/
DenovosequencingofpeptidesbyMS/MSJoergSeidler,NicoZinn,MartinE.Boehman DenovosequencingofpeptidesbyMS/MSJoergSeidler,NicoZinn,MartinE.Boehman

DenovosequencingofpeptidesbyMS/MSJoergSeidler,NicoZinn,MartinE.Boehman - PDF document

alexa-scheidler
alexa-scheidler . @alexa-scheidler
Follow
418 views
Uploaded On 2016-07-08

DenovosequencingofpeptidesbyMS/MSJoergSeidler,NicoZinn,MartinE.Boehman - PPT Presentation

CorrespondenceProfessorWolfDLehmannMolecularStructureAnalysisW160GermanCancerResearchCenterImNeuenheimerFeld28069120HeidelbergGermanywolflehmanndkfzde4962214245542010WILEYVCHVerlagGm ID: 395320

Correspondence:ProfessorWolfD.Lehmann MolecularStruc-tureAnalysis(W160) GermanCancerResearchCenter ImNeuenheimerFeld280 69120Heidelberg Germanywolf.lehmann@dkfz.de49-6221-42-45-542010WILEY-VCHVerlagGm

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "DenovosequencingofpeptidesbyMS/MSJoergSe..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

DenovosequencingofpeptidesbyMS/MSJoergSeidler,NicoZinn,MartinE.BoehmandWolfD.LehmannMolecularStructureAnalysis,GermanCancerResearchCenter,Heidelberg,GermanyReceived:June30,2009Revised:September18,2009Accepted:September23,2009ThecurrentstatusofdenovosequencingofpeptidesbyMS/MSisreviewedwithfocusoncollisioncellMS/MSspectra.TherelationbetweenpeptidestructureandobservedfragmentionseriesisdiscussedandtheexhaustiveextractionofsequenceinformationfromCIDspectraofprotonatedpeptideionsisdescribed.ThepartialredundancyoftheextractedsequenceinformationandahighmassaccuracyarerecognizedaskeyparametersfordenovosequencingbyMS.Inaddition,thebeneÞtsofspecialtechniquesenhancingthegenerationoflonguninterruptedfragmentionseriesfordenovosequencingarehighlighted.AmongtheseareterminalOlabeling,MSofsodiatedpeptideions,N-terminalderivatization,theuseofspecialproteases,andtime-delayedfragmentation.TheemergingelectrontransferdissociationtechniqueandtherecentprogressofMALDItechniquesforintactproteinsequencingarecovered.Finally,theintegrationofbioinformatictoolsintopeptidedenovosequencingisdemonstrated.bionseries/CID/Manualsequencing/Sequenceinformation/yionseries1IntroductionTheintroductionofchemicalproteinsequencingbyEdmandegradation[1]inthe1950swasamilestoneinthedevel-opmentofproteinresearch.ForidentiÞcationofEdmandegradationproducts,mainlyLCwasused.Intermittently,MSwasintroducedasalternativemethodtoLCwithopticaldetection.Thiswasachievedincombinationwiththeearlysoftionizationtechniqueschemicalionization[2],Þelddesorption[3],andfastatombombardment[4].Later,thegradualreÞnementofMS/MStechniquescreatedthebasisforpeptidesequencingbyMS(forareview,see[5]),whichÞnallygavefastaccesstomultipleinternalproteinsequen-cesbytheanalysisofproteolyticpeptides[6Ð8].Inaparalleldevelopmenttermedladdersequencing,proteinsequenceswerereadbysinglestageMALDI-MSfromsequenceladdersgeneratedbyexopeptidases[9Ð12].Withinthelasttwodecades,proteinsequencedeterminationbyMS/MSbecamemoreandmorepowerful,adevelopmentdrivenmainlybytheimprovementsofLCtechniquesincombi-nationwithESI[13].TheadvantagesofMS/MStechniqueswithrespecttospeed,sensitivity,andapplicabilitytocomplexpeptidemixturesgraduallyledtothereplacementofEdmantechniquesbyLC-MS/MS.Asaresult,MS-basedproteomicshasemergedasthemethodofchoicefortheidentiÞcationofproteins[14,15]interpretationofMSdatausingsearchenginessuchasMASCOT[16],SEQUEST[17],X!TANDEM[18],orOMSSA[19].MSdataaretypicallyeitherMALDImassÞngerprint Correspondence:ProfessorWolfD.Lehmann,MolecularStruc-tureAnalysis(W160),GermanCancerResearchCenter,ImNeuenheimerFeld280,69120Heidelberg,Germanywolf.lehmann@dkfz.de49-6221-42-45-542010WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim www.proteomics-journal.com,634–649DOI10.1002/pmic.200900459 presentinthereferencedatabase.Inspiteofthecontinu-ouslygrowingsequencedatabases,denovosequencingofsequencingwithoutassistanceofalinearsequencedatabase,isstillessentialinseveralanalyticalsituations.Forexample,analysesofproteinsequencevariantsortheirspliceisoformsrequiredenovoaswellasproteinanalysisfromorganismswithunse-quencedgenomes.Inaddition,denovosequencingisessentialforanalysisofpeptidescontainingnon-proteinicormodiÞedaminoacids,astypicallypresent,inbioactivepeptidesofbacteriaorfungi[24].TheperformanceofboththeMS/MSandoftheLCpartinßuencestheutilityofanLC-MSsystemfordenovosequencing.ThisisbecausethesigniÞcanceofpeptideMS/MSdataisconnectedwiththepurityofthepeptideionsselectedforfragmentation.Inthefollowing,thestate-of-the-artandcurrentadvancementsofpeptidedenovosequencingbyMSarereviewedanddiscussed.ImportantpointsaretheredundancyofsequenceinformationpresentinCIDspectra,theuseofnewpeptideactivationtechniques,MSanalyses,theinßuenceofmassaccuracy,labelingtechniques,thefragmentationofintactproteins,andbioinformatictoolsforareference-freeinter-pretationofMS/MSspectra.2NomenclatureofpeptidefragmentionsTheintroductionofsoftionizationtechniquesenabledtheefÞcientgenerationofintactpeptideionswhichcanbeselectedasprecursorsforsubsequentactivationanddetec-tionoftheirfragmentions.Forpeptidesequencing,thepositivemodeisgenerallyusedduetoitshighersensitivityandsinceMS/MSspectraofprotonatedpeptidescontainawealthofsequence-speciÞcfragmentions.Incontrast,negativeionMS/MSspectracontainlesssequenceinfor-mationandareusuallymoredifÞculttointerpret.Frag-mentationofprotonatedpeptideionsfollowingCIDoccurspredominantlyatthepeptidebackbonebyproton-inducedfragmentationreactionsasexplainedbythemobileprotonmodel[25].ThewidelyacceptednomenclaturefortheannotationofpeptidesequenceionsisoutlinedinFig.1,asoriginallyproposedbyRoepstorffandFohlman[26]andlatermodiÞedbyBiemann[27].SequenceionsthatundergoneutrallossaredistinguishedfurtherasforexamplethelossofHOisindicatedbyorthelossofNH3CIDThemajorityofpeptidedenovosequencinghasbeenperformedusingCID(orcollision-activateddissociation).InlowenergyCID,activationofmolecularionsisachievedbycollisionswithinertgasmolecules(He,N,Ar)presentinaseparatecollisioncellorasbathgasinaniontrap.InCID,thetranslationalenergyoftheionsispartiallyconvertedintointernalvibrationalenergywhichtheninducespeptidefragmentation.Accelerationoftheprecursorionsinthecollisionzonebyapotentialdifference(collisionoffset)intensiÞesthefragmentationandleadstomoresecond(orhigherorder)fragments,duetorepeatedcollisionsduringthetravelthroughthecollisioncell.Moderatecollisionoffsetvaluesaremostfavorableforsequencing,intermsofabsolutefragmentionintensityandbackgroundlevel.ForunmodiÞedpeptides,activationofprotonatedmoleculesleadsprimarilytobackbonefragmentations,resultinginstructure-speciÞcfragments.Themobileprotonmodel[25]cansemi-quantitativelyrationalizethedistributionoftheobservedfragments[28,29].Aparticularfeatureofback-bonecleavagesofmultiplyprotonatedmolecularionsisthattheymayresultincomplementaryb/yfragmentions.CleavagesattheN-terminalsiteofPorattheC-terminalsiteofDaretheprototypeformsoffragmentationresultingincomplementaryfragmentions.However,incollisioncellMS/MSspectraofpeptidestheoccurrenceofcomplemen-taryionsisrathertheexceptionthantherule.ThisimpliesthatthemajorityofbackbonecleavagesareonlyrepresentedbyeitherboryionsandthattheindividualC-orN-terminalfragmentionseriesmostlyexhibitonlyaminoroverlap.ThissituationisdemonstratedinFig.2foracollectionofquadrupoleTOF(Q-TOF)CIDspectrasummarizingtheirsearchengine-annotatedfragmentionseries.ThedatainFig.2implythatthelocationofthebasicresiduesR,K,andHdeterminesthebalancebetweenthelengthofthebandyionseries.TheCIDspectraoftypicaltrypticpeptideswithabasicresidueattheC-terminusarecharacterizedbyextendedyionseriesaccompaniedbyshortbionseries(btobwithoutbions(Fig.2A).PeptideswithabasicresidueattheN-terminusmaybegenerated,bydigestionwithLysN.TheirCIDspectraarecharacterizedbylongbionseriesinconnectionwithshortyionseries(Fig.2B).PeptideswithbasicresiduesatbothterminiexhibitCIDspectrawithbandyionseriesofcomparablelengthoftenwithmoderateoverlap(Fig.2C),andpeptideswithtryptic 