/
4CHAPTER2.QUANTUMSTATESANDOBSERVABLESwecouldalsohavewrittenj 4CHAPTER2.QUANTUMSTATESANDOBSERVABLESwecouldalsohavewrittenj

4CHAPTER2.QUANTUMSTATESANDOBSERVABLESwecouldalsohavewrittenj"i;(2.3)an - PDF document

alida-meadow
alida-meadow . @alida-meadow
Follow
354 views
Uploaded On 2015-09-13

4CHAPTER2.QUANTUMSTATESANDOBSERVABLESwecouldalsohavewrittenj"i;(2.3)an - PPT Presentation

2CONTENTS p 2j0ij1i27isalegitimatechoiceOrj isinxj0icosxj1i28forx202Similarlyji1 p 2j0iij1i29andj i1 p 2j0iij1i210arevalidchoicesTheparameters and arehencecomplex ID: 128003

2CONTENTS p 2(j0i+j1i)(2.7)isalegitimatechoice.Orj i=sin(x)j0i+cos(x)j1i(2.8)forx2[0;2).Similarly ji=1 p 2(j0i+ij1i)(2.9)andj i=1 p 2(j0iij1i)(2.10)arevalidchoices.Theparameters and arehencecomplex

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "4CHAPTER2.QUANTUMSTATESANDOBSERVABLESwec..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

