/
TwoPhase Kernel Estimation for Robust Motion Deblurring Li Xu and Jiaya Jia Department TwoPhase Kernel Estimation for Robust Motion Deblurring Li Xu and Jiaya Jia Department

TwoPhase Kernel Estimation for Robust Motion Deblurring Li Xu and Jiaya Jia Department - PDF document

alexa-scheidler
alexa-scheidler . @alexa-scheidler
Follow
523 views
Uploaded On 2014-12-12

TwoPhase Kernel Estimation for Robust Motion Deblurring Li Xu and Jiaya Jia Department - PPT Presentation

cuhkeduhk Abstract We discuss a few new motion deblurring problems that are signi64257cant to kernel estimation and nonblind deconvolution We found that strong edges do not always pro64257t kernel estimation but instead under certain circumstance deg ID: 22557

cuhkeduhk Abstract discuss

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "TwoPhase Kernel Estimation for Robust Mo..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Two-PhaseKernelEstimationforRobustMotionDeblurringLiXuandJiayaJiaDepartmentofComputerScienceandEngineeringTheChineseUniversityofHongKong@cse.cuhk.edu.hkAbstract.Wediscussafewnewmotiondeblurringproblemsthatare 158L.XuandJ.Jiaincreasetheestimationambiguity.Wewillanalyzethisproblemandproposeanautomaticgradientselectionalgorithmtoexcludethedetrimentalstructures.Ourmethodalsomakesseveralothercontributions.1)First,weproposeanoveltwo-phasekernelestimationalgorithmtoseparatecomputationallyexpen-sivenon-convexoptimizationfromquickkernelinitialization,givingrisetoanecientandrobustkernelestimationprocess.2)Weintroduceanewspatialpriortopreservesharpedgesinquicklatentimagerestoration.3)Inthekernelre“nementstage,weemploytheIterativeSupportDetection(ISD)algorithm,whichisapowerfulnumericalschemethroughiterativesupportdetection,toadaptivelyenforcethesparsityconstraintandproperlypreservelarge-valueel-ements.Soft-threshold-likeeectisachievedinthisstep.4)Finally,torestorethelatentimage,weemployaTV-objectivefunctionthatisrobusttonoiseanddevelopanecientsolverbasedonhalf-quadraticsplitting.Weappliedourmethodtochallengingexamples,wheremanyimagesareblurredwithverylargePSFs(spanningupto100pixelsinwidthorheight)duetocamerashake.OurrobustdeblurringŽprojectwebsiteisputonlinewhichincludesthemotiondeblurringexecutableandimagedata.1.1RelatedWorkShift-invariantmotionblurcanbemodeledasimageconvolutionwithaPSF.Webrie”yreviewtheblindandnon-blinddeconvolutionmethods.BlindDeconvolution.Earlyworkonblindimagedeconvolutionfocusesones-timatingsmall-sizeblurkernels.Forexample,YouandKaveh[8]proposedavariationalframeworktoestimatesmallGaussiankernels.ChanandWong[9]appliedtheTotalVariationregularizerstobothkernelsandimages.Anothergroupofmethods[10…12]didnotcomputetheblurkernels,butstudiedthereversionofadiusionprocess.Lately,impressiveprogresshasbeenmadeinestimatingacomplexmotionblurPSFfromasingleimage[1,3,6].Thesuccessarisesinpartfromtheemploymentofsparsepriorsandthemulti-scaleframework.Fergusetal.[1]usedazero-meanMixtureofGaussianto“ttheheavy-tailednaturalimageprior.AvariationalBayesianframeworkwasemployed.Shanetal.