2N O1R3R2R4 O yx abc Figure1.Nomenclatureofsequence-specicpeptidefragments;a-,b-,andc-typeionscontaintheN-terminus;x-,y-,andz-ionscontaintheC-terminus;hydrogenrearrangementsareomittedinthissimpliedannotation(accordingto[27]).R1,R2,R3repre-sentthesidechainsoftheaminoacidresidues.,634–6492010WILEY-VCHVerlagGmbH&Co.KGaA,Weinheimwww.proteomics-journal.com miscleavagesitesshowasimilarcharacteristic.Ingeneral,theiroccurrenceiscausedbyeitheraKK,RR,KR,RK,KP,orRPmotiforbythepresenceofanacidicresidueinoneofthesequencepositions3relativetoKorR[32,33].Forthesepeptideswithinternalbasicresidues,amorepronouncedmutualoverlapofthefragmentionseriesorsequenceionsuppressionaroundinternalbasicresiduesmayoccur(Fig.2D).Inpractice,backbonecleavageinthevicinityofRandKresiduesisnotveryeffectiveduetosequesteringoftheprotonsatthebasicsite.Thus,thecorrespondingionsareoflowrelativeabundance,sothattheymayescapedetection,asobservedforthepeptideinternalKstartingwithQES(Fig.2D).ThepresenceoftwoormoreRresiduesindirectorclosevicinitynormallycausespronouncedgapsinfragmentionseriesofanytype,duetothehighbasicityofR.ESIpeptideionswithchargestate2and3arethepreferredprecursorionsfordenovosequencing.Inpractice,theMS/MSspectraofallaccessiblechargestatesshouldberecorded,sincethecorrespondingspectraoftenexhibitboryionseriesofdifferentlength,sothatdifferentregionsofthepeptidemaybecomeaccessibleinthisway.Ingeneral,fragmentionspectraofhigherchargestatescontainmoresequenceions;however,MS/MSspectraofdoublychargedionsareoftenmoreeasilyinter-pretedthanthoseoftriplyorquadruplychargedprecursorions.Themanualannotationofthebasicionserieshasbeenexplicitlysummarizedinastep-by-steptutorial[34].Besidesbandyions,additionaltypesoffragmentionsoccurinCIDspectraofpeptideswhichalsocontainsequenceinformation.Thesecompriseneutrallossreac-tionsfromthepeptidetermini[35,36]andinternalfrag-mentions[37].ThisisexempliÞedforthedenovosequencingofthepeptideSNTDANQ[L/I]WT[L/I]KshowninFig.3.ThispeptidewasobtainedbytrypticdigestionofatypeIIribosome-inactivatingproteinfromtheplant.Itssequencecouldbedeterminedonthebasisofthealmostcompleteyionseriesfromytoy(Fig.3A).Inaddition,acontinuousbionseriesisobservedfromtob).Inspectionofthelowmasssideofthethe12H]21signalrevealedtheoccurrenceofneutrallossfragmentations,whichcanbeeasilyrecognizedbytheirchargestate(Fig.3B).TheseionsshowtheN-terminallossofSfollowedbythelossofN,whichresolvestheambiguityinthestructureofthebionat202betweenSNandNS.TheoccurrenceoftheN-terminalsequenceSNisalsosupportedbythebionfragmentproÞle.ThisproÞleshowsthelossofNH),whichistypicalforbwhereasbNSionsshowthepreferentiallossofH(referencedatanotshown).Theassignmentofsequenceandcompositionalisomersofbtheirfragmenta-tionproÞleshasbeendemonstratedrecently[38,39].ThelowmassregionoftheMS/MSspectrum(Fig.3C)alsoprovidescompositionalinformationintheformofimmo-niumions.Table1summarizesthesequenceandcompositionalinformation,whichcanbeextractedfromtheMS/MSspec-truminFig.3.Itcanberecognizedthatredundantinfor-mationisobtainedfortheN-terminusbasedonthebfragmentationproÞleandontheneutrallossesfromthemolecularion.ThecentralsequenceTDANQisbasedbothontheoccurrenceofbandyions.Finally,theoccurrenceoftheC-terminalKresiduesissupportedbothbythefragmentionmassandbythespeciÞcityoftrypsin.TheresultisroundedbythedetectionoftheimmoniumionsforQ,W,and[L/I]. T V D ME S T E V F T F Q S E E Q Q Q T E D E L Q D V P Q L E I V P N S A E E S L Y S S S P G G A Y V T Q E S L S P E E E D Q Q A F L G G D V S P T Q I D V S Q F G S F G W S E S E Q S E E F G G G I A T oxME S E D G V E G D L G E T Q S L G G S G S V V P G S P S L D I E G A S L E L S D D D T E S S P S W E P F D W Y P A E E S E E S E D D M G F G L F D S T Q G V T L T D L Q E A E S L P N S L D Y A Q A S E G S E Q E S V E F L A F P S F S S D L T L G T G S F I E D V G S D E E D D S G E S D D P E I E D V G S D E E E E E Q L S S G V S E I T V D ME S T E V F T T V D ME S T E V F T F Q S E E Q Q Q T E D E L Q D F Q S E E Q Q Q T E D E L Q D V P Q L E I V P N S A E E V P Q L E I V P N S A E E S L Y S S S P G G A Y V T S L Y S S S P G G A Y V T Q E S L S P E E E D Q Q A F L G G D V S P T Q I D V S Q F G S F L G G D V S P T Q I D V S Q F G S F G W S E S E Q S E E F G G G I A T oxME G W S E S E Q S E E F G G G I A T oxME S E D G V E G D L G E T Q S S E D G V E G D L G E T Q S L G G S G S V V P G S P S L D L G G S G S V V P G S P S L D I E G A S L E L S D D D T E S I E G A S L E L S D D D T E S S P S W E P F D W Y P A E E S E E S E D D M G F G L F D E E S E E S E D D M G F G L F D S T Q G V T L T D L Q E A E S T Q G V T L T D L Q E A E S L P N S L D Y A Q A S E S L P N S L D Y A Q A S E G S E Q E S V E F L A G S E Q E S V E F L A F P S F S S D L F P S F S S D L T L G T G S F I E D V G S D E E D D S G I E D V G S D E E D D S G E S D D P E I E D V G S D E E E E E E S D D P E I E D V G S D E E E E E Q L S S G V S E I Q L S S G V S E I Figure2.Distributionofb()andy(seriesfragmentionsinQ-TOFCIDspectraasobservedinasetofpeptideswithdifferentdistributionsofbasicaminoacids(datafromfromdatafrom[31]);(A)peptideswithabasicresidueattheC-terminus;(B)peptideswithabasicresidueattheN-terminus;(C)peptideswithbasicresiduesatbothtermini;(D)peptideswithterminalandinternalbasicresidues.(ExplanationoftheannotationforQLSSGVSEIR:thearrowsindicatethepresenceofbandoftheyseriesfromyJ.Seidleretal,634–6492010WILEY-VCHVerlagGmbH&Co.KGaA,Weinheimwww.proteomics-journal.com Complementaryb/yionpairsdonotonlygivesequenceinformationbutalsoprovideadditionalmolecularweightinformation,sincethesumoftheirmassvaluesisequivalenttotheprecursorionmass.Thisishelpfulincaseamixtureofprecursorionsoraprecursorionofverylowabundanceisisolated.InadditiontothesequenceinformationsummarizedinTable1,peptideMS/MSspectrasometimesshowinternalbtypefragmentions[37].Finally,reporterfragmentationsforcovalentmodiÞca-tionsarehighlyusefulforrecognitionofmodiÞedpeptides[40].Overall,theoccurrenceofredundantsequenceinfor-mationcontainedinseveraltypesoffragmentationsofmultiplychargedionsisabeneÞcialfeatureofESIincombinationwithcollisioncellCID,whichstronglyfavorsitsusefordenovosequencingofpeptides.CollisioncellMS/MSspectraarehighlydependentonthecollisionoffsetused.Theextentoffragmentationmaybevariedfromonlypartialtocompletedecompositionofthemole-cularionbyincreasingtheoffsetvalue.Simultaneously,fragmentionsundergosecondary(andhigherorder)frag-mentations.Nevertheless,duetothelargebodyofexperi-mentalMS/MSdataavailable,optimaloffsetvaluescanbeselectedempirically.4ComparisonofcollisioncellandiontrapCIDPeptidefragmentionspectrageneratedinacollisioncellorinaniontraparebothgeneratedbyCID.Nevertheless,theyexhibitdifferencescausedbythewayofactivation,massanalysis,andtimescale.Inprinciple,iontrapMS/MSspectraareveryreproducibleanddominatedbyÞrstgenerationfragments,sincefragmentsarenormallynotfurtheractivatedduetotheirdifferentvalue.Thus,typicallymorecomplementaryb/yionpairsareobservedcomparedtoQ-TOFMS/MSspectra.Thisleadstotheoccurrenceofpronouncedoverlapsbetweenbandyionseries,evenfornormaltrypticpeptideswithasinglebasicresidueattheC-terminus(Fig.4).Thischaracteristiccreatesredundantsequenceinformation,whichputstheread-outofthesequenceonareliablebasis. Figure3.DenovobyQ-TOFCIDofthetrypticpeptideSNTDANQ[L/I]WT[L/I]KoriginatingfromatypeIIribosome-inactivatingproteinisolatedfromXimeniaamer-;(A)completeMS/MSspectrumcharacterizedbyyandbionseries;(B)expandedcentralregionshowingC-terminalneutrallosses;(C)expandedlowmassregionshowingthey,andthebionanditsfragments,aswellasimmoniumions.,634–6492010WILEY-VCHVerlagGmbH&Co.KGaA,Weinheimwww.proteomics-journal.com