/
7.2SmallAngleNeutronScattering..............................227.3Re
ec 7.2SmallAngleNeutronScattering..............................227.3Re
ec

7.2SmallAngleNeutronScattering..............................227.3Re ec - PDF document

alida-meadow
alida-meadow . @alida-meadow
Follow
355 views
Uploaded On 2017-11-27

7.2SmallAngleNeutronScattering..............................227.3Re ec - PPT Presentation

bevariedbyreplacinghydrogenwithdeuteriumandpotentiallybemadetomatchthatofsomeothercomponentinthesystemThistechniqueofcontrastvariationisoneofthekeyadvantagesofneutronscatteringoverxraysandlightAsme ID: 610434

bevariedbyreplacinghydrogenwithdeuteriumandpotentiallybemadetomatchthatofsomeothercomponentinthesystem.Thistechniqueofcontrastvariationisoneofthekeyadvantagesofneutronscatteringoverx-raysandlight.Asme

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "7.2SmallAngleNeutronScattering............." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

7.2SmallAngleNeutronScattering..............................227.3Re ectometry........................................228Acknowledgements229References229.1ScatteringandOptics...................................239.2Re ectometry........................................23ARadiusofGyrationofSomeHomogeneousBodies241IntroductionTheneutronisaspin1/2sub-atomicparticlewithmassequivalentto1839electrons(1.67492810�27kg),amagneticmomentof-1.9130427n(-9.649178310�27JT�1)andalifetimeof15minutes(885.9s).Quantummechanicstellsusthat,whilstitiscertainlyparticulate,theneutronalsohasawavenatureandassuchcandisplaythegamutofwavebehaviorsincludingre ection,refractionanddi raction.Thisintroductioncoversbrie ythetheoryofneutronscatteringandthatoftwotechniquesthatmakeuseofthewavepropertiesofneutronstoprobethestructureofmaterials,namelysmallangleneutronscattering(di raction)andneutronre ectometry(re ectionandrefraction).Sincethisintroductionisexactlythat,thereaderisencouragedtolooktotheextensiveliteratureonthesubjectandarecommendedreadinglistisprovidedattheend.Muchofthematerialpresentedherehasbeentakenfromthosereferences.2NeutronScattering2.1Neutron-nucleusinteractionThescatteringofneutronsoccursintwoways,eitherthroughinteractionwiththenucleus(nuclearscattering)orthroughinteractionofunpairedelectrons(andhencetheresultantmagneticmoment)withthemagneticmomentoftheneutron(magneticscattering).Itistheformerofthesethatthisintroductionwilladdress.Letusconsidertheelasticscatteringofabeamofneutronsfromasinglenucleus.Inthiscasewetreatthenucleusasbeingrigidly xedattheoriginofcoordinatesandthereisnoexchangeofenergy(Figure(1)).ThescatteringwilldependupontheinteractionpotentialV(r)betweentheneutronandthenucleus,separatedbyr.Thispotentialisveryshortrangeandfallsrapidlytozeroatadistanceoftheorderof10�15m.Thisisamuchshorterdistancethanthewavelength2 bevariedbyreplacinghydrogenwithdeuteriumandpotentiallybemadetomatchthatofsomeothercomponentinthesystem.Thistechniqueofcontrastvariationisoneofthekeyadvantagesofneutronscatteringoverx-raysandlight.Asmentionedabove,theneutroncanalsointeractwiththemagneticmomentofanatom.Thismagneticinteractionhasaseparatemagneticscatteringlengththatisofthesameorderofmagni-tude,butindependentfrom,thenuclearscatteringlength.Thus,forexample,onecanusecontrastvariationtoremovethenuclearcomponentofthescatteringandleaveonlythemagnetic.Themagneticinteractionisspin-dependent,soitisalsopossibletoextractinformationaboutthemag-netizationthroughtheuseofpolarizedneutrons.Theseadvancedusesarebeyondthescopeofthisintroduction,butmoreinformationcanbefoundinthereferencemateriallistedattheend.Havingtreatedthecaseofasinglenucleus,ifwenowconsiderathree-dimensionalassemblyofnucleiwhilstmaintainingtheassumptionofelasticscatteringtheresultantscatteredwavewillthenbe