/
Europh ysics Letters PREPRINT Order and disorder in co Europh ysics Letters PREPRINT Order and disorder in co

Europh ysics Letters PREPRINT Order and disorder in co - PDF document

alida-meadow
alida-meadow . @alida-meadow
Follow
396 views
Uploaded On 2015-05-17

Europh ysics Letters PREPRINT Order and disorder in co - PPT Presentation

Morris Dep artment of Physics University of or onto 60 St Ge or ge Str et or onto Ontario M5S 1A7 Canada CS 4570Qj pattern formation CS 6220Mk atigue brittleness fracture and crac ks Abstract Columnar join ts are threedimensional fracture net orks t ID: 68953

Morris Dep artment

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Europh ysics Letters PREPRINT Order and ..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

EurophysicsLettersPREPRINTOrderanddisorderincolumnarjointsLucasGoehringandStephenW.MorrisDepartmentofPhysics,UniversityofToronto,60St.GeorgeStreet,Toronto,Ontario,M5S1A7,CanadaPACS.45.70.Qj{patternformation.PACS.62.20.Mk{Fatigue,brittleness,fracture,andcracks.Abstract.{Columnarjointsarethree-dimensionalfracturenetworksthatformincoolingbasaltandseveralothermedia.Thenetworkorganizesitselfintoordered,mostlyhexagonalcolumns.Thesamepatterncanbeobservedonasmallerscaleindesiccatingstarch.Weshowhowsurfaceboundaryconditionsinthedesiccationofstarcha ecttheformationofcolumnarjoints.Underconstantdryingpowerconditions,we ndapowerlawdependenceofcolumnarcross-sectionalareawithdepth,whileunderconstantdryingrateconditionsthiscoarseningiseventuallyhalted.Discontinuoustransitionsinpatternscalecanbeobservedunderconstantexternalconditions,whichmaypromptareinterpretationofsimilartransitionsfoundinbasalt.Starchpatternsarestatisticallysimilartothosefoundinbasalt,suggestingthatmaturecolumnarjointingpatternscontaininherentresidualdisorder,butarestatisticallyscaleinvariant.Columnarjointing,inwhichshrinkagefracturesarrangethemselvestoleavebehindapatternofmainlyhexagonalpillars,hasfascinatedscientistsandnaturalistsforcenturies[1{3].TheGiant'sCausewayinNorthernIrelandandtheDevil'sPostpileinCaliforniaarefamousexamples.Columnarjointsoccurinlava\rows,sandstone,mud,coal,glass,starch,andice[3{11],whilea2Dvariantmaycauseice/sand-wedgepolygonsinpermafrostonEarthandMars[5,12].Columnarjointsareformedthroughtheself-organizationofshrinkagecracksinathree-dimensionalmaterial,aseitherheatormoistureisremovedfromonesurface[6,13,14].Brittlefractureisinitiatedbythestressbuildupatthissurface[14],andtheresultingcracksprogressivelyextend,trackingashrinkagefrontasitmovesintothebulk[15,16].Atanygiventime,activefracturesarecon nedtoanearlyplanarlayerbetweentheremainingcompliantmaterial,andthefullyfracturedmaterial[15,16].Theevolutionofthisquasi-2Dpolygonalpatternthroughtimeisrecordedinthedepthdependenceoftheresultingprismaticcolumns.Often,ingeophysicalexamples,thispatternonlybecomesapparentwhentheinterioroftheformationisexposedbyerosionandweathering.Asaresult,previousgeophysicalstudiesofthefracturepatternhavebeenlimitedtoexposedplanarsurfaces.Columnarjointingisasurprisinglygeneralphenomenon,wellknowninigneousrocks(bothterrestrial[13]andlunar[17]),butalsoseeninsedimentary[5,10],andmetamorphicrocks[5],aswellasinman-madeandbiologicalmaterials[4{9].ExamplesinbasaltandcornstarchareshowninFig.1.Jointscanrangeinsizefrommicronsizeddi usivelycooledcolumnsinvitri ed,impure,ice[11]tometersizedevaporativelycooledcolumnsinbasalt[14].c\rEDPSciences 2EUROPHYSICSLETTERSFig.1{Examplesofcolumnarjointing.