/
66CHAPTERIVXiscalledboundedifforeachneighborhoodWof0thereexistsapositi 66CHAPTERIVXiscalledboundedifforeachneighborhoodWof0thereexistsapositi

66CHAPTERIVXiscalledboundedifforeachneighborhoodWof0thereexistsapositi - PDF document

alida-meadow
alida-meadow . @alida-meadow
Follow
360 views
Uploaded On 2016-07-01

66CHAPTERIVXiscalledboundedifforeachneighborhoodWof0thereexistsapositi - PPT Presentation

supt0tx2Utweseethatx1c0showingthatisanormWemustshow nallythatthegiventopologyagreeswiththeonede nedbythenormSincebyTheorem36iscontinuousitfollowsimmediatelythatB11isopenin ID: 386288

supt0;tx2Ut;weseethat(x)1=c0;showingthatisanorm.Wemustshow nallythatthegiventopologyagreeswiththeonede nedbythenorm:Since byTheorem3.6 iscontinuous itfol-lowsimmediatelythatB=1(1;)isopenin

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "66CHAPTERIVXiscalledboundedifforeachneig..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

66CHAPTERIVXiscalledboundedifforeachneighborhoodWof0thereexistsapositivescalarcsuchthatScW:THEOREM4.1.(CharacterizationofNormableSpaces)LetXbealocallyconvextopologicalvectorspace.ThenXisanormablevectorspaceifandonlyifthereexistsaboundedconvexneighborhoodof0.PROOF.IfXisanormabletopologicalvectorspace,letkkbeanormonXthatdeterminesthetopology.ThenB1isclearlyaboundedconvexneighborhoodof0.Conversely,letUbeaboundedconvexneighborhoodof0inX:WemayassumethatUissymmetric,since,inanyevent,U\(�U)isalsoboundedandconvex.Letbetheseminorm(Minkowskifunctional)onXassociatedtoUasinTheorem3.6.Weshow rstthatisactuallyanorm.Thus,letx6=0begiven,andchooseaconvexneighborhoodVof0suchthatx=2V:Notethat,iftx2V;thenjtj1:Choosec&#x]TJ/;ñ 9;&#x.963;&#x Tf ;.8;' 0;&#x Td[;0sothatUcV;andnotethatiftx2U;thentx2cV;whencejtjc:Therefore,recallingthede nitionof(x);(x)=1 sup�t0;tx2Ut;weseethat(x)1=c�0;showingthatisanorm.Wemustshow nallythatthegiventopologyagreeswiththeonede nedbythenorm:Since,byTheorem3.6,iscontinuous,itfol-lowsimmediatelythatB=�1(�1;)isopeninthegiventopol-ogy,showingthatthetopologyde nedbythenormiscontainedinthegiventopology.Conversely,ifVisanopensubsetofthegiventopol-ogyandx2V;letWbeaneighborhoodof0suchthatx+WV:Choosec�0sothatUcW:AgainusingTheorem3.6,weseethatB1=�1(�1;1)UcW;whenceB1=c=�1(�1;(1=c))W;andx+B1=cV:ThisshowsthatVisopeninthetopologyde nedbythenorm.Q.E.D.EXERCISE4.1.(a)(CharacterizationofBanachSpaces)LetXbeanormedlinearspace.ShowthatXisaBanachspaceifandonlyifeveryabsolutelysummablein niteseriesinXissummableinX:(Anin niteseriesPxnisabsolutelysummableinXifPkxnk1:)HINT:IffyngisaCauchysequenceinX;chooseasubsequencefynkgforwhichkynk�ynk+1k2�k:(b)UsepartatoverifythatallthespacesLp(R),1p1;areBanachspaces,asisC0(): 68CHAPTERIV(Ofcourse,gisnotanelementofS:)(c)LetnbetheintegerfrompartaandletfbeaC1functionwithcompactsupportsuchthatjf(x)j1forallxandf(0)=1:ForeachintegerM�0;de negM(x)=g(x)f(x�M);wheregisthefunctionfrompartb.ShowthateachgM2Sandthatthereexistsapositiveconstantcsuchthatn(gM)cforallM;i.e.,(=c)gM2VforallM:Further,showthatforeachM2;n+1(gM)p M:(d)ShowthattheneighborhoodVof0frompartaisnotboundedinS:HINT:De neWtobetheneighborhood�1n+1(�1;1);andshowthatnomultipleofWcontainsV:(e)ConcludethatSisnotnormable.THEOREM4.2.