2CONTENTS 4CHAPTER2.QUANTUMSTATESANDOBSERVABLESwecouldalsohavewrittenj"i;(2.3)andj#i;(2.4)butletusstickwiththenumbersforourpurposes.Moreprecisely,theyarebasisvectorsinacomplexvectorspaceH,aswewillseeinasecond.Assuch,notonlyvectorsj0iandj1imakesense,butinfactanylinearsuperpositionj i= j0i+ j1i2H'C2;(2.5)where ; 2Csuchthatj j2+j j2=1:(2.6)Forexamplej+i=1 p 2(j0i+j1i)(2.7)isalegitimatechoice.Orj i=sin(x)j0i+cos(x)j1i(2.8)forx2[0;2).Similarly,ji=1 p 2(j0i+ij1i)(2.9)andj i=1 p 2(j0i�ij1i)(2.10)arevalidchoices.Theparameters and arehencecomplex,andEq.(2.6)reectsnormalizationofthevector,kjj ik2=h j i=j j2+j j2:(2.11)Superpositionswehavealreadyseenbefore,herewithcomplexcoefcients.Theyarecalledstatevectorsinquantummechanics.Here,theyariseinaquitesubtlefashion,however:AsituationoftheformasinEq.(2.7)doesnotcorre-spondtothesituationofthespinpointingeitherupordown.Itissomethingverydifferent.Itisasuperpositionofthespinpointingupanddown(omittingthehyphenationfromnowon).Wewillseewhatthismeansverysoon.Wehavesaidthatj0iandj1icorrespondtospinupanddown,respectively.Aswewillseeinmoredetaillater,comingbacktotheaboveboxes,j+i=1 p 2(j0i+j1i)(2.12) 6CHAPTER2.QUANTUMSTATESANDOBSERVABLESwith ; 2C,appropriatelynormalized,isagainalegitimatestatevector.2.1.2PaulioperatorsWehaveseen–evenifnotdiscussedinalldetail–thattheinternalstatescanbeassociatedwithvectors.WewillnowseethatphysicspropertiescanbeassociatedwithoperatorsA,sowithlinearmapsoftheformj i7!Aj i;(2.17)whereagainAj i2H.Beforewebecometooabstractatthispoint,letusconsideranexample:ThePauli-z-matrixzactsaszj0i=j0i;(2.18)zj1i=�j1i:(2.19)Wehencenotethatthevectorsj0iandj1iareeigenvectorsofz:Uptoacomplexnumber–here+1and�1,therespectiveeigenvalues–weobtainagainthesamevectorifweapplyztoit.TheabovementionedstatevectorsthatareonthenorthandsouthpolesoftheBlochspherehencecorrespondtoeigenvectorsofzwiththerespectiveeigenvalues.Similarly,wendthatthePauli-xmatrixxactsasxj+i=j+i;(2.20)xj�i=�j�i:(2.21)Finally,thePauli-y-matrixyhasthepropertythatyji=ji;(2.22)yj i=�j i:(2.23)2.1.3ApreliminaryinterpretationoftheboxesWewillexplainthisinmoredetailbelow.Theshortandsomewhatellipticexplanationoftheabovesituationinvolvingtheboxesisasfollows:Proper-tiesareassociatedwithoperators,infactwithHermitianoperators,seebelow.SuchHermitianoperatorsarecalledobservables.PaulioperatorsareexamplesofHermitianoperators.AmeasurementalongthezaxiscorrespondstothePauli-z-matrix,andsimilarlyfortheotherPaulimatrices.Sotherstmea-surementcorrespondstoa“measurementoftheobservablePauli-z”.Afterthemeasurement,thesystemwillbeinaneigenvectoroftherespectiveobservable,theoutcomeofthemeasurementbeingtheeigenvalueoftheeigenvector.Forexample,wemeasurethespinalongthezaxis,hence“measuretheobservablePauli-z”.Ifwegetthevalue+1,wewillobtainthestatevectorj0i=zj0i(2.24) 8CHAPTER2.QUANTUMSTATESANDOBSERVABLES Statevectorsofnite-dimensionalquantumsystems:Thestatevectorofad-dimensionalquantumsystemcanbewrittenasavectorj i=d�1Xj=0 jjji;(2.28)satisfyingnormalizationd�1Xj=0j jj2=1:(2.29) Indeed,thevectorsfj0i;:::;jd�1ig(2.30)areagainorthonormalbasisvectors,whileallotherstatevectorsaresuperpo-sitionsthereof.Theprinciplethatanyofthesevectorsareallowedstatevectorsissometimesalsoreferredtoasthesuperpositionprinciple.ThesevectorsformavectorspaceH,infactaHilbertspace(seeAppendix). Hilbertspaceofd-dimensionalquantumsystems:Thebasisvectorsfj0i;:::;jd�1igspantheHilbertspaceH'Cd. Veryimportantwillalsobethescalarproduct. Scalarproduct:Fortwostatevectorsj i=d�1Xj=0 jjji;ji=d�1Xj=0 jjji(2.31)wewritetheirstandardscalarproductash ji=hj i=d�1Xj=0 j j:(2.32) Suchscalarproductsaresometimescalled“brackets”,whichiswhyvectors–inaninstanceofphysicshumor,judgeforyourself–arecalled“kets”.Dualvectors,fromthedualspaceH,arereferredtoas“bras”,h j=d�1Xj=0 