s=�Xibi reikreiqr(3)whereq=ki�ksandisknownasthescatteringvectorwithkiandksbeingthewavevectorsoftheincomingandscatteredneutronsrespectively.2.2ScatteringCrossSectionThescatteringcrosssectionisameasureofhow\big"thenucleusappearstotheneutronandthushowstronglyneutronswillbescatteredfromit. Figure2:Thegeometryofascatteringexperiment(afterSquires)ImagineaneutronscatteringexperimentwhereabeamofneutronsofagivenenergyEisincident4 onageneralcollectionofatoms(yoursample-itcouldbeacrystal,asolutionofpolymers,apieceofrock,etc)(Figure2).Ifweagainassumeelasticscattering(suchthattheenergyoftheneutronsdoesnotchange)wecansetupaneutrondetectortosimplycountalltheneutronsscatteredintothesolidangled inthedirection;.Thedi erentialcrosssectionisde nedbyd d =numberofneutronsscatteredpersecondintod indirection; d (4)whereisthenumberofincidentneutronsperunitareapersecond,referredtoastheincident ux.Thename\crosssection"suggeststhatthisrepresentsanareaandindeed,wecanseethatthedimensionsof uxare[area�1time�1]andthoseofthenumeratorinequation(4)are[time�1]resultingindimensionsof[area]forthecrosssection.Thetotalscatteringcrosssectionisde nedbytheequations=totalnumberofneutronsscatteredbysecond (5)andisrelatedtothedi erentialscatteringcrosssectionbys=Zd d d (6)Thecrosssectionisthequantitythatisactuallymeasuredinascatteringexperimentandthebasicproblemistoderivetheoreticalexpressionsthatdescribeitforgivensystemsofscatterers.Exper-imentallythecrosssectionsareusuallyquotedperatomorpermoleculeandthusthede nitionsabovearethendividedbythenumberofatomsormoleculesinthescatteringsystem.Wecancalculatethecrosssectiond=d forscatteringfromasingle xednucleususingtheexpressionsgivenabove.Denotingthevelocityoftheneutronsasvandagaintreatingelasticscattering,thenumberofscatteredneutronspassingthroughanareadSpersecondisvdSj sj2=vdSb2 r2=vb2d (7)Theincidentneutron uxis=vj ij2=v(8)Fromequation(4)d d =vb2d d =b2(9)andthenintegratingoverallspace(4steradians)weobtaintot=4b2(10)Wecanperformasimilarcalculationfortheassemblyofnucleiwhosewavefunctionwasgiveninequation(3)aboveandobtainthedi erentialcrosssectiond d (q)=1 N NXibieiqr 2(11)whichwecannowseeisafunctionofthescatteringvector,q.5 Figure3:Scatteringlengthdensityofwaterasafunctionofdistancefromagivenoxygenatom(afterKline)So,wecannowmakethereplacementofthesumind d (q)=1 N NXibieiqr 2(18)bytheintegralofthescatteringlengthdensitydistributionacrossthewholesampleandnormalizebythesamplevolumed d (q)=N Vd d (q)=1 V ZV(r)eiqrdr 2(19)Thisresultisknownasthe\Rayleigh-GansEquation"andshowsusthatsmallanglescatteringarisesasaresultofinhomogeneitiesinscatteringlengthdensity((r)).==Visknownasthemacroscopiccrosssection.TheintegraltermistheFouriertransformofthescatteringlengthdensitydistributionandthedi erentialcrosssectionisproportionaltothesquareofitsamplitude.ThislatterfactmeansthatallphaseinformationislostandwecannotsimplyperformtheinverseFouriertransformtogetfromthemacroscopiccrosssectionbacktothescatteringlengthdensitydistribution.Asdiscussedpreviously,thedi erentialcrosssectiond=d isthedirectlymeasuredquantityinascatteringexperiment.Inthecaseofsmallanglescatteringtheresultsareusuallynormalizedbythesamplevolumetoobtaintheresultonan\absolute"scaleasthispermitsstraightforwardcomparisonofscatteringfromdi