(SubspacesandQuotientSpaces)LetXbeaBa-nachspaceandletMbeaclosedlinearsubspace.(1)MisaBanachspacewithrespecttotherestrictiontoMofthenormonX:(2)Ifx+MisacosetofM;andifkx+Mkisde nedbykx+Mk=infy2x+Mkyk=infm2Mkx+mk;thenthequotientspaceX=MisaBanachspacewithrespecttothisde nitionofnorm.(3)ThequotienttopologyonX=Magreeswiththetopologydeter-minedbythenormonX=Mde nedinpart2.PROOF.Miscertainlyanormedlinearspacewithrespecttotherestrictednorm.SinceitisaclosedsubspaceofthecompletemetricspaceX;itisitselfacompletemetricspace,andthisprovespart1.Weleaveittotheexercisethatfollowstoshowthatthegivende ni-tionofkx+MkdoesmakeX=Manormedlinearspace.Letusshowthatthismetricspaceiscomplete.Thusletfxn+MgbeaCauchysequenceinX=M:ItwillsucetoshowthatsomesubsequencehasalimitinX=M:WemayreplacethisCauchysequencebyasubsequenceforwhichk(xn+1+M)�(xn+M)k=k(xn+1�xn)+Mk2�(n+1):Then,wemaychooseelementsfyngofXsuchthatforeachn1wehaveyn2(xn+1�xn)+M; 70CHAPTERIVforallx2X:Deducethat,iftwonormskk1andkk2determineidenticaltopologiesonavectorspaceX;thenthereexistconstantsC1andC2suchthatkxk1C1kxk2C2kxk1forallx2X:(b)SupposeSisalineartransformationofanormedlinearspaceXintoatopologicalvectorspaceY:AssumethatS( B1)containsaneighborhoodUof0inY:ProvethatSisanopenmapofXontoY:WecomenexttooneoftheimportantapplicationsoftheBairecat-egorytheoreminfunctionalanalysis.THEOREM4.3.(IsomorphismTheorem)SupposeSisacontinuouslinearisomorphismofaBanachspaceXontoaBanachspaceY:ThenS�1iscontinuous,andXandYaretopologicallyisomorphic.PROOF.Foreachpositiveintegern;letAnbetheclosureinYofS( Bn):Then,sinceSisonto,Y=[An:BecauseYisacompletemetricspace,itfollowsfromtheBairecategorytheoremthatsomeAn;sayAN;musthavenonemptyinterior.Therefore,lety02Yand�0besuchthatB(y0)AN:Letx02XbetheuniqueelementforwhichS(x0)=y0;andletkbeanintegerlargerthankx0k:ThenAN+kcontainsAN�y0;sothattheclosedsetAN+kcontains B(0):Thisimpliesthatifw2Ysatis eskwk;andifisanypositivenumber,thenthereexistsanx2XforwhichkS(x)�wkandkxkN+k:WriteM=(N+k)=:Itfollowsthenbyscalingthat,givenanyw2Yandany&#x-277;0;thereexistsanx2XsuchthatkS(x)�wkandkxkMkwk:Wewillusetheexistenceofsuchanxrecursivelybelow.WenowcompletetheproofbyshowingthatkS�1(w)k2Mkwkforallw2Y;whichwillimplythatS�1iscontinuous.Thus,letw2Ybegiven.Weconstructsequencesfxng;fwngandfngasfollows:Setw1=w;1=kwk=2;andchoosex1sothatkw1�S(x1)k1andkx1kMkw1k:Next,setw2=w1�S(x1);2=kwk=4;andchoosex2suchthatkw2�S(x2)k2andkx2kMkw2k(M=2)kwk:Continuinginductively,weconstructthesequencesfwng;fngandfxngsothatwn=wn�1�S(xn�1);n=kwk=2n; 72CHAPTERIVequippedwiththenormkfk=sup01jf(x)j:De neT:X!YbyT(f)=f0:ProvethatXandYareBanachspacesandthatTisacontinuouslineartransformation.(b)NowletXbethevectorspaceofallabsolutelycontinuousfunc-tionsfon[0;1];forwhichf(0)=0andwhosederivativef0isinLp(forsome xed1p1).De neanormonXbykfk=kfkp:LetY=Lp;andde neT:X!YbyT(f)=f0:ProvethatTisnotcontinuous,butthatthegraphofTisclosedinXY:Howdoesthisexamplerelatetotheprecedingtheorem?