/
Linear Completeness Thresholds for Bounded Model Check Linear Completeness Thresholds for Bounded Model Check

Linear Completeness Thresholds for Bounded Model Check - PDF document

alexa-scheidler
alexa-scheidler . @alexa-scheidler
Follow
412 views
Uploaded On 2015-05-16

Linear Completeness Thresholds for Bounded Model Check - PPT Presentation

Bounded model checking is a symbolic bug64257nding method that examines paths of bounded length for violations of a given LTL formula Its rapid adoption in industry owes much to advances in SAT technology over the past 1015 years More recently there ID: 67797

Bounded model checking

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Linear Completeness Thresholds for Bound..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

BMCintoacompletemethodwiththeabilityalsotoguaranteetheabsenceofcounterexamplesofanylength.See,forinstance,theoriginalworkofBiereetal.[4],orthe2008TuringAwardlectureofEdClarke[7],inwhichtheproblemisdescribedasatopicofactiveresearch.In[4],Biereetal.observedthatforsafetypropertiesoftheformGp,acom-pletenessthresholdisgivenbythediameter(longestdistancebetweenanytwostates)oftheKripkestructureunderconsideration:indeed,ifnocounterexam-pletoGpoflengthatmostthediameterofthesystemcanbefound,thennocounterexampleofanylengthcanpossiblyexist.Likewise,forlivenessproper-tiessuchasFq,therecurrencediameter(longestloop-freepath)oftheKripkestructurecanbeseentobeanadequatecompletenessthreshold.ButthegeneralproblemofdeterminingreasonablytightcompletenessthresholdsforarbitraryLTLformulasremainswideopentothisday.Notethatthediameter(forsafetyproperties)andtherecurrencediameter(forlivenessproperties)arenotmerelysoundbounds,theyarealsoworst-casetight.Inotherwords,nosmallercompletenessthresholdexpressiblestrictlyintermsofthediameterscanbeachieved.Ofcourse,inanyparticularsituationtheleastcompletenessthresholdmaywellbeordersofmagnitudesmallerthanthediameter,butdeterminingitsvalueisclearlyatleastashardassolvingtheoriginalmodel-checkingprobleminthe rstplace,andwemustthereforebecontentwithsoundbutreasonablytightover-approximations.Inthispaper,wedescribeanecienttechniqueforobtainingfairlytight,lin-earcompletenessthresholdsforawiderangeofLTLformulas,asafunctionofthediameterandrecurrencediameterofanyKripkestructureunderconsideration.AllBuchiautomatathatarecliquey,i.e.,thatcanbedecomposedintoclique-shapedstronglyconnectedcomponents,admitlinearcompletenessthresholds.Moreover,weshowthatsuchautomatasubsumeunarylineartemporallogic,andindeedcompriseawiderangeofformulasusedinpractice,including,forexample,thevastmajorityofspeci cationsappearinginMannaandPnueli'sclassictextonthespeci cationofreactiveandconcurrentsystems[12].3WealsoshowthatcomputingtheselinearcompletenessthresholdscanbedoneintimelinearinthesizeofthegivenBuchiautomata.Finally,weexhibitsomesimple(non-cliquey)Buchiautomata,andcorrespondingLTLformulas,havingsuperpolynomialandevenexponentialcompletenessthresholds.Inthepast,researchershavebeenabletoachievecompletenessthresholdsbystudyingtheproductstructureoftheKripkemodelandtheBuchiautomatoncorrespondingtothespeci cationofinterest;see,e.g.,[6,1].Suchthresholdsareingeneralincomparablewiththeoneswepresentinthispaper.Moreover,asigni cantdisadvantageoftheearlierapproachisthatitrequiresonetoinves-tigateastructurewhichisoftenmuchtoolargeandunwieldytoconstruct,letaloneperformanycalculationsupon.Anotherbene