denovosequencing,iontrapMS/MSspectrahaveacertainlimitationofaÔÔlowmasscut-off,ÕÕwhichisdirectlyproportionaltothevalueoftheprecursorion.Theaveragesizeoftrypticpeptidesexcludesfragmentiondetectionbelowabout200Ð300,limitingtheinforma-tionaboutthepeptideendspresentinlowmassfragments.UsingstepwiseMS,lowmassfragmentionscanalsobedetected(seebelow).Recentlydevelopedoperatingcondi-tionsforiontraps(pulsedQ-dissociation)allowagenerallyenhanceddetectionoflowmassions[41].Hybridinstru-mentssuchastheLTQ-orbitrapcombinationofferanadditionalactivationmodeoccurringinthetransferregionbetweenthetwomassanalyzers,whichgeneratesMS/MSspectrawithhighlyabundantlowmassfragments[42].Currently,MSinaniontrapappearstobethemostapplicabletechniquefordifferentiationbetweenleucineandisoleucine.IntheearlydaysofMS/MS,high-energyCIDwasmorefrequentlyappliedthantoday.Usingthisionactivationmethodforpeptideanalysis,sidechainfrag-mentationswereobserved.Thesewerefoundtobeusefulforthedifferentiationbetweenleucineandisoleucine.PeptidefragmentscontainingLwerefoundtoshowsatel-litesat42Da,comparedto28DasatellitesforI[43].Inlow-energyCIDofpeptidescontainingL/I,theimmoniumionofL/Iat86isfrequentlyobservedwithhighabundance.FurtherMS/MSanalysisofthisimmoniumionshowedthatthefragmentionat69isspeciÞcforI[44Ð46].Iontrapsareparticularlyfavorableforsuchananalysis[41]duetotheirMScapability.SuchananalysisisshowninFig.5providingclearevidencethattheresidueinthepeptideGpSVAVGVIKattheposition2fromtheC-terminusisisoleucine.5MALDI-PSD,MALDI-TOF/TOF,andMALDIin-sourcedecay(MALDI-ISD)MALDI-PSDwasintroducedastheÞrstMALDItechniquefordetectionoffragmentions[47].Fragmentsformedbymetastablefragmentationbetweentheionsourceandthereßectorcanbedetectedinthisway.SubsequentlytheuninterrupteddetectionofacompleteMALDI-PSDspec-trumwasdemonstrated[48],incontrasttotheoriginalstitchingofseveralpartialPSDspectra.MALDI-PSDspectraofpeptidesshowbandyionseriesandneutrallossesasobservedfollowingCID.However,sinceMALDIgeneratesmainlysinglychargedmolecularion,MALDI-PSDspectracontainlesssequenceinformationcomparedtotheCIDspectraofmultiplychargedprecursorionsasgeneratedbyESI.ThefragmentationofMALDIgeneratedpeptideionswasputonanimprovedinstrumentalbasisbythedevel-opmentoftwotypesofMALDI-TOF/TOFinstruments[49,50]allowingtherecordingofpeptideMS/MSspectrawithimprovedsequenceinformation[51,52].Inaddition,severalattemptswereundertakentoimprovethesequenceinfor-mationofMALDI-TOF/TOFspectraofpeptidesbyderiva-tization[53].Mostfrequently,thederivatizationistargetedtothepeptideN-terminuswiththeaimtoenhancetheC-terminalfragmentionseries(yions)whicharerelativelystablespeciesallowingsimpliÞedsequencing[54].Further-morethepKvaluesofthe-aminogroupattheN-terminusandthe-aminogroupoflysineareoftensufÞcientlyapartallowingtheirselectivederivatization.Incontrast,thisisnotfeasiblefortheC-terminus,sincethepKvaluesbetweenC-terminalandsidechaincarboxyfunctionsarelessclearlyseparated.AminogroupspeciÞcmodiÞcationcanbe Table1.TypesofsequenceinformationpresentintheMS/MSspectruminFig.3SNTDANQ[L/I]WT[L/I]KyIonsbIonsNeutrallossFragmentproleCompositionProteasespecicity D A F L G S F L Y E Y S S L D L D S I I A E V L Q G I V S W G S G C A Q A E A E S L Y Q S S Q I D I V L V G G S T F E E L N A D L F D A F L G S F L Y E Y S D A F L G S F L Y E Y S S L D L D S I I A E V S L D L D S I I A E V L Q G I V S W G S G C A Q L Q G I V S W G S G C A Q A E A E S L Y Q S A E A E S L Y Q S S Q I D I V L V G G S T S Q I D I V L V G G S T F E E L N A D L F F E E L N A D L F Figure4.Typicalfragmentionseriesdistri-butioninpeptidesobservedinlineariontrapMS/MSspectra;(A)trypticpeptideswithasinglebasicsite;(B)trypticpeptideswithinternalbasicresidues.Forbothgroupsofpeptides,bandyionserieswithpronouncedoverlapareobserved.J.Seidleretal,634–6492010WILEY-VCHVerlagGmbH&Co.KGaA,Weinheimwww.proteomics-journal.com achievedwithsulfonicacidderivatives[55].Forarginine-containingtrypticpeptidesthisleadstoaspeciÞcN-terminalmodiÞcation.Lysine-containingpeptidescanbemodiÞedequallyfollowingguanidylationoflysine-aminogroups[56].Currently,Lysguanidylationisoftencombinedwithderivatizationby4-sulphophenylisothiocyanate(SPITC)[57Ð59]and2-sulfobenzoicacidanhydride[56,60].AnexamplefortheimprovementofaMALDIfragmentionspectrumisgiveninFig.6,adaptedfromarecentdenovosequencingstudyofplantproteinisoforms[61].TheMALDIfragmentionspectrumofthepeptideYVTYAA[I/L]AGDASV[I/L]DDRshowsthesameyfragmentionsbeforeandafterN-terminalderivatizationwithSPITC.However,afterderivatizationbionsarepracticallyabsentandtheyionsareofhighandnearlyuniformabundance.ThesuppressionofbionsbySPITCderivatizationisexplainedbythereplacementoftheN-terminalaminofunctionbythesulfonicacidfunction,sothatthederiva-tizedbfragmentsarenotabletostabilizeanextraproton.AnapproachforinßuencingthefragmentationbehaviorofpeptidesinMALDI-PSDreferstotrypticpeptideswithaC-terminallysine,whichisreactedwithastronglybasicreagent[62,63],resultingintheexclusiveoccurrenceofayionseries.BytheintroductionofdelayedextractionMALDI[64],thedetectionoffragmentionsgeneratedintheMALDIsourcebecamefeasible(ISD)[65].MALDI-ISDdetectsfragmentionsformedinthetimegapbetweenthelaserpulseandtheswitchtothefullacceleratingvoltage(100Ð500ns).ThetypicalMALDI-ISDfragmentionsofpeptidesareoftype,pointingtowardahighabundanceofradicalsintheMALDIplume.ThesametypeoffragmentsareobservedinExDfragmentationtechniques(seebelow),wheretheyoriginatefromprecursorradicalionsgeneratedbyelectrontransfer.MatrixoptimizationforMALDI-ISDhasbeendescribed[66].Applicationsfordatabase-supportedproteinidentiÞcationusingthetopdownapproachhavebeen[67,68]andthetechniqueappearstoofferpotentialalsofordenovosequencing.TheusefulnessofMALDIfordenovosequencingiscurrentlyfurtherstrengthenedbytheavailabilityofMALDI-MS/MSinstru-ments(MALDI-QTOF,MALDI-TOF/TOF,MALDI-6ExDtechniquesRecently,electroncapturedissociation(ECD)[69]andelec-trontransferdissociation(ETD)[70](summarizedasExDtechniques)havebeenintroducedasnewactivationtechni-quesforpeptidefragmentation,whichcanberegardedascomplementarytoCID[71].ExDtechniquesfunctiontransferofasinglelowenergyelectrontoamultiplyprotonatedpeptide,mostlywithchargestate3or4,asoftenobservedinESI.Theelectronistransferredeitherdirectly(ECD)orfromapreviouslyformedradicalanion(ETD).Thefreeradicalsiteintroduceduponelectrontransferleadstoaninstantaneousandlocalradical-inducedbackbonecleavage.ThiscleavageaffectsmainlytheN-Cbond,sothattheresultingfragmentionspectratypicallyshowcorztypeions.Adetailedmechanismfortheirformationhasbeenproposed[70].Recently,thecombina-tionofmetalloendopeptidaseLysNdigestionwithETDorMALDI-TOF/TOFhasbeenappliedfordenovo 30 35 40 45 50 55 60 70 80 85 90 40 60 100 40 60 80 100 40 60 80 100 isoleucine132+86+ 132+86+ 909+86+ BC rel. abundance Figure5.IontrapMS/MSspectraoffordifferentiationbetweenleucineandisoleucine;(A)MS/MSof86generatedfromleucine;(B)MS/MSof86generatedfromisoleucine;(C)MS/MSofgeneratedfromthepeptideGpSVAVGVIK.Thehighabundanceofm/z69in(c)identi-esthepresenceofisoleucine.,634–6492010WILEY-VCHVerlagGmbH&Co.KGaA,Weinheimwww.proteomics-journal.com