[3]alsoexploitedthesparsepriorsforboththelatentimageandblurkernel.Deblurringisachievedthroughanalternating-minimizationscheme.Caietal.[6]introducedaframeletandcurveletsystemtoobtainthesparserepresentationforkernelsandimages.etal.[13]showedthatcommonMAPmethodsinvolvingestimatingboththeimageandkernellikelyfailbecausetheyfavorthetrivialsolution.Specialattentionsuchasedgere-weightingisprobablytheremedy.Itisnotablethatusingsparsepriorsusuallyresultinnon-convexobjectivefunctions,encumberingecientoptimization.Anothergroupofmethods[4,5,7]donotusesparsepriors,butinsteademployanexplicitedgepredictionstepforthePSFestimation.Speci“cally,Joshi[4]predictedsharpedgesby“rstlocatingstepedgesandthenpropagating leojia/projects/robust_deblur/index.html Two-PhaseKernelEstimationforRobustMotionDeblurring159thelocalintensityextrematowardstheedge.ThismethodwasusedtohandlecomplexPSFswithamulti-scalescheme[7].ChoandLee[5]adoptedbilateral“lteringtogetherwithshock“lteringtopredictsharpedges.ThesemethodsimposesimpleGaussianpriors,whichavailtoconstructquicksolvers.ThesepriorshowevercannotcapturethesparsenatureofthePSFandimagestructures,whichoccasionallymaketheestimatesnoisyanddense.Non-blinddeconvolution.GivenaknownblurPSF,theprocessofrestoringanunblurredimageisreferredtoasnon-blinddeconvolution.EarlyworksuchasRichardson-Lucy(RL)orWeiner“lteringisknownassensitivetonoise.Yuan[14]proposedaprogressivemulti-scalere“nementschemebasedonanedge-preservingbilateralRichardson-Lucy(BRL)method.TotalVariationregularizer(alsoreferredtoasLaplacianprior)[9],heavy-tailednaturalimagepriors[1,3]andHyper-Laplacianpriors[15…18]werealsoextensivelystudied.Tosuppressnoise,Baretal.[19]usedthe“delitytermtogetherwithaMumford-Shahregularizertorejectimpulsenoise.Joshietal.[20]incorpo-ratedalocaltwo-colorpriortosuppressnoise.Thesemethodsusedtheiterativere-weightedleastsquaretosolvethenonlinearoptimizationproblem,whichin-evitablyinvolvesintensivecomputation.Inthispaper,wedevelopedafastTV-deconvolutionmethodbasedonhalf-quadraticsplitting[16,18],toecientlyre-jectoutliersandpreservestructures.2Two-PhaseSparseKernelEstimationByconvention,theblurprocessismodeledasB=IwhereIisthelatentimage,istheblurkernel,istheimagenoise,denotesconvolutionandBistheobservedblurimage.Inthissection,weintroduceatwo-phasemethodforPSFestimation.The“rststageaimstoecientlycomputeacoarseversionofthekernelwithoutenforcingmuchsparsity.Inthesecondphase,althoughnon-convexoptimizationisemployed,withtheinitialkernelestimatepropagatedfromstageone,nosigni“cantcomputationisrequiredtoproducethe“nalresult.2.1PhaseOne:KernelInitializationInthe“rststep,weestimatetheblurkernelinamulti-scalesetting.Highe-ciencycanbeyieldedasweusetheGaussianpriorswhereclosed-formsolutionsexist.ThealgorithmissketchedinAlg.1.withthreemainsteps…thatis,sharpedgeconstruction,kernelestimation,andcoarseimagerestoration.Inthe“rstplace,likeothermotiondeblurringmethods,we“ltertheim-ageandpredictsalientedgestoguidethekernelinitialization.WeuseGaussian 160L.XuandJ.Jia Algorithm1.KernelInitialization INPUT:BlurimageBandanall-zerokernel(sizehBuildanimagepyramidwithlevelindex=1toComputegradientcon“denceforallpixels(Eq.