erentsamples.Thusthedi erentialmacroscopiccrosssectionisusedasde nedbytheRayleigh-Gansequationabove.Aswiththeatomiccrosssection,themacroscopiccrosssectionhasthreecomponentsd d (q)=dcoh d (q)+dinc d +dabs d (20)Informationaboutthedistributionofmatterinthesampleiscontainedinthecoherentcomponent,whilsttheincoherentcomponentisnotq-dependentandcontributesonlytothenoiselevel.Theabsorptioncomponentisusuallysmallandsimplyreducestheoverallsignal.7 Whilstdi erenttypesofsystemhavedi erentnaturalbasesforthedistributionofscatteringlengthdensity,allarefundamentallyequivalent-wejustusedi erentwaystodescribethem.Inthecaseofparticulatesystemswherewehave\countable"unitsthatmakeupthescattering,wecanthinkaboutthespatialdistributionofthoseunitssuchthat ZVf(r)dr 2�!NXiNXjf(ri�rj)(21)Inpolymerstheunitsmightbethemonomersinthechain,inproteinswemightconsiderpolypep-tidesubunitsandinageneralparticulatesystemtheindividualparticles(betheymoleculesoroildroplets)mightbeused.Innon-particulatesystems(forexamplemetalalloysorbicontinuousmicroemulsions)astatisticaldescriptionmaybeappropriatewhereby(r)isdescribedbyacorrelationfunction (r).3.1GeneralTwoPhaseSystem Figure4:Asystemcontainingtwophaseswithscatteringlengthdensities1and2Sowhatisthepracticalresultoftheabovediscussion?Letusimagineageneraltwophasesystemsuchasthatpresentedin gure4.Itconsistsoftwoincompressiblephasesofdi erentscatteringlengthdensities1and2.ThusV=V1+V2(22)(r)=(1inV12inV2(23)TakingtheRayleigh-Gansequation(equation(19))andbreakingthetotalvolumeintotwosub8 volumesd d (q)=1 V ZV11eiqrdr1+ZV22eiqrdr2 2(24)d d (q)=1 V ZV11eiqrdr1+2(ZVeiqrdr�ZV1eiqrdr1) 2(25)(26)Soatnon-zeroqvaluesd d (q)=1 V(1�2)2 ZV1eiqrdr1 2(27)wherethedi erenceinscatteringlengthdensitiesencapsulatesbothmaterialproperties(density,composition)andradiationproperties(scatteringlengths),whilsttheintegraltermdescribesthespatialarrangementofthematerial. Figure5:TwosystemswherethestructureisthesamebutthescatteringlengthdensitiesarereversedTheaboveequationleadsto\Babinet'sPrinciple"thattwostructures,suchasthoseshownin gure5,whichareidenticalotherthanfortheinterchangeoftheirscatteringlengthdensitiesgivethesamecoherentscattering(theincoherenttermmaybedi erent).Thisisaresultofthelossofphaseinformationmentionedpreviously-thereisnoway(fromasinglemeasurement)todetermineif1isgreaterthan2orviceversa.Thusitisimportantwhendesigningsmallanglescatteringexperimentstoconsidertheappropriateuseofcontrastvariation-usuallybysubstitutionofhydrogenfordeuterium-inordertobeabletosolvethestructure.9 4AnalysisofSmallAngleScatteringDataOncethevariousinstrumentale ectshavebeenremovedandthescatteringispresentedasd=d (q)itisthennecessarytoperformsomesortofanalysistoextractusefulinformation.Unlessthereissomespeci corientationofscatteringobjectswithinthesample,thescatteringcanbeaveragedtogivethemacroscopiccrosssectionasafunctionofthemagnitudeofq.Itisthisthatismostcommonlypresentedandisknownasthe1-Dsmallanglescatteringpattern.Thereareessentiallytwoclassesofanalysis:model-dependentandmodel-independent.Theformerconsistsofbuildingamathematicalmodelofthescatteringlengthdensitydistribution,whilstthelatterconsistofdirectmanipulationsofthescatteringdatatoyieldusefulinformation.4.1ModelIndependentAnalysis4.1.1TheScatteringInvariantPorodshowedthatthetotalsmallanglescatteringfromasampleisaconstant(i.e.invariant)irrespectiveofthewaythesampledensityisdistributed( gure6). Figure6:Twosystemswherethecontrastandvolumefractionarethesame,butthedistributionofmatterisdi