sequencing[72,73].PeptidesgeneratedbyLysNcarryaKresidueattheN-terminusresultinginthepreferentialoccurrenceofcionseries,asituationfacilitatingaread-outofthepeptidesequence.ExDspectraarewellsuitedforsequencingofmodiÞedpeptides[74],sincefragmentationsoriginatingfromsidechainsarenormallynotobserved.EvenrelativelylabilestructuressuchasphosphorylatedaminoacidsstayintactuponExD.However,variationsinthepeptidebackbonestructureinßuencetheradicalinducedfragmentation.Forinstance,cleavageattheN-terminalsiteofPissuppressedduetotheexistenceoftwoN-Cbonds,anobservationthatisinaccordancewiththeproposedfragmentationmechanism.Anotherexampleisthepresenceofanisoaspartylresidue,introducinganextraC-Cbondintothepeptide/proteinbackbone,whichiscleavedusingECD[75,76]orETD[77].ThiscleavageleadstoisoAsp-specifcbackbonefragments.ForisoAspatpositionnfromtheN-terminus,a58ionisformed,andacomplementary57maybeformed,wheremannotatestheisoAsppositioncountedfromtheC-terminus.ArelativequantiÞcationofthesite-speciÞcisoAspcontentinpeptideshasbeendemonstratedbyECD[78].SuchananalysishasalsobeendemonstratedusingCID[79];however,ExDtechniquesappeartobesuperior,sincetheypresentisoAsp-speciÞcions,whereasCIDtech-niquesmainlydisplayquantitativechangesinfragmentionabundances[79]orisoAsp-speciÞcionsofminorrelativeabundance[80].7LCelutionbehavioranddenovoInLC-MS/MSanalyses,thepeptideretentiontimeisananalyticalparameter,whichisobtainedwithoutextraeffort.Nowadays,theLCretentiontimesofpeptidescanbepredictedwithhighreliability(inawindowof2Ð3min)fordifferentchromatographicsystems,[81Ð83].Therelativeelutionorderisalsoausefulparameter,ascanbedemonstratedintheanalysisofthejustmentionedisoAsp-containingpeptides.Sincetheyaregeneratedduringproteinaging,theyaregenerallyaccompaniedbytheircognatescarryinganormalaspartylresidue.OnRP-LC,peptideswithinternalisoAsppeptideselutebeforetheirunmodiÞedanalogs,whereaspeptideswithN-terminalisoaspartateelutelater[84](peptideswithC-terminalisoas- Figure6.MALDIMS/MSspectraofof1H]1ionsofthepeptideYVTYAA[I/L]AGDASV[I/L]DDR(A)beforeand(B)afterSPITCderivatization.Derivatiza-tioninducesneutrallossesofthemodifyinggroup(173Da,215Da)andapronouncedenhancementofallyions.Adaptedfrom[61],withJ.Seidleretal,634–6492010WILEY-VCHVerlagGmbH&Co.KGaA,Weinheimwww.proteomics-journal.com partatedonotexist).Inthisway,theLCretentiontimemaybeusefulasanadditionalÔÔsoftÕÕparametertoconÞrmtheresultofadenovosequencingstep.8MassaccuracyandpeptidesequencingThereliabilityofpeptidesequencingimproveswithincreasingaccuracyofthemassmeasurement,sincetheexactmasscontainsinformationabouttheelementalcomposition.ThemostobviousbeneÞtofaccuratemassmeasurementreferstothecorrectassignmentoffragmentionseries.KandQarenominallyisobaricaminoacidswithamassdifferenceofabout36mDa,andthedifferencebetweenWandEGisabout15mDa.Theseambiguitiescanbedifferentiatedatmediumresolution,asprovidedbyQ-TOFinstruments.However,interferingionsofdifferenttypeswithamultitudeofmassdifferencesincludingverysmallvaluesmayoccur,sothathighmassaccuracyisofgeneralvalue.Accuratemassdataarewithoutusefortherecognitionofstructuralisomerssincethesearecharacterizedbyidenticalelementalcompositions.Fordifferentiationbetweenisoele-mentalions,differencesintheirfragmentationbehaviororintheirchemicalproperties,e.g.inderivatizationorlabelexchangereactionshavetobeemployed.Firstofall,thepairL/Icannotbedifferentiatedbymassmeasurement.Inaddi-tion,numerousaccuratemassnumbersexist,whichrepresentdifferentaminoacidcombinations.Forseveraldipeptidecombinations,asingleelementalcompositionmaybeconnectedwithfourstructures(e.g.AN,NA,GQ,andQG).DifferentiationofthesequartetspresentasN-terminalmotifscanbeachievedviathebionfragmentationproÞle[39].OtherexamplesofisoelementalstructuresarethepairsGG/N(bothC)andGA/Q(bothCNowadaysseveralinstrumenttypes(FT-ICR,Orbi-Trap)areavailable[85],providingMSanalysiswithareso-lutionintherangeof100.000Ð500.000withmassaccuraciesintherangeof2Ð0.2ppm.Anearlyexampleforthenewpossibilitiesofferedbysuchextrememassaccuracyistheintroductionofcomposition-baseddenovosequencing[86,87].Thistwo-stepprocedurestartswithcalculationofasetofpossibleaminoacidcompositionsonthebasisofthehighlyaccuratemassvalueforapeptidemolecularionanditsfragmentions.Basedonthecalculationofallmassvalue-compatibleaminoacidcompositions,adatabasecontainingallpermutationsisgenerated.ThisdatabaseisthenusedforassignmentoftheMS/MSspectra.Thenewpossibilitiesofhighlyaccuratemassdataforautomateddenovohavebeensummarizedrecently[88].DenovosequencingandstableisotopeStableisotopelabelingtechniquescanalsobeusedtodenovosequencing.SelectivelabelingoftheC-terminusbyincorporationofOisparticularlyusefulforthispurpose,sinceitisarelativelyfastandcost-effectivemethod.TheÞrstattemptsforOintroductionwereperformedbyacid-catalyzedexchangeandbyesterase-cata-lyzedcleavageofmethylesters[89]withsubsequentanalysisbyfastatombombardment.However,acidtreatmentleadstopronouncedpeptidehydrolysisandesterasecleavageisrelativelyinefÞcientduetoalowafÞnityoftheesterasetowardpeptides.Incontrast,trypticdigestionineffectsafastincorporationofoneortwoOatomsattheC-terminusoftrypticpeptides,asvisualizedbyESIandMALDI-MS[90].Asexpected,aselectivelabelingofyionswasobtainedinthisway.Digestioninamixtureofgeneratesyionswithacharacteristicallydistortedisotopepattern[91Ð93]enablingtheirstraightforwarddifferentiationfromtheunlabeledbions.TheOlabelcanalsobeintroducedafterdigestioninaseparatestep[94].ThecombinationoftrypticdigestionwithOlabelingappearstobeparticularlyuseful,sincetrypticpeptidestendtoshowlonguninterruptedyionseries,andsincebyprinciple,internalyionsdonotoccur.Asanexample,Fig.7showstheMS/MSspectrumofthepeptideSTDANQ[L/I]WT[L/I]K,partiallylabeledwithOatthecarboxyterminus.Allyionscanberecognizedbyanelevated2Dasignalintheirisotopicenvelopes.Differentialterminalderivatizationswithalabeledandanonlabeledreagenthavebeenintroducedbothforquanti-tativeproteomicsaswellasforfacilitateddenovocing.Thelatterpurposeisachieved,sinceN-terminallabelingshiftsonlythebionseries,whereasC-terminallabelingselectivelyaffectsthecorrespondingyions.ThisconcepthasbeendemonstratedforderivatizationwithH-(Nicotinoyloxy)succinimide[95],O-methylisourea[96],-lysine[97],H-formaldehyde[98]ormorerecentlybyN-terminalH-acetylationusingaceticacidanhydrideanhydride10SpecialMS/MStechniquessuitedfordenovopeptidesequencing10.1Multistagefragmentationofsodium-cationizedClear-cutC-terminalsequenceinformationfrompeptidescanbeobtainedbymultiplestageMS[100,101]inaniontrap.Thisisparticularlythecase,whenlithium-orsodium-cationizedpeptidesinsteadofprotonatedpeptidesareselectedasprecursorions.Theprevailingfragmentationprocessof[Mand[MionsistheneutrallossoftheC-terminalaminoacidbuildingblockwithformationofan[Mionofthesametype,butshortenedbyoneaminoacid.Thus,theprocesscanberepeatedusingthecapabilitiesofaniontrap,asdemonstratedinseveralinvestigations.AsequenceladdergeneratedinthiswayisshowninFig.8forthepeptideSQGIASTK.,634–6492010WILEY-VCHVerlagGmbH&Co.KGaA,Weinheimwww.proteomics-journal.com Unfortunately,thebroaderapplicationofthiselegantC-terminalsequencingmethodislimitedbythefactthatnomethodsareavailableforthepreferredgenerationofcatio-nizedpeptidesathighsensitivity.10.2Time-delayedfragmentationThedistributionofproductionsobservedfollowingCIDistime-dependent.UsingaQ-Trapinstrument,selectiverecordingofMS/MSspectracontainingpreferentiallythemorestableyions(comparedtobions)hasbeendemon-strated.ThetermÔÔtimedelayedfragmentationÕÕ(TDF)[102,103]hasbeencreatedtodescribethedetectionoffragmentionsproducedatvariabletimewindowsandthussubpo-pulationsofionswithdifferentinternalenergy.ThreemajorstepsareinvolvedinTDF:(i)ionactivation,(ii)ionrelaxa-tion,and(iii)fragmentcollection.TDFprovidestheabilitytosimplifytheproductionspectraasshowninFig.9.IncaseallfragmentionsproducedbyCIDarecollected,theMS/MSspectruminFig.9Aisobtained,showingbothbandyions.Relaxationoftheprecursorionsinthelineariontrapover10msleadstoapopulationofprecursorionswithlowerinternalenergy.SelectiverecordingoffragmentionsoriginatingfromthisrelaxedsubpopulationleadstoasimpliÞedMS/MSspectrumcontainingexclusivelyyionsasshowninFig.9B.Inthisway,TDFsupportsdenovosequencingofpeptides.10.3SingleseriesfragmentionspectraSimpliÞedfragmentionspectraofpeptideswhichexhibitonlyC-terminalorN-terminalfragmentionscanberecor-dedbyusingatwostagefragmentation.Instrumentally,thiscanberealizedusingatriplequadrupoleanalyzerwith