(2)).=1toisthenumberofiterations)(a)Selectedgesforkernelestimationbasedoncon“dence(Eq.(4)).(b)EstimatekernelwiththeGaussianprior(Eq.(6)).(c)EstimatethelatentimageIwiththespatialprior(Eq.(8)),andupdateendforUpscaleimageIendforOUTPUT:Kernelestimateandsharpedgegradientmap (a)(b) Fig.1.Ambiguityinmotiondeblurring.Twolatentsignals(greendashedlines)in(a)and(b)areblurred(showninblue)withthesameGaussiankernel.In(a),theblurredsignalisnottotal-variationpreserving,makingthekernelestimationambiguous.Infact,theredcurveismorelikelythelatentsignalthanthegreenoneinacommonoptimizationprocess.Thebottomorangelinesindicatetheinputkernelwidth.“lteringtopre-smooththeimageandthensolvethefollowingshock“lteringPDEproblem[10]toconstructsigni“cantstepedges:/tsign(input(1)whereI=(IandI=I+2Iarethe“rst-andsecond-orderspatialderivativesrespectively.IdenotestheGaussiansmoothedinputimage,whichservesasaninitialinputforiterativelyupdating/tSelectiveEdgeMapforKernelEstimation.Insigni“cantedgesmakePSFestimationvulnerabletonoise,asdiscussedin[3…5,13].Wehoweverobserveadierentconnectionbetweenimageedgesandthequalityofkernelestimation…thatis,salientedgesdonotalwaysimprovekernelestimation;onthecontrary,thescaleofanobjectissmallerthanthatoftheblurkernel,theedgeinformationcoulddamagekernelestimation.WegiveanexampleinFigure1.Twostepsignals(thegreendashedlines)in(a)and(b)areblurredwithalargePSF.Theobservedblursignalsareshown Two-PhaseKernelEstimationforRobustMotionDeblurring161 (a)Blurredinput(b)Fergus[1]etal.(c)Shan[3]etal.(d)map(e)(f)(g)(h)(k)(l) Fig.2.Imagestructurein”uenceinkernelestimation.(a)Blurredimage.(b)ResultofFergusetal.[1].(c)ResultofShanetal.[3].(d)map(byEq.(2)).(e)-(g)maps,visualizedusingPoissonreconstruction,inthe1st,2ndand7thiterationswithoutconsidering.(h)Deblurringresultnotusingthemap.(i)-(k)mapscomputedaccordingtoEq.(4).(l)Our“nalresult.TheblurPSFisofsize45inblue.Becausetheleftsignalishorizontallynarrow,theblurprocesslowersitsheightin(a),yieldingambiguityinthelatentsignalrestoration.Speci“cally,motionblurmethodsimposingsparsepriorsonthegradientmapofthelatentimage[1,3]willfavorthereddashedlineincomputingtheunblurredsignalbecausethisversionpresentssmallergradientmagnitudes.Moreover,theredsignalpreservesthetotalvariationbetterthanthegreenone.Soitisalsoamoreappropriatesolutionforthegroupofmethodsusingsharpedgeprediction(includingshock“lteringandthemethodof[4]).Thisexampleshowsthatifimagestructuremagnitudesigni“cantlychangesafterblur,thecorrespondingedgeinformationcouldmistakekernelestimation.Incomparison,thelarger-scaleobjectshowninFigure1(b)canyieldsta-blekernelestimationbecauseitiswiderthanthekernel,preservingthetotalvariationofthelatentsignalalongitsedges.Figure2showsanimageexample.Theblurredinput(shownin(a))containsrichedgeinformationalongmanysmall-scaleobjects.TheresultsofFergus 162L.XuandJ.Jia[1](b)andShanetal.