jhjj;(2.33) 10CHAPTER2.QUANTUMSTATESANDOBSERVABLESandadualvectorh j=d�1Xj=0 jhjj(2.41)with[ 0::: d�1]:(2.42)2.2.2ObservablesObservables,so“observablequantities”,entitiesthatcaptureameasurementprescription,areHermitianoperators.Thisissuchanimportantstatementthatwegiveitabox: Observables:ObservablesinquantummechanicscorrespondtoHermi-tianoperators,A=Ay:(2.43) Theadjointcanbedenedviah j(Aji)=(h jA)ji(2.44)forallj i;ji.Suchobservablescanagainbewritteninmatrixform:Intermsofthebasisfj0i;:::;jd�1ig,thematrixformhastheentriesAj;k=hjjAjki:(2.45)Itisclearthatthismatrixformuniquelycharacterizestheoperator:Wecanmakeuseofthe“insertiontrick”A=1A1=Xj;khjjAjkijjihkj:(2.46)Inthefollowing,wewillalwaysidentifyanoperatorwithitsmatrixform.Thisisaverycommonidentication:WewillwriteAbothforthelinearoperatoritselfaswellasforthematrixthatreectsitgivenabasis.Thisissocommonandnaturalthatanyotherchoicewouldunnecessarilymakethenotationverycumbersome.Asanexercise,weformulatethematrixformofthePaulioperators.Therstoneisverymuchobvious:Wecanwritez=100�1:(2.47)Thevectorsj0iandj1iarealreadyeigenvectorsofz,soweshouldnotbesurprisedtoseethatthematrixformisdiagonal.Similarly,wendthematrix 12CHAPTER2.QUANTUMSTATESANDOBSERVABLES Compatibleobservables:TwoobservablesAandBarecompatible,if[A;B]=0:(2.54) 2.2.3EigenvectorsandeigenvaluesIndeed,thefactthatobservablesareHermitianmeansthattheireigenvaluesarereal. Eigenvaluedecompositionofobservables:Every(nite-dimensional)ob-servableAcanbewrittenasA=d�1Xj=0jjjihjj;(2.55)wheretheeigenvaluessatisfy0;:::;d�12RandtheeigenvectorsfjjigcanbechosentoformanorthonormalbasisofH. Thisdoesnotmean,ofcourse,thatallofthefjgarenecessarilydifferent.Iftwoormoreeigenvaluesareidentical,theyarecalleddegenerate.Therespec-tiveeigenvaluesthenspantheeigenspace,whichisnolongerone-dimensional.Eigenvaluesandeigenvectorsplayaveryimportantroleinquantummechan-ics:Theformeressentiallyas“measurementoutcomes”andthelatteras“post-measurementstatevectors”.Sinceeigenvaluedecompositionsaresoimpor-tant,westateatthispointanequivalentformoftheeigenvaluedecompositionofobservables: Diagonalizationofobservables:Every(nite-dimensional)observableAcanbewrittenasA=UDUy;(2.56)whereD=diag(0;:::;d�1),0;:::;d�12R,andUisunitary,sosatis-edUUy=UyU=1:(2.57) Unitaryoperatorsarethosethatpreservescalarproducts,andcorrespondtobasischangesoforthonormalbasis.Theabovestatementishenceamanifesta-tionoftheobservationthatintheireigenbasis,observablesarediagonal.The 14CHAPTER2.QUANTUMSTATESANDOBSERVABLESNow,theseoperatorsnolongerhavediscretespectra,sonodiscreteeigenval-ues,aswenowhavedim(H)=1.Wecanatthispointalreadygraspwhythisisthecase:eigenvaluescorrespondtomeasurementoutcomes.Incaseofposition,aparticlecantakeacontinuumofdifferentpositions,incaseofaone-dimensionalproblem,thisistheentirerealline.Andinfact,boththepositionandthemomentumoperatorhaveRastheirspectrum.Neitherthepositionnorthemomentumoperatorhaveeigenvectors(al-thoughmanybooksspellthemoutnevertheless,wewillcomebacktothat).Itstillmakessenseforx2Rtowritehxj i= (x);(2.61)evenifatthispointwetaketherighthandsidetobethedenitionforthelefthandsideoftheequalitysign(wedonotinsistthedualvectorshxjtobecontainedinanydualHilbertspace,butwestartworryingaboutthatdetailintheappendix).Thisrepresentationintermsofwavefunctionsisusuallycalledthepositionrepresentation. Wavefunctions:Singlespatialdegreesoffreedomaredescribedbywavefunctions :R!C:(2.62)TheysatisfyZ1�1j (x)j2=1:(2.63)j (x)j2canbeinterpretedastheprobabilitydensityforndingtheparticleatpositionx. Becauseweaskfor beingsquareintegrable,theHilbertspaceisH=L2(R)ofsquareintegrablefunctionsoverthereals.Soindeed,(x)=j (x)j2(2.64)forx2Rhasaprobabilityinterpretation.Yet,thewavefunctionis“alotmorethanamereprobabilitydistribution”,asitalsocontainsphaseinformation,asitisacomplex-valuedfunction.Inotherwords,thewavefunctiondoesnotreectthesituationthat“theparticleissomewhere,wemerelydonotknowwhereitis”.Thisstatement–evenifonecansometimesreadsuchstatementsintheliterature–iswrong.Whatistrue,however,isthattheprobabilityden-sityofndingparticlesinparticularplacescanbedeterminedfromthewavefunction.Again,statevectorsareelementsofHilbert(andhencevector)spaces:Thatistosaythatifj 1iisalegitimatestatevectorandj 2iaswell,thenanylinearcombinationofthem,appropriatelynormalized,isagainastatevector.Statedintermsofthepositionrepresentation,if 1:R!Cand 2:R!Carewave 16CHAPTER2.QUANTUMSTATESANDOBSERVABLESSimilarlytothepositionrepresentation,wecanintroducethemomentumrepresentation:Similarlyasabove,weconsiderhpj i=~ (p);(2.71)where :R!CistheFouriertransformof~ :R!C, (x)=1 p 2Z1�1~ (k)eikxdk:(2.72)2.2.6CombiningquantumsystemsHowdowedescribecompositequantumsystemsinquantumtheory?Clearly,theformalismmusthaveananswertothat.Wethinkofaparticlehavingseveraldegreesoffreedom.Orweaimatdescribingseveraldifferentparticlesatonce.Howdowecapturethissituation?Compositionofdegreesoffreedomisincorporatedbythetensorproductsinquantummechanics.Letusassumethatwehaveonedegreeoffreedomassociatedwithad1-dimensionalHilbertspaceH1=spanfj0i;:::;jd1�1ig:(2.73)Wethenconsideranother,seconddegreeoffreedom,comingalongwithad2-dimensionalHilbertspaceH2=spanfj0i;:::;jd2�1ig:(2.74)Thesespacescould,forexample,captureallsuperpositionsoftwospindegreesoffreedomoftwoparticlesdescribedbyquantummechanics.TheHilbertspaceofthejointsystemisthengivenbythetensorproductH=H1 H2:(2.75)Itisspannedbytheorthonormalbasisvectorsfjji jki:j=0;:::;d1�1;k=0;:::;d2�1g:(2.76)Suchbasiselementsoftensorproductsaresometimesalsowrittenasfjj;ki:j=0;:::;d1�1;k=0;:::;d2�1g:(2.77)Thislooksmorecomplicatedthanitis:WhileanarbitrarysuperpositionofastatevectorfromH1canbewrittenasj 1i=d1Xj=0 jjji(2.78)andanarbitrarysuperpositionofastatevectorfromH2isj 2i=d2Xj=0 jjji;(2.79) 18CHAPTER2.QUANTUMSTATESANDOBSERVABLES2.3MeasurementAfterallthis,wearenallyinthepositiontocarefullyandpreciselydescribetheboxesthatwehaveencounteredabove.Fordoingso,weneedtopreciselyunderstandwhatmeasurementdoestoaquantumsystem.2.3.1MeasurementpostulateLetusstartbypreciselystatinghowmeasurementiscapturedinquantumthe-ory,andthendiscusswhatthismeansingreatdetail.Thesubsequenttypeofmeasurementiscalled“von-Neumannmeasurement”(toemphasizethatlateron,wewillhavealookatamoregeneralframeworktocapturemeasurement,whichishowevernotfundamentallymoregeneralthanthemeasurementpos-tulatethatwearegoingtoseenow). Measurementpostulate(forvon-Neumannmeasurements):WeconsiderameasurementoftheobservableAforaquantumsystempreparedinastatevectorj i2Cd.Letusassumethatnoneoftheeigenvalues0;:::;d�1ofA=d�1Xj=0jjjihjj(2.86)aredegenerate.Thentheprobabilitypjofobtainingtheoutcomejisgivenbypj=jh jjij2;(2.87)thestatevectorimmediatelyafterthemeasurementisgivenbyj ji=1 p pjhjj ijji:(2.88) Inotherwords,themeasurementvaluesaretheeigenvalues,andameasure-ment“collapses”thestatevectorintooneoftheeigenvectors.Thesituationofencounteringdegenerateeigenvaluesmerelyrequiresamildmodication:IncaseofadegenerateobservableA,witheigenvalues0;:::;d�1anddifferenteigenvalues0;:::;D�1,wecanwriteA=D�1Xk=0kk(2.89)wherek=Xj;j=kjjihjj(2.90) 20CHAPTER2.QUANTUMSTATESANDOBSERVABLES2.3.3AproperexplanationoftheboxesWearenowinthepositiontoproperlyexplainourinitialsituationinvolvingboxes–withthesingleexceptionoftheinitialpreparation,towhichwewillcomelater.TherstmeasurementofthePaulioperatorzcanhavetheout-comes0;1=1.Afterthemeasurement,thewavefunctionisprojectedontoj0iorj1i,dependentonthemeasurementoutcome.Thisiswhyanysubse-quentmeasurementofzwillprovidethesameoutcome:Onethestatevectoriscollapsedtoj0i,say,theprobabilityofobtainingtheoutcome1isagainp0=1:(2.99)Afancywayofsayingthisisthatzandzarecompatible,andwecanrepeatthemeasurementandarbitrarynumberoftimes,andwillgetthesamevalueoverandoveragain.Thisisdifferentincasewemeasurexinbetween.Say,wehaveobtainedtheoutcome0=1andthepost-measurementstatej0i.Thentheprobabilityofgettingthepost-measurement-statej+iisgivenbyjh+j0ij2=1 