(a)ThecolonnadeoftheDevil'sPostpile,CA,USA.(b)ExposedsurfaceoftheDevil'sPostpile,showingthequasihexagonalfracturepattern,asitoccursinbasalt.(c)MicroCTx-raytomographyimageofcornstarchcolonnadewith36m3voxelresolution,and2.5cm/side.(d)Cross-sectionofatomogramatadepthof18mm.(e)Atypicalcornstarchcolonnade(showninverted)studiedintheseexperiments,grownwithaconstantevaporationrate.Otherpolygonalfracturepatternscon nedtoaplanemayevolveandorderbysimilarprocesses,ifamechanismforthelateralmotionofcracksexists.Forexample,fracturedfreeze-thawpolygons,withmobileedges,areobservedinArcticandAntarcticpermafrost[18,19].SimilarfeatureshavebeenimagedonMars,suggestingthepresenceofMartianpermafrost[19,20].Recentphase eldmodelsofcolumnarjointinghavebeenconstructedtoapplyequallytoallthesecases[12].Thisgeneralitysuggeststhatadetaileddescriptionofcolumnarjointing,basedoncontrolled,repeatableexperiments,couldhaveapplicabilitytoanumberof elds.Todate,duetotheconstraintsongeophysicalobservation,thereexistsnoquantitativedescriptionofhowcolumnarjointsorder.Intheabsenceofsuchexperimentalor elddata,anumberoftheorieshavebeenproposed[12,13,21{23].However,thereisnoconsensusonFig.2{Experimentalmethods.Anautomatedscalewasusedtofeedbackcontroltherateofevapo-ration.Afterdrying,thefracturepatternismeasuredusingacombinationofMicroCTx-raytomog-raphyanddestructivesampling. LucasGoehringandStephenW.Morris:Orderanddisorderincolumnarjoints3exactlyhoworwhythesejointsorder.Norisitunderstoodhowsurfaceboundaryconditionsandmaterialpropertiescontributetothecolumnarstructureandscale.Inthispaper,wepresentthe rstever3Ddatadescribingcolumnarjointing,speci callydescribingtheorderingandcoarseningprocessesobservednearthefreesurface.OurexperimentaltechniquesarebasedonthoseofMuller[6{8],whoindependentlyre-discoveredthejointinginstarchespreviouslynotedbyHuxley[3]andbyFrench[4].ThesetechniqueshavealsorecentlybeenadoptedbyToramaruandMatsumoto[9],whoinvestigatedtherelationshipbetweendesiccationrateandthestarchpatternata xeddepth.250Wheatlampswereusedtodry1:1slurriesof100%purecornstarchandwater.Tracesofbleachwereusedtosterilizetheexperiment.Westudiedsamples1-100mmdeep,driedincircular\rat-bottomeddishes;evaporationrateswerebetween10-40mg=hcm2,andsamplestypicallydriedbetween1and28days.Watercontentwasmeasuredbyweighingthesamplesonceperminuteonanautomatedscale,asshowninFig.2.Desiccationratesweresetbyregulatingtheheatingandventilationappliedtothetopsurfaceofthestarch.Inonecaseoverheadlampsata xedstarch-lampdistancesuppliedacontinuous,constantdryingpower.Thedryingpowercouldbechangedbetweenexperimentsbyvaryingthelamp-starchdistance.Inoursecondsetupweusedthemeasuredsampleweight,m(t),todriveafeedbackloopwhichcontrolledthedutycycleoftheheatlampsandasmallfan.Weusedthisfeedbacktokeeptheevaporationrate,dm=dt,constant.Weshallrefertothesemethodsasconstantpowerandconstantrateconditions,respectively.ThislevelofcontrolhasnotbeenavailableinthepreviousexperimentsofMuller[6{8]orToramaruandMatsumoto[9].Asastarchslurrydries, rstgenerationcracksappear,penetratingthroughtheentiresampledepthandbreakingthesampleintolarge,disconnectedpolygons.Later,much