/
Ex.2.NNN.Thismaylookcounterintutiveatrst:thereare\justasmany Ex.2.NNN.Thismaylookcounterintutiveatrst:thereare\justasmany

Ex.2.NNN.Thismaylookcounterintutiveat rst:thereare\justasmany"ordere - PDF document

alexa-scheidler
alexa-scheidler . @alexa-scheidler
Follow
401 views
Uploaded On 2016-08-17

Ex.2.NNN.Thismaylookcounterintutiveat rst:thereare\justasmany"ordere - PPT Presentation

2jk1jk2jThisexamplegeneralizestoNNNNforany nitenumberoffactorsinthecartesianproductontheleftThisfollowsfromthenextexampleEx3LetABCDbesetsIfACandBDthenABCDProofByde ID: 450832

2(j+k1)(j+k2)+j:Thisexamplegeneralizesto:NN:::NN;forany( nite)numberoffactorsinthecartesianproductontheleft.Thisfollowsfromthenextexample.Ex.3.LetA;B;C;Dbesets.IfACandBD thenABCD.Proof.Byde

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Ex.2.NNN.Thismaylookcounterintutiveat ..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Ex.2.NNN.Thismaylookcounterintutiveat rst:thereare\justasmany"orderedpairsofnaturalnumbersastherearenaturalnumbersthemselves!ThiscanbeproventhroughCantor's\diagonalcount":NN=f(1;1);(1;2);(2;1);(1;3);(2;2);(3;1);(1;4);(2;3);(3;2);(4;1);:::g:Thatis,weorderthepairsaccordingtothesumofthetwocoordinates,andwithineachsumlistthemintheorderofthe rstcoordinate.Thiscorrespondstothebijectionf:NN!Ngivenby:f(j;k)=1 2(j+k�1)(j+k�2)+j:Thisexamplegeneralizesto:NN:::NN;forany( nite)numberoffactorsinthecartesianproductontheleft.Thisfollowsfromthenextexample.Ex.3.LetA;B;C;Dbesets.IfACandBD,thenABCD.Proof.Byde nitionofequipotent,weknowthereexistbijectionsf:A!Candg:B!D.Itisnaturaltode neafunctionh:AB!CDbyh(a;b)=(f(b);g(c)).WeleaveitasanexercisetoshowthathisabijectionfromABtoCD.Thefollowingresultsareoftenusedtoestablishthatgivensetsarecount-ablyin nite.Proposition1.LetAN.AssumeAisneitheremptynor nite.ThenAiscountablyin nite(thatis,AN).Proof.De neafunctionf:N!Aasfollows.Letf(1)bethesmallestelementofA(intheusualorderingofN).ThisexistsbytheWell-OrderingPrinciple,sinceA6=;.Thenletf(2)bethesmallestelementinAnff(1)g.Notethatthissetisalsonon-empty(sinceA,beingin nite,cannotequalff(1)g),sotheWell-OrderingPrincipleappliesagain.Ingeneral,givenff(1);:::;f(n)g,weletf(n+1)bethesmallestelementinAnff(1);:::;f(n)g(whichisanon-emptysubsetofN).Thisde nesthefunctionfinductively;fisinjective,sincefromtheconstructionwehave:f(1)f(2)f(3):::f(n)f(n+1):::2 Proof.De nef:ZN!Qbyf(p;q)=p=q.Sinceeachrationalnumberisoftheformp=qforsomep2Zandsomeq2N(notnecessarilyuniqueones),itfollowsthatfissurjective.SinceZNN(usingexamples1,2,and3),itfollowsfrompart(2)ofProposition2andRemark1thatQiscountable(hencecountalyin nite.)Corollary3.LetA1;A2;A3;:::benon-emptycountablyin nitesets(notnecessarilydisjoint),Thentheirunioniscountablyin nite:[i1AiN:Proof.We'regiventhat,foreachi2N,thereexistsabijectionfi:N!Ai.De nef:NN![i1Ai;f(i;j)=fi(j):Toseethatfissurjective,letx2Si1Aibearbitrary.Thenx2Aiforsomei2N,sox=fi(j)forsomej2N;thusx=f(i;j).BeforedescribingtheproofofthefactthatRisuncountable,weneedtoreviewsomebasicfactsaboutdecimalexpansionsofrealnumbers.Thisexpansionisnotunique.Forexample:0:9999999:::=1:Thisequalityisnotapproximate,itisEXACT,afactthatsomestudents