tofthepresentapproachisthat,oncethediameterandrecurrencediameterofagivenKripkestructureareknown(orover-approximated),theycanbeputtouseagainstanynum- 3Forinstance,speci cationssuchasconditionalsafety,guarantee,obligation,response,persistence,reactivity,justice,compassion,etc.,allfallwithinourframework.2 {R00=f((s1;s01);(s2;s02))2S00S00j(s1;s2)2Rand(s01;s02)2R0g{L00:S00!2APB(AP)withL00(s;s0)=(L(s);L0(s0)){A00=f(ST0)\S00jT02A0g.NotethatthelabellingfunctionsofMandBdeterminewhichstatesexist(arevalid)intheproductMB.Thereisatransitionintheproducti correspondingtransitionsarepresentinbothcomponents.Forourpurposes,thelabellingofstatesintheproductautomatonisirrelevant.Finally,theacceptancesetfamilyA00isderivedfromthatoftheBuchiautomaton.TheproductconstructionisrelatedtoLTLmodelcheckingasfollows:Theorem1([9])LetMbeaKripkestructureand'anLTLformula.ThereexistsageneralisedBuchiautomatonB:'suchthatMj='exactlyifMB:'hasnoacceptingpath.In gures,werepresentBuchiautomataasdirectedgraphs.Initialstateshaveanincomingedgewithoutsource.Acceptingstatesaredrawnas lleddiscs(ourillustratingexamplesallhaveasingletonacceptancesetfamily,inotherwordstheyaresimpleBuchiautomata),andotherstatesaredrawnashollowcircles.InKripkestructures(cf.Figure4),wedepictthelabelofastateasasetofpropositions,omittingthebracesfg.ForaKripkestructureM,wewriteMj=k'todenotethateverylasso-shapedk-boundedpathinMsatis es'.AcompletenessthresholdforMand'isanintegerksuchthatMj=k')Mj=':Thisde nitionre ectstheintuitionbehindboundedmodelchecking:assumingthatthereisnocounterexampleto'oflengthatmostk,'shouldholdinM.Wecangeneralisethisde nitiontoBuchiautomataasfollows:acompletenessthresholdforaKripkestructureMandaBuchiautomatonBisanyintegerksuchthat,ifMBhasanyacceptingpath,thenithasak-boundedlasso-shapedacceptingpath.Withthesede nitions,anintegerkisacompletenessthresholdforaKripkestructureMandformula'preciselyifitisacompletenessthresholdforMandB:',whereB:'istheresultoftranslating:'intoanyequivalentgeneralisedBuchiautomaton.Thefollowingarekeynotionsinthispaper:De nition2LetMbeaKripkestructure.Thedistancefromastatestoastatetisthelengthofashortestpathfromstot(or1ifthereisnosuchpath).ThediameterofM,denotedd(M),isthelargestdistancebetweenanytworeachablestates(`longestshortestpath').TherecurrencediameterofM,denotedrd(M),isthelengthofalongestsimple(loop-free)paththroughM.3BuchiAutomatawithLinearCompletenessThresholdsGivenaKripkestructureandanLTLformula,itisclearthatdeterminingthesmallestcompletenessthresholdisatleastashardasthemodel-checkingprob-lemitself,andisthusnotsomethingweareaimingtoachieve.Rather,the4 ioflengthjij�1exceedsM'srecurrencediameterrd.Thuswecan ndtwoproductstatesoftheform(m;b)and(m;b0)alongthissegment.Let(m00;b00)bethesuccessorof(m;b0)alongi(notethat(m00;b00)stillbelongstoi):(m;b) (m;b0)!(m00;b00):From(m;b0)!(m00;b00)in,weconcludem!m00inM.SinceCiisaclique,weconcludeb!b00inB.Hence,(m;b)!(m00;b00)in.This,however,contradictsthefactthatisanSAPthrough.Therefore,jijrd+1.Considernowthe nalSCCCs,andletthefamilyofacceptingsetsofBbeA=fA1;:::;Ang.ThesegmentsoftraversingCsvisitseachAiin nitelyoften.SinceeachAiis nite,thereexistsinfacta xedstateai2Aiineachofthemthatisvisitedin nitelyoften.Segmentsthuslookslikethis:(m;b) (m1;a1) (m2;a2) ::: (mn;an) (m;b):Usingthesameargumentasinthenon- nalcase,eachsegmentabbreviatedby