PDF-Improved Image Set Classication via Joint Sparse Appro

Author : alida-meadow | Published Date : 2015-04-30

Harandi Brian C Lovell University of Queensland School of ITEE QLD 4072 Australia NICTA GPO Box 2434 Brisbane QLD 4001 Australia Queensland University of Technology

Presentation Embed Code

Download Presentation

Download Presentation The PPT/PDF document "Improved Image Set Classication via Join..." is the property of its rightful owner. Permission is granted to download and print the materials on this website for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.

Improved Image Set Classication via Joint Sparse Appro: Transcript


Harandi Brian C Lovell University of Queensland School of ITEE QLD 4072 Australia NICTA GPO Box 2434 Brisbane QLD 4001 Australia Queensland University of Technology Brisbane QLD 4000 Australia Abstract Existing multimodel approaches for image set cl. Volkan . Cevher. volkan.cevher@epfl.ch. Laboratory. for Information . . and Inference Systems - . LIONS. . http://lions.epfl.ch. Linear Dimensionality Reduction. Compressive sensing. non-adaptive measurements. Aswin C Sankaranarayanan. Rice University. Richard G. . Baraniuk. Andrew E. Waters. Background subtraction in surveillance videos. s. tatic camera with foreground objects. r. ank 1 . background. s. parse. J. Friedman, T. Hastie, R. . Tibshirani. Biostatistics, 2008. Presented by . Minhua. Chen. 1. Motivation. Mathematical Model. Mathematical Tools. Graphical LASSO. Related papers. 2. Outline. Motivation. Recovery. . (. Using . Sparse. . Matrices). Piotr. . Indyk. MIT. Heavy Hitters. Also called frequent elements and elephants. Define. HH. p. φ. . (. x. ) = { . i. : |x. i. | ≥ . φ. ||. x||. p. . Michael Elad. The Computer Science Department. The Technion – Israel Institute of technology. Haifa 32000, Israel. MS45: Recent Advances in Sparse and . Non-local Image Regularization - Part III of III. onto convex sets. Volkan. Cevher. Laboratory. for Information . . and Inference Systems – . LIONS / EPFL. http://lions.epfl.ch . . joint work with . Stephen Becker. Anastasios. . Kyrillidis. ISMP’12. to Multiple Correspondence . Analysis. G. Saporta. 1. , . A. . . Bernard. 1,2. , . C. . . Guinot. 2,3. 1 . CNAM, Paris, France. 2 . CE.R.I.E.S., Neuilly sur Seine, France. 3 . Université. . François Rabelais. Michael . Elad. The Computer Science Department. The . Technion. – Israel Institute of technology. Haifa 32000, . Israel. David L. Donoho. Statistics Department Stanford USA. Author: . Vikas. . Sindhwani. and . Amol. . Ghoting. Presenter: . Jinze. Li. Problem Introduction. we are given a collection of N data points or signals in a high-dimensional space R. D. : xi ∈ . Dileep Mardham. Introduction. Sparse Direct Solvers is a fundamental tool in scientific computing. Sparse factorization can be a challenge to accelerate using GPUs. GPUs(Graphics Processing Units) can be quite good for accelerating sparse direct solvers. Contents. Problem Statement. Motivation. Types . of . Algorithms. Sparse . Matrices. Methods to solve Sparse Matrices. Problem Statement. Problem Statement. The . solution . of . the linear system is the values of the unknown vector . Reading Group Presenter:. Zhen . Hu. Cognitive Radio Institute. Friday, October 08, 2010. Authors: Carlos M. . Carvalho. , Nicholas G. Polson and James G. Scott. Outline. Introduction. Robust Shrinkage of Sparse Signals. Parallelization of Sparse Coding & Dictionary Learning Univeristy of Colorado Denver Parallel Distributed System Fall 2016 Huynh Manh 11/15/2016 1 Contents Introduction to Sparse Coding Applications of Sparse Representation Afsaneh . Asaei. Joint work with: . Mohammad . Golbabaee. ,. Herve. Bourlard, . Volkan. . Cevher. φ. 21. φ. 52. s. 1. s. 2. s. 3. . s. 4. s. 5. x. 1. x. 2. φ. 11. φ. 42. 2. Speech . Separation Problem.

Download Document

Here is the link to download the presentation.
"Improved Image Set Classication via Joint Sparse Appro"The content belongs to its owner. You may download and print it for personal use, without modification, and keep all copyright notices. By downloading, you agree to these terms.

Related Documents