheRoyalSociety,No.100.1868 [OS02]NejatOlgacandRifatSipahi,AnExactMethodfortheStabilityAnalysisofTime-DelayedLinearTime-Invariant(LTI)Systems,IEEETrans.onAutomaticControl,vol.47,no.5,May2002,[OS03]V.OlshevskyandL.Sakhnovich,AnOperatorIdentitiesApproachtoBezoutians.AGeneralSchemeandExamples,2003,preprint.[P42]L.Pontryagin,Onthezerosofsometranscedentalfunctions,IANUSSR,Math.series,vol.6,115-134,1942.[R1977]E.J.Routh,Stabilityofagivenstateofmotion,London,1877.[VL02]S.VerdunLunel,SpectralThgeoryforneutraldelayequationswithapplicationstocontrolandsta-,inÒMath.SystemsTheoryinBiology,CommunicationsandFinance,Ó(J.Rosenthal,D.Gillivan,eds),p.415-469Springer,2002.