/
Invariant-mass spectroscopy of neutron-rich Be isotopes Invariant-mass spectroscopy of neutron-rich Be isotopes

Invariant-mass spectroscopy of neutron-rich Be isotopes - PowerPoint Presentation

alida-meadow
alida-meadow . @alida-meadow
Follow
385 views
Uploaded On 2016-09-12

Invariant-mass spectroscopy of neutron-rich Be isotopes - PPT Presentation

Contents Breakup reactions of 14 Be on a proton target Inelastic scattering 14 Be Oneneutron removal reaction 13 Be Y Kondo RIKEN Nishina Center 2 Collaborators Y Kondo ID: 465177

neutron 12be 14be mev 12be neutron mev 14be 13be energy state distribution momentum wave erel inelastic events removal relative

Share:

Link:

Embed:

Download Presentation from below link

Download Presentation The PPT/PDF document "Invariant-mass spectroscopy of neutron-r..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Slide1

Invariant-mass spectroscopy of neutron-rich Be isotopes

ContentsBreakup reactions of 14Be on a proton targetInelastic scattering (14Be)One-neutron removal reaction (13Be)

Y. Kondo

RIKEN

Nishina

CenterSlide2

2

CollaboratorsY. Kondo, T. Nakamura, Y. Satou, T. Matsumoto, N. Aoi, N. Endo, N. Fukuda, T. Gomi, Y. Hashimoto, M. Ishihara, S. Kawai, M. Kitayama, T. Kobayashi, Y. Matsuda, N. Matsui,T. Motobayashi, T. Nakabayashi, K. Ogata, T. Okumura, H. J. Ong, T. K. Onishi, H. Otsu, H. Sakurai, S. Shimoura, M. Shinohara, T. Sugimoto, S. Takeuchi, M. Tamaki, Y. Togano, Y. YanagisawaTokyo Institute of TechnologyRIKEN Nishina CenterTohoku UniversityRikkyo UniversityKyushu UniversityUniversity of TokyoCenter for Nuclear Study (CNS), University of TokyoSlide3

Nuclear Chart

Exotic structuresNeutron haloMagicity loss (12Be, 32Mg)Di-neutron correlation? (6He, 11Li)Different deformation of proton/neutron density(16C)

Neutron halo

Magicity

loss

Different deformations of

Protons and neutrons

Di-neutron?

13

Be,

14

Be

3Slide4

14

BeDrip-line nucleusTwo neutron haloBorromean (12Be+n, n+n systems are unbound)No bound excited statesexcited states locate above the neutron separation energy (S2n=1.26MeV)13BeUnbound nucleusLow-lying levels are not clarifiedSeveral experimental results are not consistentBreakup of 14Be on proton14

Be and

13

Be

4Slide5

Inelastic

scatteringOne-neutron removal reaction14BeAngular distribution  Jp assignmentcross section collectivity

13

Be

Momentum distribution of

13

Be system

J

p

assignment

Breakup Reactions on a low-Z target

p

12

Be

n

n

14

Be

12

Be

n

n

q

12

Be

n

n

14

Be*

~ 70

MeV

/u

p

12

Be

n

n

14

Be

12

Be

n

q

12

Be

n

13

Be

n

~ 70 MeV/u

Coulomb breakup cross section is small

Invariant mass

5Slide6

Momentum Distribution of 13Be (transverse)

l=0l=1l=2Momentum distribution  spin-parity assignment of 13Be

l

=2

l

=1

l

=0

Example of momentum distribution

width of P distribution

depends on the orbital angular momentum of a knocked-out neutronSlide7

Experiment

7Slide8

Experimental Setup

Primary beam18O 100 MeV/uProduction targetBe  6 mmPlastic scintillator1 mm 14BeEnergy : ~ 70MeV/uIntensity : ~8,000 counts/sPurity : 90%

RIPS

RI

KEN

 

P

rojectile-fragment

S

eparator)