erent.Bothare10%blackand90%white.Integratethedi erentialcrosssectionwithrespecttoQQ=Zd d (q)dq(28)=(2)3((r)� )2(29)andforanincompressibletwo-phasesystemQ 4=Q=221(1�1)(2�1)2(30)10 Thus,intheory,thisanalysisallowsforthecalculationofthevolumefractionofeachcomponentinatwo-phasesystemgiventhecontrast,orthecontrastgiventhevolumefractions.HoweverinpracticeitisdiculttomeasurethescatteringinawideenoughQrangetobeabletocalculateQ.4.1.2PorodScatteringAlsoduetoPorodisalawforscatteringathighvaluesofQ(Q1/D,whereDisthesizeofthescatteringobject),iftherearesharpboundariesbetweenthephasesofthesystem.ThelawstatesthatatlargeQI(q)/q�4(31)andthus Qlimq��1(I(q)q4)=S V(32)whereQisthescatteringinvariantmentionedpreviouslyandS=Visthespeci csurfaceofthesample.Ifweconsiderthesystemsshownin gure6wecanseethatthespeci csurfaceofthelefthandsamplewillbelargerthanthatoftherighthandone,buttheyhavethesamescatteringinvariant.4.1.3GuinierAnalysisWherethePorodapproximationconsidersthehigh-Qlimitofscattering,thelowQlimitcanbedescribedusinganapproximationduetoGuinier.TheGuinierapproximationisformulatedasI(Q)=I(0)e�(QRg)2 3(33)ln(I(Q))=ln(I(0))�R2g 3Q2(34)andthustheradiusofgyrationofthescatteringobject,Rg,canbeextractedfromtheslopeofaplotofln(I(Q))vsQ2,bearinginmindthatthevalidityoftheapproximationislimitedtovaluesofQRg1.TheradiusofgyrationofasphereisgivenbyR2g=3 5R2(35)andtheequationsforotherbodiesaregiveninAppendixA.11 4.2.1TheFormFactorforSpheresForasphereofradiusrP(q)="3(sin(qr)�qrcos(qr)) (qr)3#2(38) Figure7:FormFactorspheresofradius3A.Rg=23A13 Figure10:Formfactorofspheresofradius30Awithadistributionofradii.Thepolydispersitiesarep==Rmeanquotedasapercentage.Sizedistributionsforthenon-zeropolydispersitesareinset.5NeutronRe ectometryAsmentionedintheintroduction,neutronsobeythesamelawsaselectromagneticwavesandassuchdisplayre ectionandrefractiononpassingfromonemediumtoanother.Whilstthere ectionofneutronsasaphenomenonhasbeenknownsince rstreportedbyFermiandco-workersinthelate1940'sitisonlyrelativelyrecently(1980's)thatapplicationofthetechniqueasastructuralprobewasseriouslyconsidered.Asweshallsee,there ectionofneutronsisapowerfultechniquefortheprobingofsurfacestructuresandburiedinterfacesonthenanometerlengthscale.There ectionofneutronsfromsurfacesis,however,verydi erentfrommostneutronscattering.Inthediscussionofscatteringtheoryandsmallanglescatteringweassumedthatwecouldcalculatethescatteringcrosssectionbyaddingthescatteringfromeachnucleusinthesample.ThisinvolvedtheassumptionthataneutronisonlyscatteredonceonpassingthroughthesampleandiscalledtheBornapproximation.Weignoredmultiplescatteringbecausethesee ectsareusuallyveryweak.However,inthecaseofre ectionclosetoandbelowthecriticalangle(whereneutronsaretotallyre ectedfromasmooth16 surface)wearenolongerconsideringweakscatteringandtheBornapproximationnolongerholds.Thankfullywecanusetheconstructsofclassicalopticstodiscussthebehaviorofneutronsunderthesecircumstances.5.1SpecularRe ection Figure11:(a)Theinterfacebetweentwobulkmediaofrefractiveindicesn0andn1showingincidentandre ectedwavesatangle0andthetransmittedwaveatangle1.