haslengthatmostrd+1(otherwise,ashorteracceptingpathcouldbeconstructed).Asaresult,jsj(n+1)(rd+1).Intotal,jj(s�1)(rd+1)+(n+1)(rd+1),clearlyinducingalinearcompletenessthreshold,forexamplewithconstantc=2(s+n)(notethatsandnareparametersofBanddonotdependonM).3.2ComputingCompletenessThresholdsofCliqueyAutomataTheproofinSection3.1establisheslinearityofthecompletenessthresholdforcliqueyBuchiautomata.Itis,however,verycoarse.Amongothers,theargumentignoresthestructureoftheSCCquotientgraph.Inthefollowing,wegiveahigher-orderalgorithmthattakesacliqueyBuchiautomatonBasinputandreturnsafunctionctovertwoarguments.WhensuppliedwiththediameterdandtherecurrencediameterrdofaKripkestructureM,thisfunctionreturnsacompletenessthresholdforMandB:sap(MB)ct(d;rd).ExploitingthefactthatBiscliquey,ct(d;rd)willbelinearindandrd.Thealgorithmproceedsintwostages.Inthe rststage,eachcliqueintheSCCquotientgraphofBisassignedacost,asafunctionofdandrd,oftraversingitintheproductautomatonMB,namelythemaximumlengthapathsegmentcan`spend'inthisclique,giventhatthepathisanSAP.Inthesecondstage,thealgorithmtraversestheSCCquotientgraph,inordertosymbolicallycomputerespectivelongestpathsfrominitialcliquestoallcliques,usingthecostmeasurescomputedduringthe rststage.Theresultreturnedbyfunctionctisthenthemaximumpathlengthcomputed,overallcliquesthatcouldpotentiallyserveasthecliquevisitedlastalonganacceptingpath.TheCostofTraversingaClique.ForageneralisedBuchiautomatonBwithacceptingsetsA1;:::;An,callacliqueCinBacceptingifforeachi2f1;:::;ng,C\Ai6=;.Suchacliquecontainsastatefromeachacceptingsetandisthus6 TheCostofTraversingtheSCCQuotientGraph.Thesecondstageisto`collect'thecostswehavecomputedpercliqueinstage1.WhichcliquesofBarevisitedinanactualSAPinMBofcoursedependsonM.ForourresultstoholdoveranyKripkestructure,wedeterminealongestpaththroughtheSCCquotientgraph.Thisquotientgraphisacyclic,sothatthesingle-sourcelongestpathproblemcanbesolvedintimelinearinthenumberofquotientedges,bytraversingthegraphintopologicalorder.Acomplicationisthat,sincewedonothavetheconcreteKripkestructureathand,thecostsofmovingfromcliquetocliquearegivensymbolically,byexpressionsoftheformappearinginTable1.Thus,whencomparingthelengthsofpathstoaparticularcliquefoundsofar,insteadofrecordingthenewlengthasthenumericalmaximumofthetwogivenlengths,werecorditasthesymbolicmaximumofthetwolengthexpressions.The nalresultreportedbythefunctionwillthusbeanexpressioninvolvingtheparametersdandrdoftheunknownKripkestructure,aswellaslinearoperatorsconnectingthem,suchasaddition,constantmultiplication,andmax.ThetraversaloftheSCCquotientgraphisshowninAlgorithm1.ItassumestheBuchiautomatonhasauniqueinitialcliqueC0(i.e.,acliquecontaininginitialstatesofB);wehandlethegeneralcasebelow.Thealgorithmkeepsthecostoftraversingaclique,ascomputedinTable1,inanarraycost,andthecostofreachingandtraversingacliqueinanarrayreach,bothasanon- naland nalclique(thelatterstoredinarrayswithsubscriptf).Thereachvaluesareinitialisedto0.Fortheinitialclique,thesevaluesaresettothecosttotraverseit(Line4). Algorithm1MaximumlengthofanSAPinMB Input:BwithinitialcliqueC00:foreachcliqueCdo1:initialisecost[C],costf[C]asinTable12:reach[C]:=reachf[C]:=03:endfor4:reach[C0]:=cost[C0],reachf[C0]:=costf[C0]5:foreachcliqueCofBinatopologicalorder,startingatC0do6:foreachsuccessorcliqueDofCdo7:reach[D]:=maxfreach[D];reach[C]+cost[D]g8:ifDisacceptingthen9:reachf[D]:=maxfreachf[D];reach[C]+costf[D]g10:endif11:endfor12:endfor13:returnmaxfreachf[C]jCisacceptingg ThealgorithmtraversesthecliquesCofBinsometopologicalorder,startingwithC0,andexaminesallofC'ssuccessorcliquesD.ValuereachisupdatedtothemaximumofitscurrentvalueandthevalueobtainedbyreachingDviaC.8 Forexample,acliqueofthreestates,withtheentrystatelabelleda,exitstatelabelledbandathirdstatelabelledc,wherea;b;c22AP,isencodedasaregularexpressiona:fa;b;cg:b.Expression(1)canbeturnedintoastar-free!