[3](c)arecomputedbyextensivelyhand-tuningpa-rameters.However,thecorrectkernelestimatestillcannotbefound,primarilyduetotheaforementionedsmallstructureproblem.Weproposeanewcriterionforselectinginformativeedgesforkernelestima-tion.Thenewmetrictomeasuretheusefulnessofgradientsisde“nedas (2)whereBdenotestheblurredimageand)isahhwindowcenteredatpixel5istopreventproducingalargein”atregions.Thesigned)fornarrowobjects(spikes)willmostlycanceloutinisthesumoftheabsolutegradientmagnitudesinwhichestimateshowstrongtheimagestructureisinthewindow.Asmallimpliesthateitherspikesora”atregionisinvolved,whichcausesneutralizingmanygradientcomponents.Figure2(d)showsthecomputedmap.Wethenruleoutpixelsbelongingtosmall-valuewindowsusingamask(3)where)istheHeavisidestepfunction,outputtingzerosfornegativevaluesandonesotherwise.isathreshold.The“nalselectededgesforkernelestima-tionaredeterminedas(4)whereIdenotestheshock“lteredimageandisathresholdofthegradientmagnitude.Eq.(4)excludespartofthegradients,dependingjointlyonthemagnitudeandthepriormaskM.Thisselectionprocessreducesambiguityinthefollowingkernelestimation.Figures2(e)-(g)and(i)-(k)illustratethecomputedmapsindierentit-erationswithoutandwiththeedgeselectionoperation.Thecomparisonshowsthatincludingmoreedgesdonotnecessarilybene“tkernelestimation.Opti-mizationcouldbemisledespeciallyinthe“rstafewiterations.Soanimageedgeselectionprocessisvitaltoreducetheconfusion.Toallowforinferringsubtlestructuresduringkernelre“nement,wedecreasethevaluesofandiniterations(dividedby1.1ineachpass),toincludemoreandmoreedges.Sothemapsin(g)and(k)containsimilaramountofedges.Butthequalitynotablydiers.Themethodtocomputethe“nalresultsshownin(h)and(l)isdetailedfurtherbelow.FastKernelEstimation.Withthecriticaledgeselection,initialkerneles-timationcanbeaccomplishedquickly.Wede“netheobjectivefunctionwithaGaussianregularizeras(5) Two-PhaseKernelEstimationforRobustMotionDeblurring163 (a)Blurredinput(b)map(c)Gaussianprior(d)OurspatialpriorFig.3.Comparisonofresultsusingthesparseandspatialpriors.Thespatialpriormakestheresultin(d)preservemoresharpedges.whereisaweight.BasedontheParsevalstheorem,weperformFFTsonallvariablesandsetthederivativew.r.t.tozero.Theclosed-formsolutionisgiven B)+ (yIs)F(y (6)where)and)denotetheFFTandinverseFFTrespectively. )isthecomplexconjugateoperator.CoarseImageEstimationwithaSpatialPriorWeusethepredictedsharpedgegradientasaspatialpriortoguidetherecoveryofacoarseversionofthelatentimage.TheobjectivefunctionisE(I)=(7)wherethenewspatialpriordoesnotblindlyenforcesmallgradientsnearstrongedgesandthusallowsforasharprecoveryevenwiththeGaussianregularizer.Theclosed-formsolutionexists.Withafewalgebraicoperationsinthefrequencydomain,weobtain (B)+ F(x)Fx (y)Fy (k)F(k( F(x)F(x (8)Figure3comparesthedeconvolutionresultsusingthespatialandGaussianpriorsrespectively(thelatterisusuallywrittenas).Theregularizationweight.TheimageshowninFigure3(d)containswellpreservedsharp2.2PhaseTwo:ISD-BasedKernelReÞnementToobtainsparsePSFs,previousmethods[1,3,5,21]applyhardorhysteresisthresholdingtothekernelestimates.Theseoperationshoweverignoretheinher-entblurstructure,possiblydegradingthekernelquality.Oneexampleisshown 164L.XuandJ.Jia (b) (c) g.t. 123 Fig.4.SparseKernelRe“nement.