nersecondarycracksinitiateatthetopsurface,andpropagateintothesample.Thesecondarycrackfrontleavesbehindcolumnarjointswithineachlargepolygon.Thistwo-stepfractureensuresthatcontainersizeandshapedonota ectthecolumnarjointpattern.WehaveusedMicroCTx-raytomography,showninFig.1c,d,toproducefully3Dvi-sualizationsofthepatternofcolumnarjointingindesiccatingstarchunderseveraldryingconditions.Wehavealsorecordedthispatternincross-sectionbymeasuringthecounterpartsleftonthedryingcontainersafterthestarchisremoved,andbysawingsamplesopeninordertodestructivelyobservethepatternatdi erentdepths.Theviolentnatureofthisdestructivesamplingconstrainsitsusetosamples�1cmheight,limitingdatacollectioninsomecases.Fig.3ashowstheevolutionoftheaveragecolumnarcross-sectionalareaasafunctionofthedepth.Underconstantpowerconditions,theevaporationratedropssteadily,asitbecomesmorediculttodrivewaterfromtheinteriorofthesample.Therateofchangeofevaporationsuggeststhatwatertransportispartiallydrivenbyawickingprocess,asisseeninthedryingofothersuspensions[16],andnot,asMuller[6]assumed,entirelybydi usion.Infact,bothdi usiveheattransportandconvectioninthecracksareactiveinbasalt[24].Inourstarch,watertransportisbywickingthroughthebulkofthematerial,ratherthanviathecracks.Theseconditionsresultinaslowlydeceleratingdryingfront,andapower-lawcoarseningofthecolumnararea.Thislimitedpowerlawbreaksdowninseveralsuggestiveways.Thefracturescaleislimitedbya nesurfacecrackpattern,whichiswell tbyaddingasmallconstanttothepowerlaw.Thissuggeststhatthematurepatternscaleisindependentofthesurfacefracturescale.Inconstantrateexperiments,afteraninitialtransient,thedryingfrontmovesatconstantspeed,andthecoarseningofthepatternisalmostentirelyhalted.Thetransientcoarseningisindistinguishablefromthatobservedusingconstantexternaldryingconditions.Indeep(�5cm)samples,suddentransitionsinscalewereobservedtooccur(seeFig.3b).Thesetransitionsaresharp,quitereproducible,andseparatecolonnadesofverydi erent 4EUROPHYSICSLETTERSFig.3{Thecoarseningbehaviourofcornstarchwasstudiedinseveraldryingsituations.(a)Gener-ally,forsampleswithconstantpower(solidsymbols),acrudepowerlawcoarseningofcross-sectionalareawithdepthwasseen,withexponentsof1.6to2.2(thelineshownhasaslopeof1.6).Asex-pected[13],fasterdryingratesproducesmallercolumns.Thecolumnsshownwithinvertedtrianglesweregrownwithaninitialdryingrateof10mg=hcm2,squaresrepresentexperimentswithaninitialdryingrateof32mg=hcm2.Forsamplesdriedwithconstantrateconditions(opensymbols),thecoarseningishalted.Incasesofdeepersamples(squares),asuddentransitioninscalewasobserved,withoutanaccompanyingdiscontinuityinthedryingrate.(b)Thistransition(betweendashedlines)isasharpdiscontinuityinscale,andisassociatedwithincreasedpatterndisorder.(c)showstherelativedisorder,asmeasuredbythestandarddeviationoftheareadistribution(A),dividedbythemeanoftheareadistribution(A).Fig.4{Patterncoarseningprocesses.(a)sketchestheessentialfeaturesofcoarseningthroughfracturetermination,themotilityofthecrackedges,andcolumncreationfromexistingvertices.Theuppersurfaceiscoveredwitha nenetworkoffractures,whichwehaveomittedforsimplicity.Thegreyregiondemonstrateswhereaburstofcrackterminationcausesasuddenchangeinpatternscale.