(b)Athin lmofthicknessdandrefractiveindexn1betweentwobulkmediaofrefractiveindicesn0,n2.Specularre ectionisde nedasre ectioninwhichtheangleofre ectionequalstheangleofincidence.Considertheneutronbeamwithwavevectork0in gure11(a)incidentonaplanarboundarybetweenmedia1and2.Therefractiveindexattheboundarybetweentwomediaisde nedasusualn=k1 k0(43)wherek1;k0aretheneutronwavevectorsinsideandoutsidethemedium.Therefractiveindexofamaterialagainstvacuumiscommonlywrittenasni=1�2i 2(44)whereiisthescatteringlengthdensityofmediumi(aspreviouslyde nedforSANS)andabsorp-tionhasbeenignored.Sinceusuallyn1,neutronsareexternallyre ectedfrommostmaterialswithSnell'slawgivingthecriticalanglebelowwhichtotalre ectionoccurscosc=n2 n1(45)Forneutronsincidentonthesurfaceofamaterial(e.g.waterorsilicon)fromair(whichhasarefractiveindexverycloseto1)wecanobtainasimplerelationshipbetweenthecriticalangle,neutronwavelengthandscatteringlengthdensityofthematerialc=r  (46)17 Itisimportanttonotethattheonlychangeinwavevectorisinthezdirection(perpendiculartotheinterface)andhenceaspecularre ectivityexperimentmeasuresthescatteredintensityasafunctionofqz=2kz.Assuch,there ectometryexperimentprovidesinformationaboutstructureperpendiculartotheinterface.Itispossibletomeasurethere ectionatnon-specularanglestoextractinformationaboutthein-planestructureofthesample.Sucho -specularre ectionisbeyondthescopeofthisintroductionsothereaderisencouragedtoconsulttheliteratureformoreinformation.5.1.1ClassicalOpticsIthasbeenshownthatthesamelawsapplyforthere ectionandrefractionofneutronsasforanelectromagneticwavewithitselectricvectorperpendiculartotheplaneofincidence(s-wave).Thusthere ectivityisgivenbyFresnel'slawwhereforcthere ectivityR=1andforcR=jrj2= n0sin0�n1sin1 n0sin0+n1sin1 (47)TheFresnelcalculationcanbeextendedtothecaseofathin lmattheinterface gure11(b).Abeamincidentonsuchasystemwillbemultiplyre ectedandrefractedattheinterfacesbetweenthelayers.Takingintoaccountthephasechangesthatoccur,there ectionandrefractioncoecientsforeachpairofadjoiningmediamaybecalculatedbyanin nitesumofamplitudesofthere ectedandrefractedrays.Forasinglethin lmofthicknessdthisleadstoanexactequationfortheinterferencefromthe lmR=jrj2= r01+r12e2i 1 1+r01r12e2i 1 2(48)whererijistheFresnelre ectioncoecientatinterfaceijgivenbyrij=pi�pj pi+pj(49)withpj=njsinjand j=(2=)njdsinj(theopticalpathlengthinthe lm).Thisapproachcanbeextendedeasilytothreeorfourdiscretelayers,butbeyondthatlevelofcomplexityamoregeneralsolutionisrequired.OnesuchstandardmethodisthatdescribedbyBornandWolfwhere,onapplyingtheconditionthatthewavefunctionsandtheirgradientsbecontinuousateachboundary,acharacteristicmatrixforeachlayercanbederivedsuchthatforthejthlayerMj=cos j�(1=pj)sin j�pjsin jcos j(50)Theresultingre ectivityisthenobtainedfromtheproductofthecharacteristicmatricesMR=[M1][M2]:::[Mn]byR= (M11+M12ps)pa�(M21+M22)ps (M11+M12ps)pa+(M21+M22)ps (51)whereMijarethecomponentsofthe22matrixMR.18 alternativeistodescribetheroughnessordi usenessofaninterfacebyusingalargenumberofverythinlayerswithaGaussiandistributionofscatteringlengthdensityinequations(50)and(51).Thetreatmentinequation(53)waspreferredasitwasmuchlesscomputationallyintensive.However,giventheincreaseincomputingpowerinrecentyears,itisprobablynowpreferredtousethe\exact"solution.5.1.3Kinematic(Born)ApproximationItwasstatedintheintroductiontothissectionthattheBornapproximationdoesnotholdbecausewearenotinaweakscatteringregimewhencriticalre ectionisconcerned.However,ifwelookathighenoughvaluesofq,thenthescatteringisweakandtheBornapproximationholds.Asforsmallanglescattering,thedi erentialcrosssectionisgivenbytheFouriertransformofthescatteringlengthdensitydistributionoverthewholesample.Takingintoaccountthespeculargeometrysuchthatonlyqzvarieswecanobtainanexpressionforthere