-regularexpressionbyreplac-ingthesubexpressionsL(Cl)by ;: L(Cl): ;,where Xdenotescomplementation.Beingstar-free,itiswell-knownthatthisexpressionisequivalenttoasuitableLTLformula[10,15].Lemma7CL6LTLnX:thereexistcliqueyautomatathatcannotbeencodedasLTLnXformulas.Proof:ConsidertheBuchiautomatonBinFigure1(a).Biscliquey:thetwop-labelledstatesformoneSCC,theq-labelledstateformstheotherSCC,andbotharecliques.Bdoesnot,however,correspondtoanyLTLnXformula:B'slanguagecontainsthewordfpg:fpg:fqg!,butnotthewordfpg:fqg!.Sincethesetwowordsarestutteringequivalent,anencodingofBasanLTLnXformulawouldviolatethestutteringclosureofLTLnX.(a) (b) Fig.1.(a)AcliqueyBuchiautomatonthatdoesnotcorrespondtoanyLTLnXformula;(b)Anon-cliqueyBuchiautomatonwithlinearcompletenessthresholdLemma8LTLnX6CL:notallLTLnXformulashaveacliqueyautomatonencoding.Proof:LetAP=fp;q;rg,andletp!beashort-handnotationforp^:q^:r,andsimilarlyforq!andr!.ConsidertheLTLnXformula'=p!^G((p!)(p!Uq!))^(q!)(q!Ur!))^(r!)(r!Up!))):(2)Toprovethat'doesnothaveacliqueyBuchiencoding,we rstshow:Property9AnycliqueyBuchiautomatonoverAP=fp;q;rgthatacceptstheword(fpg:fqg:frg)!alsoacceptssomewordin(2AP):fqg:fpg:(2AP).Proof:LetBbecliqueyandacceptw:=(fpg:fqg:frg)!.WeshowthatBalsoacceptssomewordwiththesubstringfqg:fpg.AnypathinBalongwhichwisacceptedcontainsin nitelymanystateswithalabelthatissatis edbyfpg.SinceBhas nitelymanystates,thesestatesarenotalldi erent;letbbeastatewithsuchalabelthatoccurstwicealong.Letcbethestatefollowingthe rstoccurrenceofb;thelabelofcissatis edbyfqg.Sincecisbetweentwo10 onlyif 2s.Thestate-labellingfunctionL:S!B(AP)isde nedbyL(s)=V(s\AP)^Vf:pjp2APnsg.ThetransitionrelationRconsistsofthosepairs(s;t)suchthat(i) �F 2ti either 2tor �F 2s,(ii)F 2sand 62simpliesF 2t,and(iii):F 2simplies:F 2t.TheacceptingsetfamilyisA=fAF jF 2cl(')g,whereAF =fsj 2sorF 62sg.Thiscompletesthede nitionofA'.We nallyarguethatautomatonA'iscliquey:bythede nitionofthetran-sitionrelationofA',statessandtareinthesameconnectedcomponenti st.Anytwostatessandtwithstareconnectedbyatransition.CombiningTheorem5andLemma10yieldsoneofourmainresults:Theorem11EveryUTLnXformulaadmitsalinearcompletenessthreshold.Finally,onemaywonderwhetherLTLnXformulasthathaveacliqueyrep-resentationareinfactalwaysequivalenttosomeUTLnXformula.Theanswerisno,asournextresultshows:Lemma12LTLnX\CL6UTLnX:thereexistLTLnXformulasthatdohaveacliqueyrepresentationyetarenotequivalenttoanyUTLnXformula.Proof(sketch):Leta;b;cbedistinctelementsof2AP,andconsiderthelanguageL=(a+b+c):a:a:b:(a+b+c)!.LiscapturedbytheLTLnXformulaF(a^(aUb)),anditisalsoclearthatLiscliquey.Usingtheresultsof[17],onecanshowthatthislanguageisinexpressibleinUTL(letaloneUTLnX).Forexample,onecancomputethesyntacticmonoidassociatedwithLandinvokethecharacterisationofsyntacticmonoidsofUTL-de nablelanguagesfrom[17]toobtainthedesiredresult.Weomitthedetails.Figure2summarisesourexpressivenessresults.Allinclusionsarestrict. Fig.2.Relationshipsamongvariousclassesof!-regularlanguages12 5BeyondCliqueynessTwonaturalquestionsariseastowhethercliqueynessisnecessaryinordertoachievealinearcompletenessthreshold,andwhetherthereactuallyareany!-regularlanguagesthatfailtohavelinearcompletenessthresholds.Weanswerthe rstquestionnegativelyandthesecondonepositively.Infact,weshowthat!