(b1-9)showthepatternfeaturesinrealspace,andareselectedfromatomogramvolume- llingimage.Eachpanelshowsa4.5x3.5mm2cross-sectionfromapproximatelythecentreofthevolume,atdepthsincreasingby360mperpanel,beginningatadepthof10.0mm.Theblackcirclesarebubbles,andthefaintstripesaretomographicartifacts.Notehowmobilethecolumnedgescanbe.Columnmergeroccursbetweentwopairsofcolumnsnearthecentreofpanel1,andbetweenpanels3and4,inthelowerrightcorner.Eitherasinglecrack,oravertexcanceasetopropagate,andthemergedcolumnrapidlyreadjustsitsshapeandcross-sectionalareatomatchitssurroundings.Betweenpanels3and4,anewcolumnappearsfromavertexnearthecentreoftheimage. LucasGoehringandStephenW.Morris:Orderanddisorderincolumnarjoints5scales.Withinthetransitionregion,thefracturepatternshowsincreaseddisorder,asshowninFig.3c.Theinspectionoftomogramsshowsthatmergersoftwoorthreecolumns,throughtheterminationofacommonfractureorjunction,aretheonlyeventsthatcanleadtopatterncoarsening.Fig.4showsseveralmechanismsofcolumnevolution.Newcolumnswereocca-sionallycreatedatexistingvertices,butnocolumnswereseentovanishbyconstrictingintoavertex.Theseobservationsimplythatthetransitionregionsarezonesofgreatlyenhancedmergerrate.Thisnaturallyincreasesthevarianceoftheaveragecolumnareaduringthetransition.Patterndisorderisincreasedduringasuddenscaletransition,butsomeorderingprocessactsecientlytoreturnthevalueoftherelativevariationinareatoitspre-transitionvalueof0.35withinonedatapoint(2mm)oftheendofsuchatransition.Similarorderingoccursnearthedryingsurface.Weinvestigatedthisorderingbehaviourina28mmdeep,continuallycoarsening,starchcolonnade,tostudyhowadisorderedsurfacecracknetworkmatured.TheplotsinFig.5showthedepthdependenceoffourstatisticsweusedtoquantifydisorder.Weobservetheevolutionofaninitiallydisorderedsurfacefracturepatternintoawell-orderedcolonnade.Toquantifythisorderingwehavestudiedthedistributionsofareas,jointangles,andthenumberofneighboursasafunctionofdepth,measuredfromthedryingsurfaceaftercompletedesiccation,incross-sectionsofthetomogram.Notethatthenumberofneighbours,unlikethenumberofsides,whichistraditionallyreported,mustaverage6forapolygonaltilingoftheplanethatavoidsX-junctions[25].Allfourstarchstatisticsreachastatisticallysteadystateafter1cmofevolution,main-taining xed,butlargevaluesthereafter.Thisindicatesthatconsiderabledisorderremainsinthepattern.Furthermore,inallfourcases,theplateauvaluesofthestarchstatisticsmatchthevaluesfortheGiant'sCauseway[2],amature,well-orderedbasaltpattern[13].Inthisexperiment,itcouldbearguedthattheresidualdisorderisdictatedbythecontinuedcoarsen-ing.However,weobservestatisticallysimilardescriptionsofthelimitingpatterninboththeconstantrateexperiments,forwhichcoarseningise ectivelyhalted,andtheexposedfeaturesofthenon-coarseningbasaltoftheGiant'sCauseway.Thesimilarityinstatisticsfromtwoverydi