/
LiteBIRD A Small Satellite for the Studies of  B -mode Polarization and LiteBIRD A Small Satellite for the Studies of  B -mode Polarization and

LiteBIRD A Small Satellite for the Studies of B -mode Polarization and - PowerPoint Presentation

alida-meadow
alida-meadow . @alida-meadow
Follow
342 views
Uploaded On 2019-11-03

LiteBIRD A Small Satellite for the Studies of B -mode Polarization and - PPT Presentation

LiteBIRD A Small Satellite for the Studies of B mode Polarization and I nflation from Cosmic Background R adiation D etection Masashi Hazumi Institute of Particle and Nuclear Studies High Energy Research Accelerator Organization KEK ID: 762815

kek 2012 masashi hazumi 2012 kek hazumi masashi tokyo 04isstt litebird cmb inflation polarbear polarization plane ground satellite mode

Share:

Link:

Embed:

Download Presentation from below link

Download Presentation The PPT/PDF document "LiteBIRD A Small Satellite for the Studi..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

LiteBIRDA Small Satellite for the Studies of B-modePolarization and Inflation from Cosmic Background Radiation Detection Masashi HazumiInstitute of Particle and Nuclear StudiesHigh Energy Research Accelerator Organization (KEK)Tsukuba, Japan 2012/04/04 ISSTT 2012 Tokyo Masashi Hazumi (KEK) 1

Observing time > 2years LEO (or L2) Launch in ~2020 with JAXA’s Epsilon (or H2) rocket2 Small satellite for whole-sky mm-wave polarization survey Detection of B-mode polarization of Cosmic Microwave Background (CMB) Search for primordial gravitational waves imprinted in CMB B-mode, which are predicted by inflation theories 2012/04/04 ISSTT 2012 Tokyo Masashi Hazumi (KEK) LiteBIRD overview

LiteBIRD working group2012/04/04ISSTT 2012 Tokyo Masashi Hazumi (KEK)3 Y. Takei, H. Fuke, H. Matsuhara, K. Mitsuda, N. Yamazaki, T. Yoshida, S. Sakai (ISAS/JAXA), ASTRO-H, SPICA, DIOS, Balloon development K. Shinozaki, Y. Sato, H. Sugita, K. Yotsumoto, I. Kawano, A. Noda ( ARD/JAXA), H. Ishino, A. Kibayashi, S. Mima , Y. Mibe (Okayama U.),Adnan Ghribi、William Holzapfel、Adrian Lee、 Haruki Nishino、Paul Richards、Aritoki Suzuki、(UC Berkeley),  POLARBEAR, EBEX, APEX, EPIC, BICEP, SPT, SPTPol Julian Borrill (LBNL),  Planck I. Ohta(Kinki U.), M. Yoshida, K. Ishidoshiro , N. Katayama, N. Sato, O. Tajima, Y. Chinone, M. Nagai, R. Nagata, M. Hazumi (PI), K. Hattori, M. Hasegawa, T. Matsumura, H. Morii , N. Kimura, T. Suzuki, T. Tomaru (KEK),  QUIET, POLARBEAR (Planck, BICEP, EBEX),Y. Inoue, A. Shimizu, H. Watanabe(SOKENDAI),S. Takada(Tsukuba U.),E. Komatsu(UT Austin), WMAPY. Uzawa, Y. Sekimoto, T. Noguchi(ATC/NAOJ),M. Hattori(Tohoku U.),M. Dobbs (McGill U.),APEX, SPT, EBEX, POLARBEAR, SPTpolK. Natsume, Y. Takagi, S. Nakamura, S. Murayama(Yokohama Nationar U.),K. Koga, C. Otani (RIKEN)Supervisors:H. Kodama (KEK), T. Nakagawa (JAXA), R. Kawabe (NAOJ) More than 50 membersfrom CMB projects,as well as from X-rayand infrared astrophysicsprojects, and from THz community An official working group for JAXA’s small satellite projects Established in Sep. 2008, Pre-Phase A studies ongoing