Figure7.DenovosequencingbyQ-TOFCIDofthetrypticpeptideSTDANQ[L/I]WT[L/I]K,partiallylabeledwithOatitscarboxyterminus;(A)completespectrum;(B)expandedlowmassregion,demonstratingthefacilediffer-entiationbetweenunlabeledbionsandpartiallyO-labeledy -128.1 K,Q -101.1 T -87.0 S -71.0A -113.1 I,L -75.2 G+H238.0313.2426.3497.3584.3685.4813.5Relative Abundance100[M+Na] -128.1 K,Q -101.1 T -87.0 S -71.0A -113.1 I,L -75.2 G+H238.0313.2426.3497.3584.3685.4813.5Relative Abundance100m / z[M+Na] Figure8.IontrapmultistageMS/MSforC-terminalsequencingofthepeptideSQGIASTKas[Mion.Shownistheoverlayofsixspectra,generatedbyrepeatedfragmentationofthestepwiseshortenedsodiatedpeptideion.J.Seidleretal,634–6492010WILEY-VCHVerlagGmbH&Co.KGaA,Weinheimwww.proteomics-journal.com combinedskimmer-CID(sCID)andcollisioncellCID.Thisisapseudo-MSanalysis,sinceskimmerCIDrepresentsafragmentationmodewithoutprecursorionselection.Thus,thisexperimentalsetupwillonlyprovideclearresultsforpuresamplescontainingasinglepeptide.Nevertheless,two-stageCIDforpeptidesequencinghasparticularmerits(Fig.10).ThisisdemonstratedfortheT1fragmentofproteinkinaseA,whichisashortN-terminallymyristoy-latedheptapeptide.Aselectivedetectionofboryionsisachievedusingabionoryion-speciÞcprecursorionscan,respectively.Acommonbionfragmentisfoundatwhichrepresentsthemyristoylfragment,andacommonyionfragmentistheyion.Therefore,usingskimmerCIDincombinationwithprecursorionscanningfor211,onlybionsaredetected,whereasthecombinationwithprecursorionscanningfor147leadstopureyionspectra.Ageneralapplicabilityoftwo-stageCIDfortherecordingofsingleseriespeptideMS/MSspectraasdemonstratedinFig.10requiresthecombinationoftwogenuineMS/MSsteps,ascanberealized,inapenta-quadrupoleinstru-mentwithtwocollisioncells.However,thistypeofinstru-mentiscommerciallynotavailable.11AutomateddenovoEnginesfordenovosequencinghaveundergonecontinuousimprovement[106Ð112]astoolsfordatabase-supportedspectrainterpretation.Basicorfullversionsofseveralofthesetoolsareavailableintheinternet,asmentionedinthecorrespondingpublications.Currently,allresultsprovidedbyautomatednovosequencingshouldbecheckedmanually.Nevertheless,wefoundautomateddenovosequencingveryhelpfulforextractingmeaningfulMS/MSspectrafromlargesetsofMS/MSspectra,thusincreasingthesuccessrateofmanualnovosequencing.Longsequenceionseriesfromcentralpartsofpeptideswereingeneralcorrectlyrecognized,aswellascomplementaryb/yionpairs.Inconsistenciesbetweenproposedandmanualsequenceswereoftenfoundneartheterminalregions,wherecharacteristicdetailsinthespectrawerenotfullyrecognized.Asanexample,Table2showsthreeautomatedannotationsfromadatasetacquiredfordenovosequencingofatypeIIribosome-inactivatingproteinfromX.americana,incomparisonwithmanualsequencingresultsandthelaterdeterminedsequenceofriproximin(Q2PA54).TheresultsinTable2showthattheannotationtoolmayinterchangeasingleaminoacidwithanisobarictwoaminoacidcombination.Thiserroriscausedbythefalse-positiverecognitionofasequenceion.Othererrorsrefertotheannotationofthepeptideends.SincetheCIDspectraingeneralcontainseveralindependentsourcesofinformationforterminalsequences(Table1),thissituationshowsthatthefurtherreÞnementofdenovoannotationtoolstowardabetterrecognitionoftheterminalsequenceisapromisingroutefortheirimprovement.Proteinsoforganismswithunknowngenomeoftenshowsequencehomologiestofunctionallyrelatedhomologsinotheralreadycompletelysequencedorganisms.Therefore,existingsequencedatabasesmaybehelpfulassupportforsequencingresultsobtainedfromunknownproteins.Inpractice,peptidesequencecandidatesmaybesubjectedtohomology-basedsearchprogramssuchasBLAST(basiclocalalignmentsearchtool)ortheFASTA(fastall)algo-rithmtoidentifysimilaritiestosequencespresentindata-bases[113Ð115].Anextensivereviewonhomology-drivenproteomicshasbeengivenrecently[116].Bioinformatictoolsareofhighinterestforfurtheradvancementofdenovopeptidesequencing. Figure9.Q-trapMS/MSspectraofthedoublycharged-caseinfrag-mentat1094(DMPIQAFLLY-QEPVLPGPVR)using(A)conventionalCIDwithfragmentationwindowuptoabout250s,and(B)TDFwithafragmentationwindow10ms.Adaptedfrom[104],withpermission.,634–6492010WILEY-VCHVerlagGmbH&Co.KGaA,Weinheimwww.proteomics-journal.com 12CompleteproteinsequencingsupportedbydenovoMS/MSpeptideCompleteproteinsequencemaybeobtainedbyMSalonebytheimplementationofdifferentproteases.Eachproteasegeneratesdifferentsetsofpeptidessothatoverlappingsequencesmaybefoundandlongercontinuoussequencescanbeobtained.Ingeneral,asequenceoverlapofthreeaminoacidsissufÞcientforstitchingoftwosequences,sincemostlyathreeaminoacidsequencemotifisalreadyuniqueforaproteinofintermediatesize(20Ð60kDa).Thecombineduseoftrypsin,chymotrypsinandAspNisbene-Þcialforthispurpose,duetotheirdifferentcleavagechar-acteristicsatbasic,neutral,oracidicsites.Inelastasedigestsnumerousoverlappingpeptidesarefound,duetoitslowspeciÞcity.InspiteofthislackofspeciÞcity,elastasedigestionsleadstopeptidesofaround1kDasize,sincetheafÞnityofelastasetoitssubstratesstronglydecreaseswhenthepeptidelengthfallsbelow0.8Ð1kDa.PeptidesofthislengthcanoftenbesequencedcompletelybyCID,unlessmultiplebasicsitesarepresent.TheÞrstcompleteprimary 454.4383.4596.4268.3 [M+H]+m/z [M+H]+813.5218.2360.3431.3m/z 60-100211 60-100147140840+ESI+ESI280420560700rel. intensity rel. intensity 280420560myrGD A A A A KmyrGD A A A A K [M+H]+ 60-100 myrGD A A A A K Figure10.TriplequadrupolepseudoMSspectraofthepeptidemyrGDAAAAKderivedfromproteinkinaseA;(A)sCIDprecursorscanfor211(myristoylfragmention);(B)precursorionscanfor147(yionofK).ThesescanmodesselectivelyshowsonlythebionseriesA)ortheyionseriesb),respec-tively(seealsoRef.[105]). Table2.Automatedandmanualdenovosequencing(http://www.bioinfor.com/peaksonline)ofpeptidesextractedfromamericanaPrecursorionSequencesTypeofsequence[687.3]2NSADANGA[L/I]EGN[L/I]KProposedSNADANQ[L/I]WN[L/I]KManual[703.9]2TEQQWA[L/I]YPSSPProposedTEQQWA[L/I]YPDRManualAEQKWALFPDRRiproximin(505–515)[695.8]2SNTDANGA[L/I]EGT[L/I]KProposedSNTDANQ[L/I]WT[L/I]KManualSNTDANQLWILKRiproximin(374–385)Somedeviationsbetweenautomatedandmanualsequencingareobserved.Twopeptidesequenceswerefoundtobehomologoustoriproximin(Q2PA54).J.Seidleretal,634–6492010WILEY-VCHVerlagGmbH&Co.KGaA,Weinheimwww.proteomics-journal.com