8Slide9

Experimental Setup

14BePPACAngle of 14BeDipole magnetDrift chamber (FDC)Particle IdentificationDrift chamber (MDC)Angle of 12BeNaI(Tl) scintillatorg ray from 12Be

Reaction Target

Liquid

H

2

(227

mg/cm

2

)

charged particle

Hodoscope

(plastic

scintillator

)

Velocity of

12

Be

Neutron counter

(plastic scintillator)

Veto counter

12

Be

n

Detect

12Be and (a) neutron(s) in coincidence

~ 70

MeV

/u

9Slide10

Experimental Setup (photo)

Dipole MagnetTarget

Drift Chamber

He bag

Hodoscope

Neutron Detector

RIPS

Beam

10Slide11

Neutron

counterCharged particle VETO(thin plastic scintillators)Neutron counterBeam direction

~2m

Efficiency

For 1n detection

Neutron Counter

54bars

6x6x214cm

3

11Slide12

Relative energy spectrum (

12Be+n+n)Angular distributionResults (Inelastic scattering)p12Be

n

n

14

Be

12

Be

n

n

q

12

Be

n

n

14

Be(2

+

)Slide13

Inelastic scattering

14Be+p  14Be*  12Be+n+nSelect Mn=2 (detection multiplicity) crosstalk rejection (position, timing)Neutron Crosstalk Analysis

Two neutron event

Crosstalk

One neutron is detected by two (or more) detectors

Crosstalk

events

NEUT-B

NEUT-A

Same Wall event

Different

Wall event

13Slide14

Comparison with

14Be+C data (previous experiment)p(14Be,12Be+n+n)69 MeV/nucleonneutron crosstalk events are eliminatedefficiency and acceptance are correctedSimilar peak at around 0.3MeV was observedC(14Be,12Be+n+n)68

MeV

/nucleon

(previous exp.)

T. Sugimoto,

T. Nakamura,

Y. Kondo et al

PLB

654

,160 (2007)

14

Be(2

+

)

E

r

=0.28(1)

MeV

D

L=2

14Slide15

14Be+p experiment

DWBA analysisTwo optical potentials(A) A.A. Korsheninnikov et al. PLB343, 53 (1995)(B) R.L. Varner et al. Phys. Rep. 201, 57 (1991) (CH89)  d =1.40(19) fm (14Be+p)p(14Be,12Be+n+n)69 MeV

/nucleon

14

Be(2

+

)

E

rel

(

12

Be+n+n) (MeV)

E

rel

=0.25(1)

MeV

s

=12.5±0.2±1.6

mb

(A)

(B)

p(

14

Be,

14

Be(2

+

) )69 MeV/nucleon

Y. Kondo, T. Nakamura, Y. Satou et

al.: to be submittedWidth is dominated by the experimental resolution

(~100keV (1s) @ 0.25MeV)

(1

s)15Slide16

2

+ energy & deformation length2+ energyLower than 12BeDeformation lengthSmaller than 12BeProton/neutron collectivities can be deduced (now in progress)

16Slide17

Phase space decay

14Be(21+)  12Be+n+nSequential Decay14Be(21+)   13Be+n (Erel=0.1MeV)   12Be+n+n (Erel=0.15MeV)

Decay of

14

Be(2

1

+

)

sequential

phase space

12

Be

n

n

E

c-n1

E

n-n

E

c-n2

E

c-(nn)

17Slide18

Relative energy spectrum (

12Be+n)Transverse momentum distributionsResults(One-neutron removal)p12Be

n

n

14

Be

12

Be

n

q

12

Be

n

13

Be

nSlide19

M

n=1 eventsSubtraction of Inelastic ComponentMn=1 eventsInelastic channelEstimated from Mn=2 eventsOne-neutron removal channel

Corresponds to

14

Be(2

+

)

One-neutron removal channel

(one neutron is emitted)

knocked out

Inelastic channel

(two neutrons are emitted)

not detected

two cases in

M

n

=1 events

inelastic component should be subtracted

19

p(

14

Be,

12

Be+n+n)

69

MeV

/nucleon

14

Be(2

+

)