(a)Ablurredimage[13].(b)Kernels.Thetoprowshowsrespectivelythegroundtruthkernel,thekernelestimatesofFergusetal.[1],Shanetal.[3],andofourmethodinphaseone.inthebottomrowisour“nalresultafterkernelre“nement.showtheiterativelydetectedsupportregionsbytheISDmethod.(c)OurrestoredimageusinginFigure4(b),whereonlykeepingthelarge-valueelementsapparentlycannotpreservethesubtlestructureofthemotionPSF.Wesolvethisproblemusinganiterativesupportdetection(ISD)methodthatcanensurethedeblurringqualitywhileremovingnoise.TheideaistoiterativelysecurethePSFelementswithlargevaluesbyrelaxingtheregularizationpenalty.Sotheseelementswillnotbesigni“cantlyaectedbyregularizationinthenext-roundkernelre“nement.Thisstrategywasshownin[22]capableofcorrectingimperfectestimatesandconvergingquickly.ISDisaniterativemethod.Atthebeginningofeachiteration,previouslyestimatedkernelisusedtoformapartialsupport;thatis,large-valueelementsareputintoasetandallothersbelongtotheset isconstructed(9)whereindexestheelementsinandisapositivenumber,evolvinginiterations,toformthepartialsupport.Wecon“gurebyapplyingthe“rstsigni“cantjumpŽrule[22].Brie”yspeaking,wesortallelementsininanascendingorderw.r.t.theirvaluesandcomputethedierencesbetweeneachtwonearbyelements.Thenweexamthesedierencessequentiallystartingfromtheheadandsearchforthe“rstelement,forexample,thatsatis“es(2h),wherehisthekernelwidthandreturnsthelargestvaluein.Wethenassignthekernelvalueinposition.Moredetailsarepresentedin[22].ExamplesofthedetectedsupportareshowninthebottomrowofFigure4(b).Theelementswithineachwillbelesspenalizedinoptimization,resultinginanadaptivekernelre“nementprocess.Wethenminimize 2sk2+j (10) Two-PhaseKernelEstimationforRobustMotionDeblurring165 Algorithm2.ISD-basedKernelRe“nement INPUT:InitialkernelB,and(outputofAlgorithm1)Initializethepartialsupport (Eq.(9)).repeatSolveforbyminimizingEq.(10).Update (Eq.(9)).+1.until empirically)OUTPUT:Kernelestimate forPSFre“nement.Thedierencebetweenthisfunctionandthoseusedin[3,6]isonthede“nitionoftheregularizationterms.Thresholdingappliessoftlyinourfunctionthroughadaptiveregularization,whichallowstheenergytoconcentrateonsigni“cantvaluesandthusautomaticallymaintainsPSFsparsity,faithfultothedeblurringprocess.ThealgorithmisoutlinedinAlg.2..TominimizeEq.(10)withthepartialsupport,weemployedtheiterativereweighedleastsquare(IRLS)method.Bywritingconvolutionasmatrixmul-tiplication,thelatentimageI,kernel,andblurinputBarecorrespondinglyexpressedasmatrixA,vector,andvector.Eq.(10)isthenminimizedbyiterativelysolvinglinearequationsw.r.t..Inthe-thpass,thecorrespondinglinearequationisexpressedassTA+diag((11)whereAdenotesthetransposedversionofAandisthevectorformof isde“nedas=max(),whichistheweightrelatedtothekernelestimatefromthepreviousiteration.diag()producesadiagonalmatrixfromtheinputvector.Eq.