structuredeterminationofanentireproteinbyMSalonewasperformedusingmultiproteasedigestionandMS/MS[117].Toourknowledge,thelargestproteinthathasbeenentirelysequencedusingthebottom-upapproachsofarisa21-kDacytochromec[118].Inconnectionwiththebottom-upapproach,twophenomenamaycauseerrorsintheprimarysequence.First,rearrangementprocessesduringiontrapCIDhavebeendescribed[119];second,protease-catalyzedtranspeptidationreactionshavebeenobserved,tothetransferofterminalresiduesortotheligationoforiginallydistantsequenceparts[120,121].Althoughthesephenomenahavebeenclearlydescribed,theiractualimpactontheconÞdenceofdenovoresultsisnotyetexplored.TheintroductionofExDtechniqueshasimprovedthetechnicalbasisforÔÔtop-downÕÕproteinsequencing,fragmentationofcompleteproteins.Forexample,asequencecoverageofabout70%ontheÞrst200residueswasdemonstratedforeachterminusoflargeproteinsgraterthan200kDa[122].Atop-downapproachfortargetedcharacterizationofC-andN-terminiofundigestedproteinsbasedonMALDI-ISDhasalsobeenintroducedunderthesynonymÔÔT-sequencingÕÕ[67].Yooandco-workersrecentlydemonstratedthepotencyofthistechniquebysequencinga31residuepolyethyleneglycolmodiÞedpeptidecompletely[123].ConcerningtheaddressedchallengesandbeneÞtsofbothÐÔÔbottom-upÕÕandÔÔtop-downÕÕÐapproachesitismostlikelythattheywillcontinuetoco-evolveinfutureorwillmeethalfwayashybridapproaches,inwhichlargefrag-mentsorwholedomainsofproteinsareanalyzedintact[124].Peptidedenovosequencingresultscanalsohelptoobtainproteinsequencesmolecularbiologyapproaches.Forinstance,acDNAlibraryisconstructedandprimersderivedfromdenovosequencedpeptidesareusedforRACE-PCR(rapidampliÞcationofcDNA-endswithpolymerasechainreaction)[125,126].FinallythecompleteproteinsequenceisidentiÞedusingDNAsequencing.13ConcludingremarksCIDandETDarecurrentlythemosteffectivetechniquesemployedinpeptidedenovosequencing.BothtechniquesgeneratepeptideMS/MSspectrawithveryhighstructuralinformation.Inthiscontext,CIDisbestsuitedforsmallpeptidesof1Ð2kDa,whereasETDcancopewithlargerpeptides.Inthequestforlargeprecursorions,MALDI-ISDhasshownremarkableprogress.TheresultsofallionizationandfragmentationtechniquesbeneÞtfromtheincreasedmassaccuracyofMS/MSdata,reducingthenumberofsequencescompatiblewithaMS/MSdataset.Incaseofambiguitiesinthedenovosequencingofpeptides,severalchemicalandinstrumentalmethodsexistforimprovingthespeciÞcityoftheresults.However,duetotheirextraefforts,theywillprobablybeappliedinselectivecasesonly.CompletepeptidedenovosequencingbyMS/MSwillnotbegenerallysuccessfulduetointerferingfactors,suchas(i)alowintensitycausingincompletedetectionofsequenceions,(ii)apeptidesequencepreventingtheformationofasufÞcientsetofsequenceions,or(iii)thepresenceofanunusualaminoacidand/oranuncommoncovalentmodiÞcation.Nevertheless,onceacompletepeptidesequencecanbereadfromanMS/MSspectrum,thisresulthasahighlevelofconÞdence.ThisisparticularlythecasewhentheinformationredundancypresentinthemajorityofpeptideMS/MSspectraisusedandwhenadditionaldata,suchasaproteasespeciÞcity,LCelutionbehavior.orfragmentationrules,areintegratedintotheÞnalevaluation.ThefurtherreÞnementofautomateddenovosequencingtoolsinrelationtohighresolutionMS/MSdatamaycomplementthewidelyapplieddatabase-supportedsearchalgorithms.Inthisway,notdatabase-Þledproteinsequencevariations,whichnowremainunassignedinanautomatedannotation,couldalsobereliablyidentiÞed.Thus,inmanyproteomicanalysesthecombinationofdatabase-supportedannotationwithautomateddenovosequencingwillprobablyfurtheradvancetheinterpretationofMS/MSdata.Theauthorshavedeclarednoconßictofinterest.14References[1]Edman,P.,Methodforthedeterminationoftheaminoacidsequenceinpeptides.ActaChem.Scand.,283–293.[2]Fales,H.M.,Nagai,Y.,Milne,G.W.A.,Brewer,H.B.etal.Chemicalionizationmassspectrometryofcomplexmole-cules7useofchemicalionizationmassspectrometryinanalysisofaminoacidphenylthiohydantoinderivativesformedduringEdmandegradationofproteins.,288–299.[3]Schulten,H.R.,Wittmann-Liebold,B.,High-resolutionelddesorptionmass-spectrometry5.Mixturesofamino-acidphenylthiohydantoinsandEdmandegradationproducts.Anal.Biochem.,300–310.[4]Bradley,C.V.,Williams,D.H.,PeptidesequencingusingthecombinationofEdmandegradation,carboxypeptidasedigestionandfastatombombardmentmass-spectro-Biochem.Biophys.Res.Commun.1223–1230.[5]Biemann,K.,Layingthegroundworkforproteomics–Massspectrometryfrom1958to1988.Int.J.MassSpec-,1–7.[6]Biemann,K.,Martin,S.A.,Mass-spectrometricdetermi-nationoftheamino-acid-sequenceofpeptidesandMassSpectrom.Rev.,1–75.[7]Hunt,D.F.,Bone,W.M.,Shabanowitz,J.,Rhodes,J.,Ballard,J.M.,Sequence-analysisofoligopeptidesbysecondaryion-collisionactivateddissociationmass-spec-trometry.Anal.Chem.,1704–1706.[8]Hunt,D.F.,Yates,J.R.,Shabanowitz,J.,Winston,S.,Hauer,C.R.,Proteinsequencingbytandemmass-spec-trometry.Proc.Natl.Acad.Sci.USA,6233–6237.,634–6492010WILEY-VCHVerlagGmbH&Co.KGaA,Weinheimwww.proteomics-journal.com [9]Chait,B.T.,Wang,R.,Beavis,R.C.,Kent,S.B.H.,Proteinladdersequencing.,89–92.[10]Cool,D.R.,Hardiman,A.,C-TerminalsequencingofpeptidehormonesusingcarboxypeptidaseYandSELDI-TOFmassspectrometry.[11]Patterson,D.H.,Tarr,G.E.,Regnier,F.E.,Martin,S.A.,C-terminalladdersequencingviamatrix-assistedlaser-desorptionmass-spectrometrycoupledwithcarboxypeptidase-Ytime-dependentandconcentration-dependentdigestions.Anal.Chem.,3971–3978.[12]Thiede,B.,Wittmann-Liebold,B.,Bienert,M.,Krause,E.,MALDI-MSforC-terminalsequencedeterminationofpeptidesandproteinsdegradedbycarboxypeptidase-Yandcarboxypeptidase-P.FebsLett.,65–69.[13]Fenn,J.B.,Mann,M.,Meng,C.K.,Wong,S.F.,White-house,C.M.,Electrosprayionizationformass-spectro-metryoflargebiomolecules.,64–71.[14]Aebersold,R.,Mann,M.,Massspectrometry-based,198–207.[15]Cox,J.,Mann,M.,Isproteomicsthenewgenomics?,395–398.[16]Perkins,D.N.,Pappin,D.J.C.,Creasy,D.M.,Cottrell,J.S.,Probability-basedproteinidenticationbysearchingsequencedatabasesusingmassspectrometrydata.,3551–3567.[17]Yates,J.R.,Eng,J.K.,Clauser,K.R.,Burlingame,A.L.,Searchofsequencedatabaseswithuninterpretedhigh-energycollision-induceddissociationspectraofpeptides.J.Am.Soc.MassSpectrom.,1089–1098.[18]Craig,R.,Beavis,R.C.,TANDEM:matchingproteinswithtandemmassspectra.,1466–1467.[19]Geer,L.Y.,Markey,S.P.,Kowalak,J.A.,Wagner,L.etal.Openmassspectrometrysearchalgorithm.J.Proteome,958–964.[20]Gevaert,K.,Vandekerckhove,J.,Proteinidenticationmethodsinproteomics.Electrophoresis[21]Pappin,D.J.C.,Hojrup,P.,Bleasby,A.J.,Rapididenti-cationofproteinsbypeptide-massngerprinting.,327–332.[22]Domon,B.,Aebersold,R.,Review–massspectrometryandproteinanalysis.,212–217.[23]Mann,M.,Wilm,M.,Errortolerantidenticationofpeptidesinsequencedatabasesbypeptidesequencetags.Anal.Chem.,4390–4399.[24]Degenkolb,T.,Bruckner,H.,Peptaibiomics:towardsamyriadofbioactivepeptidescontainingC-alpha-dialkyl-aminoacids?Chem.Biodiv.,1817–1843.[25]Wysocki,V.H.,Tsaprailis,G.,Smith,L.L.,Breci,L.A.,Specialfeature:commentary–mobileandlocalizedprotons:aframeworkforunderstandingpeptidedissocia-J.MassSpectrom.,1399–1406.[26]Roepstorff,P.,Fohlman,J.,Proposalforacommonnomenclatureforsequenceionsinmass-spectraofBiomed.MassSpectrom.,601–601.[27]Biemann,K.,Appendix5.Nomenclatureforpeptidefrag-mentions(positiveions).MethodsEnzymol.[28]Zhang,Z.Q.,Predictionoflow-energycollision-induceddissociationspectraofpeptides.Anal.Chem.3908–3922.[29]Steen,H.,Mann,M.,TheABC’s(andXYZ’s)ofpeptideNat.Rev.Mol.CellBiol.,699–711.[30]Imanishi,S.Y.,Kochin,V.,Ferraris,S.E.,deThonel,A.etal.,Reference-facilitatedphosphoproteomics–fastandreliablephosphopeptidevalidationbymicroLC-ESI-Q-TOFMol.Cell.Proteomics,1380–1391.[31]Seidler,J.,Adal,M.,Kubler,D.,Bossemeyer,D.,Lehmann,W.D.,AnalysisofautophosphorylationsitesintherecombinantcatalyticsubunitalphaofcAMP-dependentkinasebynanoUPLC-ESI-MS/MS.Anal.Bioanal.Chem.,1713–1720.[32]Thiede,B.,Lamer,S.,Mattow,J.,Siejak,F.etal.,Analysisofmissedcleavagesites,tryptophanoxidationandN-terminalpyroglutamylationafterin-geltrypticdigestion.RapidCommun.Mass.Spectrom.,496–502.[33]Winter,D.,Kugelstadt,D.,Seidler,J.,Kappes,B.,Lehmann,W.D.,Proteinphosphorylationinuencesproteolyticclea-vageandkinasesubstratepropertiesexempliedbyanaly-sisofinvitrophosphorylatedPfGAP45bynanoUPLC-MS/MS.Anal.Biochem.2009,393,41–47.[34]Kinter,M.,Sherman,N.E.,ProteinSequencingandIden-tiÞcationUsingTandemMassSpectrometry,WileyInter-science,NewYork2000.[35]Martin,D.B.,Eng,J.K.,Nesvizhskii,A.I.,Gemmill,A.,Aebersold,R.,Investigationofneutrallossduringcolli-sion-induceddissociationofpeptideions.Anal.Chem.,4870–4882.