LiteBIRD roadmap2012/04/04 ISSTT 2012 Tokyo Masashi Hazumi (KEK)4 Ground-based projects as important steps Verification of key technologies for LiteBIRD Good scientific results LiteBIRD POLARBEAR POLARBEAR-2 GroundBIRD

Science2012/04/04ISSTT 2012 Tokyo Masashi Hazumi (KEK)5

Cosmic inflationAn accelerating expansion at the very early universe.The leading hypothesis to answer one of the grand questions in cosmology “what powered the big bang ?”We can probe the inflationary universe with CMB polarization ! (indeed inflation is the earliest period we can probe with cutting-edge technology)Underlying quantum gravity theory, which is not yet understood, can also be tested by probing the inflationary universe.2012/04/04ISSTT 2012 Tokyo Masashi Hazumi (KEK)6 So, how does it work ?

7CMB linear polarization map polarization Ex 2 – Ey 2 ExEy W. Hu et al. astro-ph/0210096 power spectra spectral analyses E-mode 2012/04/04 ISSTT 2012 Tokyo Masashi Hazumi (KEK) Ex Ey polarimeter array telescope B-mode Smoking-gun signal of primordial gravitational wave, predicted by inflation theories CMB B-mode is the most sensitive probe for inflation Probing inflation with CMB polarization

2012/04/04ISSTT 2012 Tokyo Masashi Hazumi (KEK)8 E mode Primordial B mode (not yet detected) Reionization Recombination Ground-based large telescopes, neutrino masses, dark energy ( ~ current limit ) Satellite ! Shed light on inflation energy scale Determination of r (tensor-scalar ratio) CMB polarization power spectra

Physics of inflation2012/04/04ISSTT 2012 Tokyo Masashi Hazumi (KEK) 9 Leading hypothesis = new scalar field “Inflaton” In case of single-field slow-roll inflation (= so-to-speak “standard model Higgs” in cosmology) V1/4 = 1.06  10 16  ( r /0.01) 1/4 GeV Inflation potential proportional to r Unique probe of GUT scale physics !r (tensor-to-scalar ratio) is a key parameter

Search for r>0.01 well motivated 2012/04/04ISSTT 2012 Tokyo Masashi Hazumi (KEK)10 Pagano-Cooray-Melchiorri-Kamionkowski 2007 Current limit Theoretical predictions (including super-string theories in eleven dimensions !) r > 0.01 favored

2012/04/04ISSTT 2012 Tokyo Masashi Hazumi (KEK)11LiteBIRD mission Check representative inflationary modelsrequirement on the uncertainty on r(stat. ⊕ syst. ⊕ foreground ⊕ lensing) d r < 0.001 No lose theorem of LiteBIRD Many inflationary models predict r>0.01  >10sigma discovery Representative inflationary models (single-large-field slow-roll models) have a lower bound on r, r>0.002, from Lyth relation. no gravitational wave detection at LiteBIRD  exclude representative inflationary models (i.e. r<0.002 @ 95% C.L.) Early indication from ground-based projects  power spectra at LiteBIRD ! Huge impact on cosmology in any case

System2012/04/04ISSTT 2012 Tokyo Masashi Hazumi (KEK)12

Bore sight Super- conducting Focal plane (100mK) Primary mirror (4K) LiteBIRD system overview Cryocoolers (JT/ST + ADR) Solar panels Standard bus system for JAXA’s small satellites2ndarymirror (4K)HWP13 Spin axis2012/04/04ISSTT 2012 Tokyo Masashi Hazumi (KEK)