ndsurprising;bothsidesaredi erentdecimalrepresentations(inbase10)ofthesamerationalnumber.Onewaytoseethisis:0:99999:::=91Xj=110�j=9=10 1�1=10=1;usingthewell-knownformulaforthesumofaconvergentgeometricseries,P1j=0aq�j=a 1�qifjqj1.Thesamewouldhappenforanyrationalnumberwithaterminatingdecimalexpansion,forexample:0:1234567=0:12345669999999:::Thusifwewanttoassigntoeachrealnumberauniquedecimalexpansion,weneedtomakeachoice;forthepurposeoftheargumentthatfollows,we'llchoosethe\non-terminatingexpansion",thatis,theonethatiseventuallyanin nitesequenceof9's.4 Notethatdn6=0foralln,sothisnonterminatingdecimalexpansionosoftheallowedkind,andde nesarealnumberin(0;1].Weclaimthatforalln2Nf(n)6=x,contradictingthefactthatfisonto.Toseethis,observethatthen-th.digitsinthedecimalexpansionofxisdn,andintheexpansionoff(n)isdnn;thesearedi erent(fromtheconstructionabove).Thisconcludestheproof.Numericalexample.Wehavenocontroloverthe\listing"fthatisassumedtoexistatthestartoftheargument,butsuppose(forexample)the rst veentrieswere(highlightingthediagonalentriesofthearray):f(1)=0:12034506:::f(2)=0:13579017:::f(3)=0:24608046:::f(4)=0:31415926:::f(5)=0:21784143::::::Thenthe rst vedigitsofxwouldbe:x=0:24725:::,anditisclearthatxcan'tbeanyofthe rst veelementsonthelist(andindeedcan'tbeanyelementonthelist).Remark3.ItfollowsfromthetheoremandCorollary1thatRisun-countable.Remark3.Asimilarproofgivesthefollowingresult:thesetofin nitesequencesof0sand1sisuncountable.Bycontradiction,supposewehadsuchalisting(asabove),andmodifythediagonalentries(intheonlywaypossible)to ndasequencewhichcan'tpossiblybeincludedonthelist.Thisresultaboutin nitesequencesof0sand1scanbestatedasaresultaboutthepowersetofN,P(N).Anin nitesequenceisafunctionf:N!f0;1g;thesetofsuchsequencesisusuallydenotedf0;1gN.AsubsetANde nesafunctionf:N!f0;1gvia:f(n)=1ifn2A;f(n)=0ifn62A:Andconversely,anyfunctionf:N!f0;1gdeterminesthesubsetA=f�1(f1g)N.Thuswehaveabijectivecorrespondence:P(N) !f0;1gN:Combiningtheseobservations,weobtainthefollowingresult:Theorem.(Cantor1891)P(N)isuncountable.6 PARTTWO(Outline)1.Cantor-Bernstein-Schroedertheorem:LetA;Bbesets.Ifthereexistinjectivefunctionsf:A!Bandg:B!A,thenAB.Ex.1.P(N)R.Ex.2.RnQR.Ex.3.(0;1]R.2.Cardinalitytrumpsdimensionality.Theunitsquare(0;1)(0;1)R2isequipotentwiththeunitinterval(0;1)R.Ideaofproof.Constructaninjection(0;1)(0;1)!(0;1)intermsofdecimalexpansions:(0:a1a2a3:::;0:b2b2b3:::)7!0:a1b1a2b2a3b3:::Ex.4.R2R;infactRnRforeachn.Ex.5.(i)ThesetRRofallfunctionsf:R!RisequipotentwithP(R).Hint:notethatRRisasubsetofP(RR),andP(RR)P(R)(sinceR2R).Fortheotherinjection,considercharacteristicfunctions.(ii)Thesetofallfunctionsf:Q!RisequipotentwithR.(iii)Thesetofallcontinuousfunctionsf:R!RisequipotentwithR.(Hint:iffandgarecontinuousfunctionsandtakethesamevalueateachrationalnumber,thenf=g.)Ex.6.Thesetofallalgebraicrealnumbers(rootsofpolynomialswithintegercoecients)iscountable.Hencetranscendentalnumbersexist.3.Theorem.(G.Cantor)LetAbeanynonemptyset.ThenP(A)andAarenotequipotent.NotethatthereisanobviousinjectionfromAtoP(A):x7!fxg.8