(c)ProveanalogousresultstoTheorems4.3,4.4,and4.5forlocallyconvex,Frechetspaces.DEFINITION.LetXandYbenormedlinearspaces.ByL(X;Y)weshallmeanthesetofallcontinuouslineartransformationsfromXintoY:WerefertoelementsofL(X;Y)asoperatorsfromXtoY:IfT2L(X;Y);wede nethenormofT;denotedbykTk;bykTk=supkxk1kT(x)k:EXERCISE4.6.LetXandYbenormedlinearspaces.(a)LetTbealineartransformationofXintoY:VerifythatT2L(X;Y)ifandonlyifkTk=supkxk1kT(x)k1:(b)LetTbeinL(X;Y):ShowthatthenormofTisthein mumofallnumbersMforwhichkT(x)kMkxkforallx2X:(c)Foreachx2XandT2L(X;Y);showthatkT(x)kkTkkxk:THEOREM4.6.LetXandYbenormedlinearspaces.(1)ThesetL(X;Y)isavectorspacewithrespecttopointwiseaddi-tionandscalarmultiplication.IfXandYarecomplexnormedlinearspaces,thenL(X;Y)isacomplexvectorspace.(2)L(X;Y);equippedwiththenormde nedabove,isanormedlin-earspace.(3)IfYisaBanachspace,thenL(X;Y)isaBanachspace.PROOF.Weprovepart3andleaveparts1and2totheexercises.Thus,supposeYisaBanachspace,andletfTngbeaCauchysequenceinL(X;Y):ThenthesequencefkTnkgisbounded,andweletMbea 74CHAPTERIVNow,givenanonzerox2X;wewritez=(=2kxk)x:So,foranyn;kTn(x)k=(2kxk=)kTn(z)k(2kxk=)(2J)=Mkxk;whereM=4J=:ItfollowsthenthatkTnkMforalln;asdesired.THEOREM4.8.LetXbeaBanachspace,letYbeanormedlin-earspace,letfTngbeasequenceofelementsofL(X;Y);andsupposethatfTngconvergespointwisetoafunctionT:X!Y:ThenTisacontinuouslineartransformationofXintoY;i.e.,thepointwiselimitofasequenceofcontinuouslineartransformationsfromaBanachspaceintoanormedlinearspaceiscontinuousandlinear.PROOF.Itisimmediatethatthepointwiselimit(whenitexists)ofasequenceoflineartransformationsisagainlinear.SinceanyconvergentsequenceinY;e.g.,fTn(x)g;isbounded,itfollowsfromtheprecedingtheoremthatthereexistsanMsothatkTnkMforalln;whencekTn(x)kMkxkforallnandallx2X:Therefore,kT(x)kMkxkforallx;andthisimpliesthatTiscontinuous.EXERCISE4.8.(a)ExtendtheUniformBoundednessPrinciplefromasequencetoasetSofelementsofL(X;Y):(b)RestatetheUniformBoundednessPrincipleforasequenceffngofcontinuouslinearfunctionals,i.e.,forasequenceinL(X;R)orL(X;C):(c)Letccdenotethevectorspaceofallsequencesfajg;j=1;2;:::thatareeventually0,andde neanormonccbykfajgk=maxjajj:De nealinearfunctionalfnonccbyfn(fajg)=nan:Provethatthese-quenceffngisasequenceofcontinuouslinearfunctionalsthatispoint-wiseboundedbutnotuniformlyboundedinnorm.Whydoesn'tthiscontradicttheUniformBoundednessPrinciple?(d)Letccbeasinpartc.De neasequenceffngoflinearfunctionalsonccbyfn(fajg)=Pnj=1aj:Showthatffngisasequenceofcontinu-ouslinearfunctionalsthatconvergespointwisetoadiscontinuouslinearfunctional.Whydoesn'tthiscontradictTheorem4.8?(e)Letc0denotetheBanachspaceofsequencesa0;a1;:::forwhichliman=0;wherethenormonc0isgivenbykfangk=maxjanj: 76CHAPTERIVEXERCISE4.12.LetXbeanormedlinearspace,andlet XdenotethecompletionofthemetricspaceX(e.g.,thespaceofequivalenceclassesofCauchysequencesinX).Showthat XisinanaturalwayaBanachspacewithXisometricallyimbeddedasadensesubspace.THEOREM4.9.