-regularlanguagescanbeengineeredtohavecompletenessthresholdsboundedbelowintheworstcasebysuperpolynomialandevenexponentialfunctionsoftherecurrencediameterofKripkestructures.5.1LinearCompletenessThresholdswithoutCliqueynessConsidertheBuchiautomatonBdepictedinFigure1(b).Itisclearlynotcliqueyandisinfactsemanticallynon-cliquey,i.e.,notequivalenttoanycliqueyBuchiautomaton.Toseethis,observethatBacceptsthewordw:=(fpg:fqg:frg)!,yetnowordwiththesubstringfqg:fpg.ByProperty9,Bcannotbeequivalenttoacliqueyautomaton.WeclaimthatBnonethelesshasalinearcompletenessthreshold:namely,foranyKripkestructureM,sap(MB)rd(M)+1.Indeed,ifanSAPhadlengthgreaterthanrd(M)+1,itsprojectionontoMwouldhavetoexhibitan`inner'loopthatforsomereasoncouldnotbecutout.Astraightforwardcaseanalysisthenquicklyleadstoacontradiction.5.2BuchiAutomatawithNon-LinearCompletenessThresholdsOntheotherhand,noteveryLTLformulaandinfactnoteveryLTLnXformulahasalinearcompletenessthreshold.Considerthenon-cliqueyautomatonBinFigure3,whichencodestheLTLnXformula'=p^:r^G((p^:r))((p^:r)U(q^:r))^(q^:r))((q^:r)Ur!)^r!)(r!U(p^:r)_Gr!)):Again,thenotationr!isshortforr^:p^:q. Fig.3.Anon-cliqueyBuchiautomatonwithsuperpolynomialcompletenessthresholdToshowthatBhasnolinearcompletenessthreshold,weconstructacollec-tion(Mi)1i=1ofKripkestructuressuchthat,foreachi,wehavesap(MiB)i=4rd(Mi).13 Alongsidethesepracticalconsiderations,twointerestingtheoreticalquestionsarise:(i)isitdecidablewhetheragivenLTLformula(ormoregenerallyagiven!-regularlanguage)hasalinearcompletenessthreshold;and(ii)isthecomplete-nessthresholdofan!-regularlanguagealwayseitherlinearorsuperpolynomial?Weleavethesequestionsasfurtherresearch.References1.MohammadAwedhandFabioSomenzi.Provingmorepropertieswithboundedmodelchecking.InCAV,pages96{108,2004.2.JasonBaumgartner,AndreasKuehlmann,andJacobA.Abraham.Propertycheck-ingviastructuralanalysis.InCAV,pages151{165,2002.3.ArminBiere,AlessandroCimatti,EdmundClarke,OferStrichman,andYunshanZhu.Boundedmodelchecking.AdvancesinComputers,58:118{149,2003.4.ArminBiere,AlessandroCimatti,EdmundClarke,andYunshanZhu.SymbolicmodelcheckingwithoutBDDs.InTACAS,pages193{207,1999.5.EdmundClarke,OrnaGrumberg,andDoronPeled.ModelChecking.MITPress,2000.6.EdmundClarke,DanielKroening,JoelOuaknine,andOferStrichman.Complete-nessandcomplexityofboundedmodelchecking.InVMCAI,pages85{96,2004.7.EdmundM.Clarke,E.AllenEmerson,andJosephSifakis.Modelchecking:Algo-rithmicveri cationanddebugging.CACM,52(11):75{84,2008.8.MalayGanai,AartiGupta,andPranavAshar.EcientSAT-basedunboundedsymbolicmodelcheckingusingcircuitcofactoring.InICCAD,pages510{517,2004.9.RobGerth,DoronPeled,MosheVardi,andPierreWolper.Simpleon-the- yautomaticveri cationoflineartemporallogic.InPSTV,pages3{18,1995.10.HansKamp.TenseLogicandtheTheoryofLinearOrder.PhDthesis,UniversityofCalifornia,1968.11.LeslieLamport.Whatgoodistemporallogic?InIFIPCongress,pages657{668,1983.12.ZoharMannaandAmirPnueli.TheTemporalLogicofReactiveandConcurrentSystems|Speci cation.Springer,1991.13.KennethMcMillan.ApplyingSATmethodsinunboundedsymbolicmodelcheck-ing.InCAV,pages250{264,2002.14.KennethMcMillan.InterpolationandSAT-basedmodelchecking.InCAV,pages1{13.Springer,2003.15.Marcel-PaulSchutzenberger.On nitemonoidshavingonlytrivialsubgroups.InformationandControl,8(2):190{194,1965.16.MarySheeran,SatnamSingh,andGunnarStalmarck.CheckingsafetypropertiesusinginductionandaSAT-solver.InFMCAD,pages108{125,2000.17.DenisTherienandThomasWilke.Overwords,twovariablesareaspowerfulasonequanti eralternation.InSTOC,pages234{240,1998.16