(11)canbesolvedbytheconjugategradientmethodineachpass(wealternativelyapplythematrixdivisionoperationinMatlab).AsPSFshavesmallsizecomparedtoimages,thecomputationisveryfast.Our“nalkernelresultisshowninFigure4(b).Itmaintainsmanysmall-valueelements;meanwhile,thestructureisappropriatelysparse.Optimizationinthisphaseconvergesinonlyafewiterations.Figure4(c)showsourrestoredimageusingthecomputedPSF.Itcontainscorrectlyreconstructedtexturesandsmalledges,verifyingthequalityofthekernelestimate.3FastTV-DeconvolutionAssumingthedata“ttingcostsfollowingaGaussiandistributionisnotagoodwaytogoinmanycases.Itpossiblymakesresultsvulnerabletooutliers,asdemonstratedinmanyliteratures.Toachievehighrobustness,weproposeamodelindeconvolution,whichiswrittenasE(I)=(12) 166L.XuandJ.Jia Algorithm3.RobustDeconvolution INPUT:BlurredimageBandtheestimatedkernelEdgetapinginMatlabrepeatSolveforusingEq.(18)repeatSolveforusingEq.(17)SolveforIinthefrequencydomainusingEq.(15)untilminuntilminOUTPUT:DeblurredimageI Itcontainsnon-linearpenaltiesforboththedataandregularizationterms.Weproposesolvingitusinganecientalternatingminimizationmethod,basedonahalf-quadraticsplittingforminimization[16,18].Foreachpixel,weintroduceavariabletoequalthemeasureIB.Wealsodenoteby)imagegradientsintwodirections.Theuseoftheseauxiliaryvariablesleadstoamodi“edobjectivefunctionE(I,w,v 2 IkŠBŠv2+1 (13)wherethe“rsttwotermsareusedtoensurethesimilaritybetweenthemeasuresandthecorrespondingauxiliaryvariables.When0and0,thesolutionofEq.(13)approachesthatofEq.(12).Withtheadjustedformulation,Eq.(13)cannowbesolvedbyanecientAlternatingMinimization(AM)method,wherethesolveriteratesamongsolving,andindependentlyby“xingothervariables.andareinitializedtoIneachiteration,we“rstcomputeIgiventheinitialorestimatedandE(I;w,v (14)Eq.(14)isequivalenttoEq.(13)afterremovingconstants.Asaquadraticfunc-tion,Eq.(14)bearsaclosedformsolutioninminimizationaccordingtotheParsevalstheoremaftertheFouriertransform.TheoptimalIiswrittenas(I)= / F(x)F(wx (y)F(wy / F(x)F(x (15)ThenotationsarethesameasthoseinEq.(6). Two-PhaseKernelEstimationforRobustMotionDeblurring167 (a)Noisyinput(b)[15](c)[17](d)OursFig.5.Deconvolutionresultcomparison.TheblurredimagesinthetopandbottomrowsarewithGaussianandimpulsenoiserespectively.InsolvingforandgiventheIestimate,becauseandarenotcoupledwitheachotherintheobjectivefunction(theybelongtodierentterms),theiroptimizationisindependent.Twoseparateobjectivefunctionsarethusyielded:E(w;I)= E(v;I)= (16)EachobjectivefunctioninEq.(16)categorizestoasingle-variableoptimizationproblembecausethevariablesfordierentpixelsarenotspatiallycoupled.Theoptimalsolutionsforallscanbederivedaccordingtotheshrinkageformula: max( ,(17)Here,isotropicTVregularizerisused…thatis, canbecomputedsimilarlyusingtheabovemethod.Computingcanbeevensimplerbecauseitisanone-dimensionalshrinkage:=sign(IB)max((18)whereandaretwosmallpositivevaluestoenforcethesimilaritybetweentheauxiliaryvariablesandtherespectiveterms.Tofurtherspeeduptheoptimiza-tion,weemploythewarm-startscheme[3,16].It“rstsetslargepenalties(andinouralgorithm)andgraduallydecreasestheminiterations.ThedetailsareshowninAlg.3..Weempiricallyset=1,,andFigure5showsexampleswheretheblurredimagesarewithGaussianandimpulsenoiserespectively.TheTV-modelperformscomparablytootherstate-of-the-artdeconvolutionmethodsundertheGaussiannoise.Whensigni“cantimpulse-likesensornoiseexists,itworksevenbetter.Intermsofthecomputationtime,themethodsof[15]and[17]spend3minutesand1.5secondsrespectivelytoproducetheresultsinFigure5withtheprovidedimplementationwhileourdeconvolutionalgorithm,albeitusingthehighlynon-linearfunction,uses6sinMatlab.Allmethodsdeconvolvethreecolorchannelsindependently. 