(Hahn-BanachTheorem,NormedLinearSpaceVersion)LetYbeasubspaceofanormedlinearspaceX:SupposefisacontinuouslinearfunctionalonY;i.e.,f2L(Y;R):ThenthereexistsacontinuouslinearfunctionalgonX;i.e.,anelementofL(X;R);suchthat(1)gisanextensionoff:(2)kgk=kfk:PROOF.Ifisde nedonXby(x)=kfkkxk;thenisaseminormonX:Clearly,f(y)jf(y)jkfkkyk=(y)forally2Y:BytheseminormversionoftheHahn-BanachTheorem,thereexistsalinearfunctionalgonX;whichisanextensionoff;suchthatg(x)(x)=kfkkxk;forallx2X;andthisimpliesthatgiscontinuous,andkgkkfk:Obviouslykgkkfksincegisanextensionoff:EXERCISE4.13.(a)LetXbeanormedlinearspaceandletx2X:Showthatkxk=supff(x);wherethesupremumistakenoverallcontinuouslinearfunctionalsfforwhichkfk1:Show,infact,thatthissupremumisactuallyattained.(b)UsepartatoderivetheintegralformofMinkowski'sinequality.Thatis,if(X;)isa- nitemeasurespace,andF(x;y)isa-measurablefunctiononXX;then(ZjZF(x;y)dyjpdx)1=pZ(ZjF(x;y)jpdx)1=pdy;where1p1:(c)Let1p1;andletXbethecomplexBanachspaceLp(R):Letp0besuchthat1=p+1=p0=1;andletDbeadensesubspaceofLp0(R):Iff2X;showthatkfkp=supkgkp0=1jZf(x)g(x)dxj: 78CHAPTERIVkfkp=1:Ifthetheoremholdsforallsuchf;itwillholdforallf2D:(Why?)BecauseT(f)belongstoLq0andtoLq1byhypothesis,itfollowsthatT(f)2Lq;sothatitisonlytheinequalityonthenormsthatwemustverify.WewillshowthatjR[T(f)](y)g(y)dyjmp;wheneverg2D\Lq0withkgkq0=1:Thiswillcompletetheproof(seeExercise4.13).Thus,letgbesuchafunction.Writef=Pnj=1ajAjandg=Pmk=1bkBk;forfAjgandfBkgdisjointboundedmeasurablesetsandajandbknonzerocomplexnumbers.Foreachz2C;de ne (z)=(1�z)=p0+z=p1and (z)=(1�z)=q00+z=q01:Notethat (t)=1=pand (t)=1=q0:Weextendthede nitionofthesignumfunctiontothecomplexplaneasfollows:Ifisanonzerocomplexnumber,de nesgn()tobe=jj:Foreachcomplexz;de nethesimplefunctionsfz=nXj=1sgn(aj)jajj (z)= (t)Ajandgz=mXk=1sgn(bk)jbkj (z)= (t)Bk;and nallyputF(z)=Z[T(fz)](y)gz(y)dy=nXj=1mXk=1sgn(aj)sgn(bk)jajjp (z)jbkjq0 (z)Z[T(Aj)](y)Bk(y)dy=nXj=1mXk=1cjkedjkz;wherethecjk'sarecomplexnumbersandthedjk'sarerealnumbers.ObservethatFisanentirefunctionofthecomplexvariablez;andthatitisboundedontheclosedstrip0z1:Notealsothat 80CHAPTERIVforall0t1:PROOF.Wemayassumethatm0andm1arepositive.De neafunctionGonthestrip0z1byG(z)=F(z)=m1�z0mz1:ThenGiscontinuousandboundedonthisstripandisanalyticontheopenstrip0z1:Itwillsucetoprovethatsups2RjG(t+is)j1:Foreachpositiveintegern;de neGn(z)=G(z)ez2=n:TheneachfunctionGniscontinuousandboundedonthestrip0z1andanalyticontheopenstrip0z1:Also,G(z)=limGn(z)forallzinthestrip.ItwillsucethentoshowthatlimjGn(z)j1foreachzforwhich0z1:Fixz0=x0+iy0intheopenstrip,andchooseaY&#x]TJ/;ñ 9;&#x.963;&#x Tf ;.4;! 0;&#x Td[;jy0jsuchthatjGn(z)j=jGn(x+iy)j=jG(z)je(x2�y2)=n1wheneverjyjY:Let�betherectangularcontourdeterminedbythefourpoints(0;�Y);(1;�Y);(1;Y);and(0;Y):Then,bytheMaximumModulusTheorem,wehavejGn(z0)jmaxz2�jGn(z)jmax(1;sups2RjGn(1+is)j;1;sups2RjGn(is)j)=e1=n;provingthatlimjGn(z0)j1;andthiscompletestheproofofthelemma.EXERCISE4.15.VerifythattheRieszInterpolationTheoremholdswithRreplacedbyanyregular- nitemeasurespace.

Related Contents


Next Show more