[36]Salek,M.,Lehmann,W.D.,Neutrallossofaminoacidresiduesfromprotonatedpeptidesincollision-induceddissociationgeneratesN-orC-terminalsequenceladders.J.MassSpectrom.,1143–1149.[37]Schlosser,A.,Lehmann,W.D.,Patchworkpeptidesequencing:extractionofsequenceinformationfromaccuratemassdataofpeptidetandemmassspectrarecordedathighresolution.,524–533.[38]Winter,D.,Lehmann,W.D.,Individualb(2)ionfragmen-tationprolescombinedwithAspNdigestionimproveN-terminalpeptidesequencing.Anal.Bioanal.Chem.,1587–1591.[39]Winter,D.,Lehmann,W.D.,SequencingofthethirteenstructurallyisomericquartetsofN-terminaldipeptidemotifsinpeptidesbycollision-induceddissociation.,2076–2084.[40]Hung,C.W.,Schlosser,A.,Wei,J.H.,Lehmann,W.D.,Collision-inducedreporterfragmentationsforidentica-tionofcovalentlymodiedpeptides.Anal.Bioanal.Chem.,1003–1016.[41]Cunningham,C.,Glish,G.L.,Burinsky,D.J.,Highampli-tudeshorttimeexcitation:Amethodtoformanddetectlowmassproductionsinaquadrupoleiontrapmassspectrometer.J.Am.Soc.MassSpectrom.,81–84.J.Seidleretal,634–6492010WILEY-VCHVerlagGmbH&Co.KGaA,Weinheimwww.proteomics-journal.com [42]Olsen,J.V.,Macek,B.,Lange,O.,Makarov,A.etal.Higher-energyC-trapdissociationforpeptidemodicationNat.Methods,709–712.[43]Johnson,R.S.,Martin,S.A.,Biemann,K.,Collision-inducedfragmentationof[MIonsofpeptides–side-chainspecicsequenceions.Int.J.MassSpectrom.Ion,137–154.[44]Armirotti,A.,Millo,E.,Damonte,G.,HowtodiscriminatebetweenleucineandisoleucinebylowenergyESI-TRAPJ.Am.Soc.MassSpectrom.,57–63.[45]Hulst,A.G.,Kientz,C.E.,Differentiationbetweentheisomericaminoacidsleucineandisoleucineusinglow-energycollision-induceddissociationtandemmassspec-J.MassSpectrom.,1188–1190.[46]Nakamura,T.,Nagaki,H.,Ohki,Y.,Kinoshita,T.,Differ-entiationofleucineandisoleucineresiduesinpeptidesbyconsecutivereactionmass-spectrometry.Anal.Chem.,311–313.[47]Kaufmann,R.,Spengler,B.,Lutzenkirchen,F.,Mass-spec-trometricsequencingoflinearpeptidesbyproduct-ionanalysisinareectrontime-of-ightmass-spectrometerusingmatrix-assistedlaser-desorption.RapidCommun.Mass.Spectrom.,902–910.[48]Cornish,T.J.,Cotter,R.J.,Acurvedeldreectrontime-of-ightmass-spectrometerforthesimultaneousfocusingofmetastableproductions.RapidCommun.Mass.Spec-,781–785.[49]Medzihradszky,K.F.,Campbell,J.M.,Baldwin,M.A.,Falick,A.M.etal.,Thecharacteristicsofpeptidecollision-induceddissociationusingahigh-performanceMALDI-TOF/TOFtandemmassspectrometer.Anal.Chem.,552–558.[50]Suckau,D.,Resemann,A.,Schuerenberg,M.,Hufnagel,P.etal.,AnovelMALDILIFT-TOF/TOFmassspectrometerforAnal.Bioanal.Chem.,952–965.[51]Shui,W.Q.,Liu,Y.K.,Fan,H.Z.,Bao,H.M.etal.EnhancingTOF/TOF-baseddenovosequencingcapabilityforhighthroughputproteinidenticationwithaminoacid-codedmasstagging.J.ProteomeRes.,83–90.[52]Samyn,B.,Sergeant,K.,Memmi,S.,Debyser,G.etal.MALDI-TOF/TOFdenovosequenceanalysisof2-DPAGE-separatedproteinsfromHalorhodospirahalophila,abacteriumwithunsequencedgenome.Electrophoresis,2702–2711.[53]Roth,K.D.W.,Huang,Z.H.,Sadagopan,N.,Watson,J.T.,ChargederivatizationofpeptidesforanalysisbymassMassSpectrom.Rev.,255–274.[54]Barofsky,D.F.,Chen,T.F.,PeptidesequencingpromotedbyN-terminalderivatization.MassSpectrom.Hyphen.Tech.NeuropeptideRes.2002,345–373.[55]Keough,T.,Youngquist,R.S.,Lacey,M.P.,Sulfonicacidderivativesforpeptidesequencing.Anal.Chem.[56]Samyn,B.,Debyser,G.,Sergeant,K.,Devreese,B.,VanBeeumen,J.,AcasestudyofdenovosequenceanalysisofN-sulfonatedpeptidesbyMALDITOF/TOFmassspectro-J.Am.Soc.MassSpectrom.,1838–1852.[57]Marekov,L.N.,Steinert,P.M.,Chargederivatizationby4-sulfophenylisothiocyanateenhancespeptidesequencingbypost-sourcedecaymatrix-assistedlaserdesorption/ionizationtime-of-ightmassspectrometry.J.Mass,373–377.[58]Chen,P.,Nie,S.,Mi,W.,Wang,X.C.,Liang,S.P.,Denovosequencingoftrypticpeptidessulfonatedby4-sulfophenylisothiocyanateforunambiguousproteinidenticationusingpost-sourcedecaymatrix-assistedlaserdesorption/ionizationmassspectrometry.RapidCommun.Mass.,191–198.[59]Wang,D.X.,Kalb,S.R.,Cotter,R.J.,ImprovedproceduresforN-terminalsulfonationofpeptidesformatrix-assistedlaserdesorption/ionizationpost-sourcedecaypeptideRapidCommun.Mass.Spectrom.[60]Keough,T.,Youngquist,R.S.,Lacey,M.P.,Amethodforhigh-sensitivitypeptidesequencingusingpostsourcedecaymatrix-assistedlaserdesorptionionizationmassspectrometry.Proc.Natl.Acad.Sci.USA7131–7136.[61]Rinalducci,S.,Roepstorff,P.,Zolla,L.,Denovosequenceanalysisandintactmassmeasurementsforcharacteriza-tionofphycocyaninsubunitisoformsfromtheblue-greenalgaAphanizomenonos-aquae.J.MassSpectrom.,503–515.[62]Conrotto,P.,Hellman,U.,LysTag:aneasyandrobustchemicalmodicationforimproveddenovosequencingwithamatrix-assistedlaserdesorption/ionizationtandemtime-of-ightmassspectrometer.RapidCommun.Mass.,1823–1833.[63]Peters,E.C.,Horn,D.M.,Tully,D.C.,Brock,A.,Anovelmultifunctionallabelingreagentforenhancedproteincharacterizationwithmassspectrometry.RapidCommun.Mass.Spectrom.,2387–2392.[64]Brown,R.S.,Lennon,J.J.,Massresolutionimprovementbyincorporationofpulsedionextractioninamatrix-assistedlaser-desorptionionizationlineartime-of-ightmass-spectrometer.Anal.Chem.,1998–2003.[65]Brown,R.S.,Lennon,J.J.,Sequence-specicfragmenta-tionofmatrix-assistedlaser-desorbedproteinpeptideAnal.Chem.,3990–3999.[66]Demeure,K.,Quinton,L.,Gabelica,V.,DePauw,E.,RationalselectionoftheoptimumMALDImatrixfortop-downproteomicsbyin-sourcedecay.Anal.Chem.,8678–8685.[67]Suckau,D.,Resemann,A.,T-3-sequencing:targetedchar-acterizationoftheN-andC-terminiofundigestedproteinsbymassspectrometry.Anal.Chem.5817–5824.[68]Hardouin,J.,Proteinsequenceinformationbymatrix-assistedlaserdesorption/ionizationin-sourcedecaymassspectrometry.MassSpectrom.Rev.,672–682.[69]Horn,D.M.,Zubarev,R.A.,McLafferty,F.W.,Automateddenovosequencingofproteinsbytandemhigh-resolutionmassspectrometry.Proc.Natl.Acad.Sci.USA10313–10317.,634–6492010WILEY-VCHVerlagGmbH&Co.KGaA,Weinheimwww.proteomics-journal.com [70]Syka,J.E.P.,Coon,J.J.,Schroeder,M.J.,Shabanowitz,J.,Hunt,D.F.,Peptideandproteinsequenceanalysisbyelectrontransferdissociationmassspectrometry.Natl.Acad.Sci.USA,9528–9533.[71]Zubarev,R.A.,Zubarev,A.R.,Savitski,M.M.,Electroncapture/transferversuscollisionallyactivated/induceddissociations:Soloorduet?J.Am.Soc.MassSpectrom.,753–761.[72]Boersema,P.J.,Taouatas,N.,Altelaar,A.F.M.,Gouw,J.etal.,StraightforwardanddenovopeptidesequencingbyMALDI-MS/MSusingaLys-Nmetalloendopeptidase.Mol.Cell.Proteomics,650–660.[73]Taouatas,N.,Drugan,M.M.,Heck,A.J.R.,Mohammed,S.,StraightforwardladdersequencingofpeptidesusingaLys-Nmetalloendopeptidase.Nat.Methods2008,,405–407.[74]Chi,A.,Huttenhower,C.,Geer,L.Y.,Coon,J.J.etal.AnalysisofphosphorylationsitesonproteinsfromSaccharomycescerevisiaebyelectrontransferdissocia-tion(ETD)massspectrometry.Proc.Natl.Acad.Sci.USA,2193–2198.[75]Cournoyer,J.J.,Pittman,J.L.,Ivleva,V.B.,Fallows,E.etal.,Deamidation:Differentiationofaspartylfromisoas-partylproductsinpeptidesbyelectroncapturedissocia-ProteinSci.,452–463.[76]Cournoyer,J.J.,Lin,C.,O’Connor,P.B.,DetectingdeamidationproductsinproteinsbyelectroncaptureAnal.Chem.,1264–1271.[77]O’Connor,P.B.,Cournoyer,J.J.,Pitteri,S.J.,Chrisman,P.A.,McLuckey,S.A.,Differentiationofasparticandisoas-particacidsusingelectrontransferdissociation.J.Am.Soc.MassSpectrom.,15–19.[78]Cournoyer,J.J.,Lin,C.,Bowman,M.J.,O’Connor,P.B.,QuantitatingtherelativeabundanceofisoaspartylresiduesindeamidatedproteinsbyelectroncaptureJ.Am.Soc.MassSpectrom.[79]Lehmann,W.D.,Schlosser,A.,Erben,G.,Pipkorn,R.etal.Analysisofisoaspartateinpeptidesbyelectrospraytandemmassspectrometry.ProteinSci.[80]Gonzalez,L.J.,Shimizu,T.,Satomi,Y.,Betancourt,L.etal.,Differentiatingalpha-andbeta-asparticacidsbyelectrosprayionizationandlow-energytandemmassRapidCommun.Mass.Spectrom.