/
EE363Winter2008-09Lecture11Invariantsets,conservation,anddissipationi EE363Winter2008-09Lecture11Invariantsets,conservation,anddissipationi

EE363Winter2008-09Lecture11Invariantsets,conservation,anddissipationi - PDF document

alexa-scheidler
alexa-scheidler . @alexa-scheidler
Follow
396 views
Uploaded On 2016-11-24

EE363Winter2008-09Lecture11Invariantsets,conservation,anddissipationi - PPT Presentation

InvariantsetsweconsiderautonomoustimeinvariantnonlinearsystemxxasetCRnisinvariantwrtsystemorifforeverytrajectoryxx2Cx2CforalliftrajectoryentersCorstartsinCitstaysinCtrajecto ID: 492912

Invariantsetsweconsiderautonomous time-invariantnonlinearsystem_x=(x)asetCRnisinvariant(w.r.t.system or)ifforeverytrajectoryx x()2C=)x()2CforalliftrajectoryentersC orstartsinC itstaysinCtrajecto

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "EE363Winter2008-09Lecture11Invariantsets..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

EE363Winter2008-09Lecture11Invariantsets,conservation,anddissipationinvariantsetsconservedquantitiesdissipatedquantitiesderivativealongtrajectorydiscrete-timecase11{1 Invariantsetsweconsiderautonomous,time-invariantnonlinearsystem_x=(x)asetCRnisinvariant(w.r.t.system,or)ifforeverytrajectoryx,x()2C=)x()2CforalliftrajectoryentersC,orstartsinC,itstaysinCtrajectoriescancrossintoboundaryofC,butneveroutofC CInvariantsets,conservation,anddissipation11{2 Examplesofinvariantsetsgeneralexamples:fxg,where(x)=0(i.e.,xisanequilibriumpoint)anytrajectoryorunionoftrajectories,e.g.,fx()jx(0)2D;t0;_x=(x)gmorespeci cexamples:_x=Ax,C=spanfv;:::;vkg,whereAvi=ivi_x=Ax,C=fzj0wzag,wherewA=w,0Invariantsets,conservation,anddissipation11{3 InvarianceofnonnegativeorthantwhenisnonnegativeorthantRn+invariantfor_x=Ax?(i.e.,whendononnegativetrajectoriesalwaysstaynonnegative?)answer:ifandonlyifAij0fori=j rstassumeAij0fori=j,andx(0)2Rn+;we'llshowthatx()2Rn+for0x()=tAx(0)=limk(I+(t=k)A)kx(0)forklargeenoughthematrixI+(t=k)Ahasallnonnegativeentries,so(I+(t=k)A)kx(0)hasallnonnegativeentrieshencethelimitabove,whichisx(),hasnonnegativeentriesInvariantsets,conservation,anddissipation11{4 nowlet'sassumethatAij0forsomei=j;we'll ndtrajectorywithx(0)2Rn+butx()62Rn+forsomet&#x-0.1;儤0let'stakex(0)=j,soforsmallh&#x-0.1;儤0,wehavex(h)j+hAejinparticular,x(h)ihAij0forsmallpositiveh,i.e.,x(h)62Rn+thisshowsthatifAij0forsomei=j,Rn+isn'tinvariantInvariantsets,conservation,anddissipation11{5 Conservedquantitiesscalarvaluedfunction:Rn!Riscalledintegralofthemotion,aconservedquantity,orinvariantfor_x=(x)ifforeverytrajectoryx,(x())isconstantclassicalexamples:totalenergyofalosslessmechanicalsystemtotalangularmomentumaboutanaxisofanisolatedsystemtotal\ruidinaclosedsystemlevelsetorlevelsurfaceof,fz2Rnj(z)=ag,areinvariantsetse.g.,trajectoriesoflosslessmechanicalsystemstayinsurfacesofconstantenergyInvariantsets,conservation,anddissipation11{6 Example:nonlinearlosslessmechanicalsystem mq()Fqmq=F=(q),wherem�0ismass,q()isdisplacement,Fisrestoringforce,isnonlinearspringcharacteristicwith(0)=0withx=(q;_q),wehave_x=_qq=x(1=m)(x)Invariantsets,conservation,anddissipation11{7 potentialenergystoredinspringis (q)=Zq(u)dutotalenergyiskineticpluspotential:E(x)=(m=2)_q+ (q)Eisaconservedquantity:ifxisatrajectory,then E(x())=(m=2) _q+ (q)=m_qq+(q)_q=m_q((1=m)(q))+(q)_q=0i.e.,E(x())isconstantInvariantsets,conservation,anddissipation11{8 Derivativeoffunctionalongtrajectorywehavefunction:Rn!Rand_x=(x)ifxistrajectoryofsystem,then (x())=D(x())dx =r(x())(x)wede ne_:Rn!Ras_(z)=r(z)(z)intepretation:_(z)givesd dt(x()),ifx()=ze.g.,if_(z)�0,then(x())isincreasingwhenx()passesthroughzInvariantsets,conservation,anddissipation11{9 