168L.XuandJ.Jia (a)Input(b)[1](c)[3](d)noM(e)withMFig.6.Smallobjectssuchasthecharactersandthinframesarecontainedintheimage.Theygreatlyincreasethedicultyofmotiondeblurring.(d)-(e)showourresultsusingandnotusingtheMmap.Theblurkernelisofsize51 (a)Input(b)[1](c)[3](d)[5](e)OursFig.7.Comparisonofstate-of-the-artdeblurringmethods4MoreExperimentalResultsWeexperimentedwithseveralchallengingexampleswheretheimagesareblurredwithlargekernels.Ourmethodgenerallyallowsusingthedefaultorautomati-callyadaptedparametervalues.Inthekernelestimation,weadaptivelysettheinitialvaluesofand,usingthemethodof[5].Speci“cally,thedirectionsofimagegradientareinitiallyquantizedintofourgroups.issettoguaranteethatatleast2 pixelsparticipateinkernelestimationineachgroup,wherethetotalnumberofpixelsinkernelissimilarlydeterminedbyallowingatleast0 pixelstobeselectedineachgroup.isthetotalnumberofpixelsintheinputimage.Inthecoarsekernelestimationphase,wesetand=10toresistnoise.Inthekernelre“nement,weset=1.inthe“nalimagedeconvolutionissetto2Ourtwo-phasekernelestimationisecientbecauseweputthenon-convexoptimizationintothesecondphase.OurMatlabimplementationspendsabout25secondstoestimatea2525kernelfroman800600imagewithanIntelCore2QuadCPU@2.40G.Thecoarsekernelestimationuses12sinthemulti-scaleframeworkwhilethekernelre“nementspends13sasitisperformedonlyinthe“nestimagescale.InFigure6(a),weshowanexamplethatcontainsmanysmallbutstructurally-salientobjects,suchasthecharacters,whichmakehighqualitykernelestimation Two-PhaseKernelEstimationforRobustMotionDeblurring169 (a)(b)(c) Fig.8.Onemoreexample.(a)Blurredimage.(b)Ourresult.(c)Close-ups.verychallenging.Theresults(shownin(b)and(c))oftwoothermethodscontainseveralvisualartifactsduetoimperfectkernelestimation.(d)showsourresultwithoutperformingedgeselection.Comparedtotheimageshownin(e),itsqualityislower,indicatingtheimportanceofincorporatingthegradientmaskMinde“ningtheobjectivefunction.Figure7showsanotherexamplewithcomparisonswiththreeotherblinddeconvolutionmethods.ThekernelestimatesofFergusetal.[1]andShan[3]areseeminglytoosparse,duetothe“nalhardthresholdingoperation.Therestoredimageisthereforenotverysharp.ThedeblurringresultofChoandLee[5]containssomenoise.OurrestoredimageusingAlg.3.isshownin(e).Wehavealsoexperimentedwithseveralothernaturalimageexamples.Figure8showsonetakenunderdimlight.Moreofthemareincludedinoursupplementary“ledownloadablefromtheprojectwebsite.5ConcludingRemarksWehavepresentedanovelmotiondeblurringmethodandhavemadeanumberofcontributions.Weobservedthatmotiondeblurringcouldfailwhenconsiderablestrongandyetnarrowstructuresexistinthelatentimageandproposedaneectivemaskcomputationalgorithmtoadaptivelyselectusefuledgesforkernelestimation.TheISD-basedkernelre“nementfurtherimprovestheresultqualitywithadaptiveregularization.The“naldeconvolutionstepusesadatatermthatisrobusttonoise.Itissolvedwithanewiterativeoptimizationscheme.Wehaveextensivelytestedouralgorithm,andfoundthatitisabletodeblurimageswithverylargeblurkernels,thankstotheuseoftheselectiveedgemap.AcknowledgementsTheworkdescribedinthispaperwassupportedbyagrantfromtheResearchGrantsCounciloftheHongKongSpecialAdministrativeRegion(ProjectNo.413110)andCUHKDirectGrant(No.2050450). 170L.XuandJ.JiaReferences1.Fergus,R.,Singh,B.,Hertzmann,A.,Roweis,S.T.,Freeman,W.T.:Removingcamerashakefromasinglephotograph.ACMTrans.Graph.25,787…794(2006)2.Jia,J.:Singleimagemotiondeblurringusingtransparency.In:CVPR(2007)3.Shan,Q.,Jia,J.,Agarwala,A.:High-qualitymotiondeblurringfromasingleimage.ACMTrans.Graph.27(2008)4.Joshi,N.,Szeliski,R.,Kriegman,D.J.:Psfestimationusingsharpedgeprediction.In:CVPR(2008)5.Cho,S.,Lee,S.:Fastmotiondeblurring.ACMTrans.Graph.28(2009)6.Cai,J.F.,Ji,H.,Liu,C.,Shen,Z.:Blindmotiondeblurringfromasingleimageusingsparseapproximation.In:CVPR,pp.104…111(2009)7.Joshi,N.:Enhancingphotographsusingcontent-speci“cimagepriors.PhDthesis,UniversityofCalifornia,SanDiego(2008)8.You,Y.,Kaveh,M.:Blindimagerestorationbyanisotropicregularization.IEEETransactionsonImageProcessing8,396…407(1999)9.Chan,T.,Wong,C.:Totalvariationblinddeconvolution.IEEETransactionsonImageProcessing7,370…375(1998)10.Osher,S.,Rudin,L.:Feature-orientedimageenhancementusingshock“lters.SIAMJournalonNumericalAnalysis27,919…940(1990)11.Alvarez,L.,Mazorra,L.:Signalandimagerestorationusingshock“ltersandanisotropicdiusion.SIAMJ.Numer.Anal.31(1994)12.Gilboa,G.,Sochen,N.A.,Zeevi,Y.Y.:Regularizedshock“ltersandcomplexdif-fusion.In:Heyden,A.,Sparr,G.,Nielsen,M.,Johansen,P.(eds.)ECCV2002.LNCS,vol.2350,pp.399…413.Springer,Heidelberg(2002)13.Levin,A.,Weiss,Y.,Durand,F.,Freeman,W.T.:Understandingandevaluatingblinddeconvolutionalgorithms.In:CVPR(2009)14.Yuan,L.,Sun,J.,Quan,L.,Shum,H.Y.:Progressiveinter-scaleandintra-scalenon-blindimagedeconvolution.ACMTrans.Graph.27(2008)15.Levin,A.,Fergus,R.,Durand,F.,Freeman,W.T.:Imageanddepthfromacon-ventionalcamerawithacodedaperture.ACMTrans.Graph.26,70(2007)16.Wang,Y.,Yang,J.,Yin,W.,Zhang,Y.:Anewalternatingminimizationalgorithmfortotalvariationimagereconstruction.SIAMJournalonImagingSciences1,248…272(2008)17.Krishnan,D.,Fergus,R.:Fastimagedeconvolutionusinghyper-laplacianpriors.In:NIPS(2009)18.Yang,J.,Zhang,Y.,Yin,W.:AnecientTVL1algorithmfordeblurringmulti-channelimagescorruptedbyimpulsivenoise.SIAMJ.Sci.Comput.31,2842…2865(2009)19.Bar,L.,Sochen,N.,Kiryati,N.:Imagedeblurringinthepresenceofsalt-and-peppernoise.In:InternationalConferenceonScaleSpaceandPDEmethodsinComputerVision,pp.107…118(2005)20.Joshi,N.,Zitnick,C.L.,Szeliski,R.,Kriegman,D.J.:Imagedeblurringanddenois-ingusingcolorpriors.In:CVPR,pp.1550…1557(2009)21.Yuan,L.,Sun,J.,Quan,L.,Shum,H.Y.:Imagedeblurringwithblurred/noisyimagepairs.ACMTrans.Graph.26,1(2007)22.Wang,Y.,Yin,W.:CompressedSensingviaIterativeSupportDetection.CAAMTechnicalReportTR09-30(2009)