PPT-Steepest Descent (Ascent) untuk Kasus Min (Maks)

Author : alexa-scheidler | Published Date : 2018-01-16

Dr Rahma Fitriani SSi MSc Menentukan titik min maks pada fungsi non linier tanpa kendala dengan n peubah Titik tersebut adalah titik di mana vektor gradien bernilai

Presentation Embed Code

Download Presentation

Download Presentation The PPT/PDF document "Steepest Descent (Ascent) untuk Kasus Mi..." is the property of its rightful owner. Permission is granted to download and print the materials on this website for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.

Steepest Descent (Ascent) untuk Kasus Min (Maks): Transcript


Dr Rahma Fitriani SSi MSc Menentukan titik min maks pada fungsi non linier tanpa kendala dengan n peubah Titik tersebut adalah titik di mana vektor gradien bernilai nol di segala arah Dipakai ketika pembuat nol dari vektor gradien tidak dapat ditentukan secara analitik. Gradient descent is an iterative method that is given an initial point and follows the negative of the gradient in order to move the point toward a critical point which is hopefully the desired local minimum Again we are concerned with only local op © 2011 Daniel Kirschen and University of Washington. 1. Motivation. Method of Lagrange multipliers. Very useful insight into solutions. Analytical solution practical only for small problems. Direct application not practical for real-life problems because these problems are too large. Gradient descent. Key Concepts. Gradient descent. Line search. Convergence rates depend on scaling. Variants: discrete analogues, coordinate descent. Random restarts. Gradient direction . is orthogonal to the level sets (contours) of f,. CAMPAK. CAMPAK —Penyebab Kematian Utama . Pada Anak-anak (. CFR : 1-2/1000) Global. M E A S L E S 2. Penyebab kematian 1.6 juta anak karena PD3I selama tahun 2000. Campak. 48%. Methods for Weight Update in Neural Networks. Yujia Bao. Feb 28, 2017. Weight Update Frameworks. Goal: Minimize some loss function . with respect to the weights . ..  . input. layer. h. idden . layers. Pengenalan. . Modul. 1 . K. EMENTERIAN PERTANIAN. DIREKTORAT JENDERAL PETERNAKAN DAN KESEHATAN HEWAN. DIREKTORAT KESEHATAN HEWAN. Manajemen . Kasus. Laporan. . Respon. Tujuan. Merespon. . setiap. pada. . Manusia. Dhani . Redhono. . Mikrobiologi. Bakteri penyebab: . Leptospira sp . Suatu spirochaeta yg bersifat aerobik, selalu bergerak, mirip spiral dg ujung berkait. Ukuran Ø 0,1 um, length 6 – 20 um.. OLYMPEX Workshop. Seattle, WA. 22 March 2017. OLYMPEX. . Citation comparison with ground-based radars. Prioritized Spirals. 12. /05 : Ascent: 14:58:39 - 15:30:00 / 15:30:00 - 17:38:. 20. 11. /12 : . 1. Motivation. Method of Lagrange multipliers. Very useful insight into solutions. Analytical solution practical only for small problems. Direct application not practical for real-life problems because these problems are too large. Yujia Bao. Mar 1. , . 2017. Weight Update Frameworks. Goal: Minimize some loss function . with respect to the weights . ..  . input. layer. h. idden . layers. output . layer. …. Image credit: Joe . Johannes. . Sumber. Health, J. 2006. . Teaching and Writing Case Studies, Practical Guide. : 3rd edition, Cranfield . University, United Kingdom. . Disampaikan pada Lokakarya Meningkatkan pemahaman bisnis melalui pelatihan penulisan kasus, program Magister manajemen, 23 Oktober 2014. Gradient descent. Key Concepts. Gradient descent. Line search. Convergence rates depend on scaling. Variants: discrete analogues, coordinate descent. Random restarts. Gradient direction . is orthogonal to the level sets (contours) of f,. Shi & Bo. What is sparse system. A system of linear equations is called sparse if . only a relatively small . number of . its matrix . elements . . are nonzero. It is wasteful to use general methods . JURUSAN TEKNOLOGI INDUSTRI PERTANIAN. FAKULTAS TEKNOLOGI PERTANIAN. UNIVERSITAS BRAWIJAYA . 201. 3. IKA ATSARI DEWI, STP.MP. PRODUCTION PLANNING AND INVENTORY CONTROL. BY KELOMPOK 8. Akbar . Fajar. K .

Download Document

Here is the link to download the presentation.
"Steepest Descent (Ascent) untuk Kasus Min (Maks)"The content belongs to its owner. You may download and print it for personal use, without modification, and keep all copyright notices. By downloading, you agree to these terms.

Related Documents