[81]Pfeifer,N.,Leinenbach,N.,Huber,C.G.,Kohlbacher,O.,Improvingpeptideidenticationinproteomeanalysisbyatwo-dimensionalretentiontimelteringapproach.ProteomeRes.,4109–4115.[82]Spicer,V.,Yamchuk,A.,Cortens,J.,Sousa,S.etal.Sequence-specicretentioncalculator.Afamilyofpeptideretentiontimepredictionalgorithmsinreversed-phaseHPLC:Applicabilitytovariouschromatographicconditionsandcolumns.Anal.Chem.,8762–8768.[83]Krokhin,O.V.,Craig,R.,Spicer,V.,Ens,W.etal.,Animprovedmodelforpredictionofretentiontimesoftrypticpeptidesinionpairreversed-phaseHPLC-Itsapplicationtoproteinpeptidemappingbyoff-lineHPLC-MALDIMS.Mol.Cell.Proteomics,908–919.[84]Winter,D.,Pipkorn,R.,Lehmann,W.D.,Separationofpeptideisomersandconformersbyultraperformanceliquidchromatography.J.Sep.Sci.,1111–1119.[85]Marshall,A.G.,Hendrickson,C.L.,High-resolutionmassspectrometers.Annu.Rev.Anal.Chem.,579–599.[86]Spengler,B.,Accuratemassasabioinformaticparameterindata-to-knowledgeconversion:Fouriertransformioncyclotronresonancemassspectrometryforpeptidedenovosequencing.Eur.J.MassSpectrom.,83–87.[87]Spengler,B.,Denovosequencing,peptidecompositionanalysis,andcomposition-basedsequencing:AnewstrategyemployingaccuratemassdeterminationbyFouriertransformioncyclotronresonancemassspectro-J.Am.Soc.MassSpectrom.,703–714.[88]Frank,A.M.,Savitski,M.M.,Nielsen,M.L.,Zubarev,R.A.,Pevzner,P.A.,Denovopeptidesequencingandidenti-cationwithprecisionmassspectrometry.J.ProteomeRes.,114–123.[89]Desiderio,D.M.,Kai,M.,Preparationofstableisotope-incorporatedpeptideinternalstandardsforelddesor-ptionmass-spectrometryquanticationofpeptidesinbiologicaltissue.Biomed.MassSpectrom.[90]Schnolzer,M.,Jedrzejewski,P.,Lehmann,W.D.,Protease-catalyzedincorporationofO-18intopeptidefragmentsanditsapplicationforproteinsequencingbyelectrosprayandmatrix-assistedlaserdesorption/ionizationmassspectrometry.Electrophoresis,945–953.[91]Shevchenko,A.,Chernushevich,I.,Ens,W.,Standing,K.G.etal.,Rapid‘denovo’peptidesequencingbyacombina-tionofnanoelectrospray,isotopiclabelingandaquadru-pole/time-of-ightmassspectrometer.RapidCommun.Mass.Spectrom.,1015–1024.[92]Mo,W.J.,Takao,T.,Shimonishi,Y.,Accuratepeptidesequencingbypost-sourcedecaymatrix-assistedlaserdesorption/ionizationtime-of-ightmassspectrometry.RapidCommun.Mass.Spectrom.,1829–1834.[93]Uttenweiler-Joseph,S.,Neubauer,G.,Christoforidis,A.,Zerial,M.,Wilm,M.,Automateddenovosequencingofproteinsusingthedifferentialscanningtechnique.,668–682.[94]Bantscheff,M.,Dumpelfeld,B.,Kuster,B.,Femtomolsensitivitypost-digestO-18labelingforrelativequanti-cationofdifferentialproteincomplexcomposition.Commun.Mass.Spectrom.,869–876.[95]Munchbach,M.,Quadroni,M.,Miotto,G.,James,P.,QuantitationandfacilitateddenovosequencingofproteinsbyisotopicN-terminallabelingofpeptideswithafragmen-tationdirectingmoiety.Anal.Chem.2000,,4047–4057.[96]Cagney,G.,Emili,A.,Denovopeptidesequencingandquantitativeprolingofcomplexproteinmixturesusingmass-codedabundancetagging.Nat.Biotechnol.[97]Gu,S.,Pan,S.Q.,Bradbury,E.M.,Chen,X.,Useofdeuterium-labeledlysineforefcientproteinidenticationJ.Seidleretal,634–6492010WILEY-VCHVerlagGmbH&Co.KGaA,Weinheimwww.proteomics-journal.com andpeptidedenovosequencing.Anal.Chem.[98]Hsu,J.L.,Huang,S.Y.,Chow,N.H.,Chen,S.H.,Stable-isotopedimethyllabelingforquantitativeproteomics.Anal.Chem.,6843–6852.[99]Noga,M.J.,Asperger,A.,Silberring,J.,N-TerminalH-3/D-3-acetylationforimprovedhigh-throughputpeptidesequencingbymatrix-assistedlaserdesorption/ionizationmassspectrometrywithatime-of-ight/time-of-ightRapidCommun.Mass.Spectrom.[100]Lin,T.,Glish,G.L.,C-terminalpeptidesequencingviamultistagemassspectrometry.Anal.Chem.5162–5165.[101]Lin,T.,Payne,A.H.,Glish,G.L.,Dissociationpathwaysofalkali-cationizedpeptides:OpportunitiesforC-terminalpeptidesequencing.J.Am.Soc.MassSpectrom.497–504.[102]Hager,J.W.,Anewlineariontrapmassspectrometer.RapidCommun.Mass.Spectrom.,512–526.[103]Hager,J.W.,LeBlanc,J.C.Y.,ProductionscanningusingaQ-q-Q(lineariontrap)(QTRAP(TM))massspectrometer.RapidCommun.Mass.Spectrom.,1056–1064.[104]Hager,J.W.,Productionspectralsimplicationusingtime-delayedfragmentioncapturewithtandemlineariontraps.RapidCommun.Mass.Spectrom.1389–1398.[105]Lehmann,W.D.,Singleseriespeptidefragmentionspectrageneratedbytwo-stagecollision-induceddisso-ciationinatriplequadrupole.J.Am.Soc.MassSpectrom.,606–611.[106]Fernandez-de-Cossio,J.,Gonzalez,J.,Satomi,Y.,Shima,etal.,Automatedinterpretationoflow-energycollision-induceddissociationspectrabySeqMS,asoftwareaidfordenovosequencingbytandemmassspectrometry.trophoresis,1694–1699.[107]Liska,A.J.,Shevchenko,A.,Combiningmassspectro-metrywithdatabaseinterrogationstrategiesinproteo-mics.Trac-TrendsAnal.Chem.,291–298.[108]Mo,L.J.,Dutta,D.,Wan,Y.H.,Chen,T.,MSNovo:Adynamicprogrammingalgorithmfordenovopeptidesequencingviatandemmassspectrometry.Anal.Chem.,4870–4878.[109]Pevtsov,S.,Fedulova,I.,Mirzaei,H.,Buck,C.,Zhang,X.,Performanceevaluationofexistingdenovosequencingalgorithms.J.ProteomeRes.,3018–3028.[110]Pitzer,E.,Masselot,A.,Colinge,J.,Assessingpeptidedenovosequencingalgorithmsperformanceonlargeanddiversedatasets.,3051–3054.[111]Savitski,M.M.,Nielsen,M.L.,Kjeldsen,F.,Zubarev,R.A.,Proteomics-gradedenovosequencingapproach.ProteomeRes.,2348–2354.[112]Taylor,J.A.,Johnson,R.S.,Implementationandusesofautomateddenovopeptidesequencingbytandemmassspectrometry.Anal.Chem.,2594–2604.[113]Shevchenko,A.,Sunyaev,S.,Loboda,A.,Shevehenko,A.etal.,Chartingtheproteomesoforganismswithunse-quencedgenomesbyMALDI-quadrupoletimeofightmassspectrometryandBLASThomologysearching.,1917–1926.[114]Junqueira,M.,Spirin,V.,Balbuena,T.S.,Thomas,H.etal.Proteinidenticationpipelineforthehomology-drivenJ.Proteomics,346–356.[115]Pearson,W.R.,Lipman,D.J.,Improvedtoolsforbiologi-calsequencecomparison.Proc.Natl.Acad.Sci.USA,2444–2448.[116]Shevchenko,A.,Valcu,C.M.,Junqueira,M.,Toolsforexploringtheproteomosphere.J.Proteomics[117]Johnson,R.S.,Biemann,K.,Theprimarystructureofthioredoxinfromchromatiumvinosumdeterminedbyhigh-performancetandemmass-spectrometry.,1209–1214.[118]Branca,R.M.M.,Bodo,G.,Bagyinka,C.,Prokai,L.,Denovosequencingofa21-kDacytochromec(4)fromThio-capsaroseopersicinabynanoelectrosprayionizationion-trapandFourier-transformicon-cyclotronresonancemassspectrometry.J.MassSpectrom.,1569–1582.[119]Yague,J.,Paradela,A.,Ramos,M.,Ogueta,S.etal.Peptiderearrangementduringquadrupoleiontrapfrag-mentation:addedcomplexitytoMS/MSspectra.,1524–1535.[120]Fodor,S.,Zhang,Z.Q.,Rearrangementofterminalaminoacidresiduesinpeptidesbyprotease-catalyzedintramole-culartranspeptidation.Anal.Biochem.2006,356,282–290.[121]Schaefer,H.,Chamrad,D.C.,Marcus,K.,Reidegeld,K.A.etal.,Tryptictranspeptidationproductsobservedinproteomeanalysisbyliquidchromatography-tandemmassspectrometry.,846–852.[122]Han,X.M.,Jin,M.,Breuker,K.,McLafferty,F.W.,Extendingtop-downmassspectrometrytoproteinswithmassesgreaterthan200kilodaltons.[123]Yoo,C.,Suckau,D.,Sauerland,V.,Ronk,M.,Ma,M.H.,Towardtop-downdeterminationofPEGylationsiteusingMALDIin-sourcedecayMSanalysis.J.Am.Soc.Mass,326–333.[124]Chait,B.T.,Massspectrometry:bottom-uportop-down?,65–66.[125]Thompson,A.H.,Bjourson,A.J.,Orr,D.F.,Shaw,C.,McClean,S.,AcombinedmassspectrometricandcDNAsequencingapproachtotheisolationandcharacterizationofnovelantimicrobialpeptidesfromtheskinsecretionsofPhyllomedusahypochondrialis1331–1343.[126]Voss,C.,Eyol,E.,Frank,M.,vonderLieth,C.W.,Berger,M.R.,Identicationandcharacterizationofriproximin,anewtypeIIribosome-inactivatingproteinwithanti-neoplasticactivityfromXimeniaamericanaFASEBJ.,E334–E345.,634–6492010WILEY-VCHVerlagGmbH&Co.KGaA,Weinheimwww.proteomics-journal.com