ifisconserved,then(x())isconstantalonganytrajectory,so_(z)=r(z)(x)=0forallzthismeansthevector eld(z)iseverywhereorthogonaltor,whichisnormaltothelevelsurfaceInvariantsets,conservation,anddissipation11{10 Dissipatedquantitieswesaythat:Rn!Risadissipatedquantityforsystem_x=(x)ifforalltrajectories,(x())is(weakly)decreasing,i.e.,(x())(x())forallclassicalexamples:totalenergyofamechanicalsystemwithdampingtotal\ruidinasystemthatleakscondition:_(z)0forallz,i.e.,r(z)(z)0_issometimescalledthedissipationfunctionifisdissipatedquantity,sublevelsetsfzj(z)agareinvariantInvariantsets,conservation,anddissipation11{11 Geometricinterpretation =const.r(z)(z)x()vector eldpointsintosublevelsetsr(z)(z)0,i.e.,randalwaysmakeanobtuseangletrajectoriescanonly\slipdown"tolowervaluesofInvariantsets,conservation,anddissipation11{12 Examplelinearmechanicalsystemwithdamping:Mq+D_q+Kq=0q()2Rnisdisplacementorcon gurationM=M�0ismassorinertiamatrixK=K�0issti nessmatrixD=D0isdampingorlossmatrixwe'llusestatex=(q;_q),so_x=_qq=0IMKMDxInvariantsets,conservation,anddissipation11{13 considertotal(potentialpluskinetic)energyE=1 2qKq+1 2_qM_q=1 2xK00Mxwehave_E(z)=rE(z)(z)=zK00M0IMKMDz=z0KKDz=_qD_q0makessense: (totalstoredenergy)=(powerdissipated)Invariantsets,conservation,anddissipation11{14 Trajectorylimitwithdissipatedquantitysuppose:Rn!Risdissipatedquantityfor_x=(x)(x())!as!1,where2R[f1giftrajectoryxisboundedand_iscontinuous,x()convergestothezero-dissipationset:x()!D=fzj_(z)=0gi.e.,dist(x();)!0,as!1(moreonthislater)Invariantsets,conservation,anddissipation11{15 Linearfunctionsandlineardynamicalsystemsweconsiderlinearsystem_x=Axwhenisalinearfunction(z)=czconservedordissipated?_=r(z)(z)=cAz_(z)0forallz()_(z)=0forallz()Ac=0i.e.,isdissipatedifonlyifitisconserved,ifandonlyififAc=0(cislefteigenvectorofAwitheigenvalue0)Invariantsets,conservation,anddissipation11{16 Quadraticfunctionsandlineardynamicalsystemsweconsiderlinearsystem_x=Axwhenisaquadraticform(z)=zPzconservedordissipated?_(z)=r(z)(z)=2zPAz=z(AP+PA)zi.e.,_isalsoaquadraticformisconservedifandonlyifAP+PA=0(whichmeansAandAshareatleastRank(P)eigenvalues)isdissipatedifandonlyifAP+PA0Invariantsets,conservation,anddissipation11{17 Acriterionforinvariancesuppose:Rn!Rsatis es(z)=0=)_(z)0thenthesetC=fzj(z)0gisinvariantidea:alltrajectoriesonboundaryofCcutintoC,sononecanleavetoshowthis,supposetrajectoryxsatis esx()2C,x(s)62C,sconsider(di erentiable)function:R!Rgivenby()=(x())satis es()0,(s)&#x-0.1;儤0anysuchfunctionmusthaveatleastonepointT2[t;s]where(T)=0,0(T)0(forexample,wecantakeT=minfj()=0g)thismeans(x(T))=0and_(x(T))0,acontradictionInvariantsets,conservation,anddissipation11{18 Discrete-timesystemsweconsidernonlineartime-invariantdiscrete-timesystemorrecursionxt+1=(xt)wesayCRnisinvariant(withrespecttothesystem)ifforeverytrajectoryx,xt2C=)x2Cforalli.e.,trajectoriescanenter,butcannotleavesetCequivalentto:z2C=)(z)2Cexample:whenisnonnegativeorthantRn+invariantforxt+1=Axt?answer:,Aij0fori;j=1;:::;nInvariantsets,conservation,anddissipation11{19 Conservedanddissipatedquantities:Rn!Risconservedunderxt+1=(xt)if(xt)isconstant,i.e.,((z))=(z)forallzisadissipatedquantityif(xt)is(weakly)decreasing,i.e.,((z))(z)forallzwede ne:Rn!Rby(z)=((z))(z)(z)giveschangein,overonestep,startingatzisconservedifandonlyif(z)=0forallzisdissipatedifandonlyif(z)0forallzInvariantsets,conservation,anddissipation11{20 Quadraticfunctionsandlineardynamicalsystemsweconsiderlinearsystemxt+1=Axtwhenisaquadraticform(z)=zPzconservedordissipated?(z)=(Az)P(Az)zPz=z(APAP)zi.e.,isalsoaquadraticformisconservedifandonlyifAPAP=0(whichmeansAandAshareatleastRank(P)eigenvalues,ifAinvertible)isdissipatedifandonlyifAPAP0Invariantsets,conservation,anddissipation11{21