E

rel

(

12

Be+n+n) (

MeV

)

E

rel

=0.25(1)

MeV

s

=12.5±0.2±1.6

mbSlide20

13

Be12Be+n+g13Be12Be(1-)+n(Eg=2.7MeV)13Be12Be(2+)+n(Eg=2.1MeV)s=11(2)

mb

(

E

rel

=0~4MeV)

s

=5.3(7)

mb

(

E

rel

=0~4MeV)

12

Be+n

s

=89(6)

mb

for

12Be+n+g is small

20Slide21

Two peaks at 0.5MeV,

2MeV Transverse momentum distribution (not longitudinal)Width of momentum distributions are different between peak regionsRelative Energy SpectrumErel(12Be+n) (MeV)p(14Be,

12

Be+n)

s

=89(6)

mb

(

E

rel

=0-4MeV)

0.25-0.75MeV

2.0-2.5MeV

P

x

resolution

~30MeV/c

21Slide22

Relative energy spectrump- and d-wave components

 Breit-Wigner shapes-wave component  G.F. Bertsch et al: PRC 57, 1366 (1998)Momentum distribution  CDCC calculation (by T. Matsumoto)13Be is assumed to be a core in 14Be13Be-p interactionJLM interaction J. Jeukenne et al.: PRC16, 80 (1977)n-p interactionR.A. Malfliet and J.A.Tjon NPA127, 161 (1969)13Be-n potentialWood-Saxon formDepth is adjusted to reproduce the separation energyFitting of Erel spectrum and momentum distributions

a :

Scattering length

22Slide23

0.5

MeV peak p-wave resonance2 MeV peak d-wave resonanceRelative Energy Spectrumps

d

p

s

d

E

rel

(

12

Be+n) (

MeV

)

p(

14

Be,

12

Be+n)

s

=89(6)

mb

(

E

rel

=0-4MeV)

0.25-0.75MeV

2.0-2.5MeV

23

p

d

sSlide24

p

-wave componentEr=0.50(1) MeVG=0.36(2) MeV consistent with Gsp (l=1)Jp=1/2-d-wave componentEr=2.48(7) MeVG=2.4(2) MeVlarger than

G

sp

(l=2)

other state @ 2MeV?

Relative energy spectrum

s

component

a

s

~ -3fm

d

state

E

r

=2.48(7)

MeV

Γ=2.4(2)MeV

p

state

Er

=0.50(1) MeV Γ=0.36(2)MeV

single particle width

p-wave @0.50MeV G

sp~0.5MeV d

-wave @2.48MeV Gsp~1.4MeV

24Slide25

Summary of the observed levels

The 2+ state in 14Be locates lower than the g.s. of 13BeSequential decay process is energetically forbidden25Slide26

The low-lying negative parity state

 Intruder stateLow-lying state of 13BeThiswork26Slide27

Shell

model calculationPSDMK D.J. Millener et al.: NPA255, 315 (1975)Provides the shell closure at 12BeSFO (spin-flip p-n monopole interaction) T. Suzuki et al.: PRC67, 044302 (2003)resonably reproduce the magicity loss at 12BeEnergy Levels of 12Be and 13Be13BePSDMK

Higher excitation energy of 1/2

-

SFO

Ground state of 1/2

-

 good!

several states at ~2MeV

Intruder 1/2- state

disappearance of N=8

magicity

 explained by spin-flip p-n monopole interaction

12

Be

13

Be

27Slide28

energy gap between [220 ½]

and [101 ½] orbitals disappears with large prolate deformationLarge quadrupole deformation (b~0.6) of 12Be H. Iwasaki et al. PLB481, 7 (2000)intruder 1/2- state of 13Be indicate large deformation?Deformation?

28

Ref) A. Bohr and B.R. Mottelson

Nuclear structure Vol.1Slide29

Breakup reactions (

14Be+p)Inelastic scattering2+ state of 14BePhase space decay of 2+ stateOne-neutron removal reactionLow-lying p-wave (intruder) resonance of 13BeSummary29