erentsystems,desiccatedstarchandcooledbasalt,combinedwithevidenceofastrongorderingprocessesawayfromthecommonlimitingpattern,suggeststhatresidualdisorderisintrinsictothequasihexagonalpatternofcolumnarjointing.Thisiscontrarytothefrequentlyencounteredassumptionthatcolumnarjointingtendstowardsaperfecthexagonallatticeincross-section[13,21].However,suchanassumptionisbasedontheargumentthathexagonalfracturemaximizestheelasticenergyrelease[21].Instronglynon-equilibriumsituations,suchasthisone,energyargumentsarenotnecessarilyvalid.Ourresultscanbeusedtoexplainapuzzlingfeatureofbasalticcolumnarjoints.Asinglebasalt\rowcancontainseveraladjacentcolonnades,withdi erentscales,separatedbydisorderedzones(entablature)oftenlessthan1mwide[26,27].Somecolonnade-colonnadeboundariesoccurwhencoolingfrontstravellingfromthetopandbottomofa\rowcollide.However,othertransitionsremainunexplained,exceptthroughproposedcatastrophiceventssuchasintermittent\rooding[27,28].Wesuggestthatentablatureandscalechangesinbasaltcouldoccurevenwithoutsuddenchangesintheexternalconditions.Instarch,weobservedtransitionsinscaleusingconstantpowerexternalconditions,inwhichthedryingfrontisslowly,continuously,deceleratingwithdepth.Starchcolumnsareapproximately100timessmallerindiameterthanbasalticcolumns.Directlyscalingthe1cmwidescaletransitionsinstarch,we nda1mscalethatcorrespondsreasonablywellwiththewidthoftheentablaturesobservedinbasalt.Suchtransitionscouldbetheresultofdynamicalinstabilitiesofthefracturepattern,whichoccurwhenastablerangeofpatternscalesisexceeded.Ananalogousinstabilityoccursindirectionallydriedthin lms,inwhichaperiodicarrayofcrackscan 6EUROPHYSICSLETTERS0.30.40.5sA/mA0.60.811.2sN0510152025depth (mm)506070% 105o-135o510152025depth (mm)101520sq(a)(b)(c)(d)Fig.5{Statisticalcomparisonofatomographystudyofa28mmdeepcornstarchsampledriedwithconstantpower(datapoints,correspondingwithdatashowninuprighttrianglesinFig.3a),andO'Reilly's1879surveyoftheGiant'sCauseway[2](dashedlines).(a)Therelativevariationincolumncross-sectionalarea.(b)Standarddeviationofthedistributionofnumberofneighbours(N).(c)%ofY-joints,herede nedasthosewithin15ofa120joint.(d)Standarddeviationinthedistributionofjointangles(),indegrees.continuetopropagateunderarangeofdryingconditions[29].Outsidethisrange,thearraybecomesunstable,andmakesatransitiontoanewspacing[22,29].Ourdynamicalinstability-drivenentablaturehypothesisistestablebyobservingthestriaewidthsinbasalticcolonnades.Striaeare'chisel'marksonthesidesofcolumns,whichrecordindividualfractureadvancesasthecoolingfrontadvances[5].Byobservingthevariationofthestriaewidthacrossacolonnade-colonnadescaletransitionitshouldbepossibletodeterminehowthecoolingconditionschanged.Acontinuousevolutionacrosssuchaboundary,ratherthanamatchingdiscontinuityinstriaescale,wouldcon rmtheabsenceofcatastrophicchangesintheexternalconditions.Ourexperimentshavefocussedonexploringthe3Dstructureofcolumnarjointingincornstarch.Wehavedirectlyobservedtheoperationofastrongorderingprocessthatresultsintheeventualsaturationofthepatternstatistics.Thismaturestateofthepatterncontainsconsid-erabledisorder,whichwesuggestisduetothestronglynonequilibrium,complexdynamicsofthejoints.Analternateexplanationofresidualdisorderisthatthesystem'sgeometryevolvestowardequilibriumbutgetsstuckinalocalminimumofthefreeenergy[23].Thisscenarioisdiculttocompletelyruleout,butseemsunlikelygiventheobservedpersistentmobilityofthejoints,whichdonot\ructuateaboutequilibriumpositions.SeveralnewdynamicalmodelsofcolumnarjointinghaverecentlybeenproposedbyJagla[12,22],andJaglaandRojo[23],someofwhichseemtocapture,qualitatively,thedisordereddynamicswe