2;(2.100)andinthesamewayjh�j0ij2=1 2:(2.101)Sotheprobabilityofgettingeachoutcomeisprecisely1=2.Then,ifweobtainj+iinthemeasurementoftheobservablex,thentheprobabilityofgettingj0iinasubsequentzmeasurementisagain1=2,forthesamereasons–onlywiththerolesofthetwovectorsreversed.Havingunderstoodthemeasurementpostulate,theabovesituationisveryclear.Thisnotionofameasurementofx“disturbing”ameasurementofzisamanifestationoftheobservablesxandznotcommuting:Theyareincompat-ible.Compatibleobservablescanberepeatedlymeasuredwithoutalteringtheoutcome,whilethisisnotsoforincompatibleobservables.Theorderofmea-surementalsomatters,anditdoessimplynotmakesensetoaskwhetherthespinis“trulypointingupordown”incaseonehasjustperformedameasure-mentalongthexaxis.Suchpropertiesaresimplynotdenedwithinquantumtheory.2.3.4ThreereadingsoftheHeisenberguncertaintyrelationThisnotionofoutcomesofmeasurementsbeing“uncertain”canbemademorepreciseintermsoftheso-calleduncertaintyrelation.Therearefewstatementsinquantumtheory,yet,thataresooftenmisunderstoodastheuncertaintyre-lation.Recently,alawyercametomeandasked,well,istheuncertaintyinadjudicationnotjustamanifestationoftheHeisenbergprinciple,that“noth-ingispreciselydened”?Well,actually,no. 22CHAPTER2.QUANTUMSTATESANDOBSERVABLES Heisenberg'suncertaintyrelation:TwoobservablesAandBofaquantumsystempreparedinj isatisfytheuncertaintyrelationAB1 2jh j[A;B]j ij:(2.111) Thatistosay,theproductofthetwouncertaintiescannottakeanarbitrarilysmallvalue–unlessthetwoobservablesAandBcommute.Otherwise,theproductofthetwouncertaintiesofAandBcannotbearbitrarilysmall.Thisisaremarkableobservation.Whenappliedtopositionandmomentum,thisprinciplereadsXP~ 2;(2.112)whichmeansthatwavefunctionscannotbearbitrarilynarrowbothinpositionandmomentum.ThismeansthatifwepreparemanyquantumsystemsandrstestimateAmanytimes,suchthatweknowitlaterwithhighstatisticalsignicance,andthenestimateB:Thentheproductofthetwouncertaintieswillalwaysbelargerthantheabovegivenvalue.Quantummechanicssimplydoesnotallowforanysmalleruncertainties.Soinaway,onecannot“knowthevaluesoftwonon-commutingobservablesatonce”.Precisely,whatismeant,however,isthatoneindependentlypreparesthesystemsandmeasureseitherAorB,andthenanalysesthedata.ThisistherstreadingoftheHeisenberguncertaintyrelation.Thisisalsothederivationthatmostbooksonquantummechanicsoffer.Interestingly,theexplanationgivenisquiteoftenincompatiblewiththeabovederivation.ThisisthenotionofameasurementofoneobservableAmakestheoutcomeofanothernon-commutingobservableBlesscertain.Thisisthesec-ondreadingoftheuncertaintyrelation.WehencemeasureonthesamesystemrstA,thenB.Ifwe“knowthevalueofAprecisely,thenthemeasurementofBwillbealotdisturbed”.ThisisthereadingofthefamousHeisenbergmi-croscope:HeisenbergdiscussedhowameasurementofXdisturbslaterlatermeasurementsofthenon-commutingobservableP.Thisisalsotrue,butthisisnotquitewhatwehavederivedabove(whichmadeuseoftheindependentandidenticaldistribution(i.i.d.)oftheinitialpreparation).OnecanalsoderiveuncertaintiesfortheHeisenberguncertaintyprincipleinthissecondreading,buttheprefactorontherighthandsidewillbeslightlydifferent.Athirdreadingwhichweonlybrieymentionistheonewheretriestojointlymeasuretwoobservablesinasinglegeneralizedmeasurement.Wehavetodelaythisdiscussionasweareatthispointnotquiteclearaboutwhatageneralizedmeasurementis.Justfortherecords:HereoneaimsatobtainingasmuchinformationaspossibleaboutAandBinasinglerunofameasurement,

Related Contents


Next Show more