ectivityR(qz)=162 q2zj^(qz)j2(57)where^(qz)istheone-dimensionalFouriertransformofthescatteringlengthdensitypro lenormaltotheinterface.ThiscanalsobeexpressedintermsofthescatteringlengthdensitygradientthusR(qz)=162 q4zj^0(qz)j2(58)Theaboveexpressioncanthenbeusedtocalculatethere ectivityeasilyfromagivenscatteringlengthdensitypro le.Whilstitislimitedtotheweakscatteringregime,therearemanysystemswherethisisvalid.Inparticulartheadsorptionofmolecules(e.g.surfactants,polymers)attheair-waterinterfacewherethescatteringlengthdensityofthewatercanbesettomatchthatofair.Thevaliditycanbeextendedtonon-zerobulkcontrastsystemsusingtheDistortedWaveBornApproximationorsimilartechniques.6AnalysisofRe ectometryDataTheanalysisofre ectometrydataconsistsofgeneratingascatteringlengthdensitypro le,calcu-latingthere ectivityusingoneofthemethodsdescribedpreviouslyandcomparingtheresulttothere ectivitypro leobtainedfromexperiment.Anexampleofcalculatedre ectivitypro lesisshownin gure12AsaresultofthelossofphaseinformationontakingthemagnitudeoftheFouriertransform,agivenre ectivitypro lecannotbeuniquelydescribedbyasinglescatteringlengthdensitypro le.Howeverthisde ciencycanbeovercomethroughtheuseofmultiplecontrasts.Indeed,ifonecanmeasurethesamesystemwhilstchangingonlythescatteringlengthdensityofeitherbulksideoftheinterfacialthenthephaseinformationcanberecoveredandthedatainvertedtogettheSLDpro le.Thiscanbeachievedbychangingthesolvent(e.g.byexchangingH2OforD2O)aslongas20 7RecommendedReading7.1NeutronScattering\NeutronScattering-APrimer"byRogerPynn(LAUR-95-3840LosAlamosScience,Vol.19,1990.)http://www.mrl.ucsb.edu/~pynn/primer.pdf\IntroductiontoThermalNeutronScattering"byG.L.Squires(CambridgeUniversityPress,1978)Thisisanexcellentbookifyouwantthenitty-grittyofscatteringtheory.ItisnowavailablefromDoverPublicationsandatthetimeofwritingisonly$12fromAmazon.com7.2SmallAngleNeutronScattering\TheSANSToolbox"byBoualemHammouda-availableasaPDFfromtheNCNRwebsite.http://www.ncnr.nist.gov/staff/hammouda/the_SANS_toolbox.pdfTheNCNRSANSwebsitecontainstutorialsandtoolsrelatingtoSANSaswellasinformationabouttheNCNRSANSinstruments.http://www.ncnr.nist.gov/programs/sans/7.3Re ectometryTheNCNRRe ectometrywebsitehastutorialsandtoolsrelatingtore ectometryalongwithinformationabouttheNCNRre ectometryinstruments.http://www.ncnr.nist.gov/programs/reflect/8AcknowledgementsThisintroductionisanamalgamofmaterialfromanumberofsources.ThesectiononneutronscatteringwasbasedheavilyonsectionsinSquiresandBaconandthosetwobooks(Squiresinparticular)willrewardthededicatedreader.ThesectiononsmallangleneutronscatteringwasbasedonasetofpowerpointslidespresentedbyStevenKlineoftheNISTCenterforNeutronResearchatprevioussummerschools.Thesectiononneutronre ectometrywasbasedona1990reviewarticlebyBobThomasofOxfordUniversityandJe PenfoldoftheISISneutronfacility.9ReferencesThesearevariousbooksandpapersthatrelatetothematerialpresentedhereandfallintothe\extendedreading"category.Thisisbynomeansanexhaustivelistandthereaderisencouraged22 ARadiusofGyrationofSomeHomogeneousBodiesSphereofRadiusRR2g=3 5R2SphericalshellwithradiiR1�R2R2g=3 5R51�R52 R31�R32EllipsewithsemiaxesaandbR2g=a2+b2 4Ellipsoidwithsemiaxesa,b,cR2g=a2+b2+c2 5PrismwithedgesA,B,CR2g=A2+B2+C2 12CylinderwithradiusRandlengthlR2g=R2 2+l2 12EllipticalcylinderwithsemiaxesaandbandheighthR2g=a2+b2 4+h2 12HollowcircularcylinderwithradiiR1�R2andheighthR2g=R21+R22 2+h2 1224

Related Contents


Next Show more