nd.Wehaveobservedcoarseningofthestarchcolonnadeasitpenetratesoursamples.Thiscoarseningproceedsthroughtheterminationofcracktipsalongcolumnsidesorjoints.Thecoarseningcanbehaltedinconstantrateexperiments,revealinganimportantrelationshipbetweenfractureadvancerateandpatternscale.Theobservationofdiscontinuoustransitionsinscale,however,implyitisnotaone-to-onerelationship.Rather,asoccurswithsimilar2Dpatterns[29],theexactpatternscalewilldependonthesystem'sdynamicalhistory,aswell LucasGoehringandStephenW.Morris:Orderanddisorderincolumnarjoints7asonthecurrentexternallyimposedconditions.Thisalonemaysigni cantlymodify eldinterpretationsofcolumnarjointing,aswehaveoutlinedabove.However,theappreciationofquasihexagonalfractureasanon-equilibriumdynamicalsystemcangomuchfurther,andaquantitativeunderstandingofthispatterncouldprovidevolcanology,cryophysics,planetaryphysics,andpatternphysicswithnoveldiagnostictools.Theseconsiderationsmotivateacontinuinginterestinthisbeautifulphenomenon.WethankMarkHenkelmanandtheMouseImagingCentreforsupplyingaccesstomicro-tomographyequipment,andZhenquanLin,A.MarkJellinek,Pierre-YvesRobin,E.AlbertoJagla,andR.PaulYoungforhelpfuldiscussions.REFERENCESSirR.B.S.R.S.,Phil.Trans.R.Soc.London,17(1693)708.[2]O'Reilly,J.P.,Trans.R.IrishAcad.,26(1879)641.[3]Huxley,T.H.,Physiography:AnIntroductiontotheStudyofNature,(MacMillanandCo.,London)1881,p.204.[4]French,J.W.,Trans.Geol.Soc.Glasgow.,17(1922)50.[5]DeGraff,J.M.,andAydin,Geol.Soc.Am.,99(1987)605.[6]Muller,G.,J.Geophys.Res.,103(1998)15239.[7]Muller,G.,J.Volcanol.Geotherm.Res.,86(1998)93.[8]Muller,G.,J.Struct.Geol.,23(2001)45.[9]Toramaru,A.,andMatsumoto,T.,J.Geophys.Res.,109(2004)B02205.[10]Seshadri,K.V.,Jour.Geol.Soc.India,49(1997)452.[11]Menger,F.M,Zhang,H.,Caran,K.L.,Seredyuk,V.A.,andApkarian,R.P.,J.Am.Chem.Soc.,124(2002)1140.[12]Jagla,E.A.,Phys.Rev.E,69(2004)056212.[13]Budkewitsch,P.andRobin,P.-Y.,J.Volcanol.Geotherm.Res.,59(1993)219.[14]Peck,D.L.andMinakami,T.,Geol.Soc.Am.Bull.,79(1968)1151.[15]Aydin,A.andDeGraff,J.M.,Science,239(1988)471.[16]Dufresne,E.R.,Corwin,E.I.,Greenblatt,N.A.,Ashmore,J.,Wang,D.Y.,Dins-more,A.D.,Cheng,J.X.,Xie,X.S.,Hutchinson,J.W.andWeitz,D.A.,Phys.Rev.Lett.,91(2003)224501.[17]Jones,E.M.,(Apollo15LunarSurfaceJournal;HadleyRille.http://www.hq.nasa.gov/oce/pao/History/alsj/a15/a15.rille.html(1996)).[18]Lachenbruch,A.H.,Geol.Soc.Am.Spec.Paper.,70(1962)69p.[19]Sletten,R.S.,Hallet,B.,andFletcher,R.C.,J.Geophys.Res.,108(2003)8044.[20]Mellon,M.T.,J.Geophys.Res.,102(1997)25617.[21]Mallet,R.,Philos.Mag.,50(1875)122.[22]Jagla,E.A.,Phys.Rev.E.,65(2002)046147.[23]Jagla,E.A.,andRojo,A.G.,Phys.Rev.E.,65(2002)026203.[24]Hardee,H.C.,J.Volcanol.Geotherm.Res.,7(1980)211.[25]Gray,N.H.,Anderson,J.B.,Devine,J.D.,andKwasnik,J.M.,Math.Geol.,8(1976)617.[26]Grossenbacher,K.A.andMcDuffie,S.M.,J.Volcanol.Geotherm.Res.,69(1995)95.[27]Long,P.E.andWood,B.J.,Geol.Soc.Am.Bull.,97(1986)1144.[28]DeGraff,J.M.,Long,P.E.,andAydin,A.,J.Volcanol.Geotherm.Res.,38(1989)309.[29]Shorlin,K.A.,deBruyn,J.R.,Graham,M.andMorris,S.W.,Phys.Rev.E,61(2000)6950.