Major system requirements2012/04/04ISSTT 2012 Tokyo Masashi Hazumi (KEK)14 ItemRequirementsRemarksOrbitLEO (~500km) or L2Epsilon or H2 under considerationObserving time > 2 yearsWeight < 450kgfrom Epsilon payload requirementPower < 500W from JAXA’s standard bus system Total sensitivity< 3mKarcminAngular resolution< 30arcmin for 150GHzObserving frequencies50-270 GHz (or wider) ≥ 4 bands1/f knee (f)  scan rate (R) R/f > 0.06 rpm/mHz e.g. R>1.2rpm for f=20mHzTelemetry > 10GB/day w/ Planck-type data suppression Modulation/Demodulation HWP rotation > 1Hz HWP = Half Wave PlateTotal systematic errors< 18nK2 on CBB (l=2)These requirements may be modified in the feasibility studies

2012/04/04ISSTT 2012 Tokyo Masashi Hazumi (KEK)15 Focal plane requirementNoise level: goal = 2 mK・ arcmin (requirement: < 3 m K ・ arcmin ) To be well below“lensing floor”

LiteBIRD observing bands2012/04/04ISSTT 2012 Tokyo Masashi Hazumi (KEK)16 Foreground removal  ≥4 bands in 50-270GHz N. Katayama and E. Komatsu, ApJ 737, 78 (2011) (arXiv:1101.5210) pixel-based polarized foreground removal ( model-independent )very small biasr~0.0006with 60,100,240GHz (3 bands)

LiteBIRD focal plane design2012/04/04ISSTT 2012 Tokyo Masashi Hazumi (KEK) UC Berkeley TES option 100GHz 220GHz 150GHz Bolometers Sinuous antenna Fabricated Triplexer Filter 17 tri- chroic ( 95/150/240GHz ) di-chroic (60/95GHz ) 2 bands/pixel 3 bands/pixel Aritoki Suzuki’s talk (this session) on multi- chroic TES development, Tomotake Matsumura’s poster (P-48) on focal plane design and sensitivity For more information T bath = 100mK

TES signal multiplexing2012/04/04ISSTT 2012 Tokyo Masashi Hazumi (KEK)18 Replace analog feedback loop with Digital Active Nulling (DAN) to achieve 64 MUXled by McGill University (supported by CSA)Frequency-domain multiplexing (MUX)used inPOLARBEAR, SPT, EBEX etc.(8-16 MUX) toward LiteBIRD Frequency-domain multiplexing Berkeley-KEK-McGill-NIST

MKID option for higher MUX factorTalks in this session by Ken’ichi Karatsu by Kensuke KogaPosters P-49 by Hiroki Watanabe P-50 by Yoshiaki Kibe P-52 by Masato Naruse 2012/04/04ISSTT 2012 Tokyo Masashi Hazumi (KEK)19

L2 vs. LEO 2012/04/04ISSTT 2012 Tokyo Masashi Hazumi (KEK) 20L2 LEO 3sigma discovery region L2 case Katayama-Komatsu 2011 s fg (foreground rejection parameter) Both cases satisfy the requirement on statistical error

Development in ground-basedprojects2012/04/04ISSTT 2012 Tokyo Masashi Hazumi (KEK)21

LiteBIRD roadmap2012/04/04 ISSTT 2012 Tokyo Masashi Hazumi (KEK)22 Ground-based projects as important steps Verification of key technologies for LiteBIRD Good scientific results LiteBIRD POLARBEAR POLARBEAR-2 GroundBIRD

POLARBEAR(led by UC Berkeley)2012/04/04ISSTT 2012 Tokyo Masashi Hazumi (KEK) 23 150 GHz TES bolometer array (1274 TESes ) w/ 8 MUX Deployment started in Atacama in 2011 First light in Jan 2012 ! 3.5m Jupiter UC Berkeley, UCSD, KEK, McGill, Austin, Cardiff, Colorado, Dalhousie, Imperial C., LAC, LBNL

2012/04/04ISSTT 2012 Tokyo Masashi Hazumi (KEK)24 IEEE Transactions on THz science and technology

2012/04/04ISSTT 2012 Tokyo Masashi Hazumi (KEK)25 Paul on POLARBEARYes he does

POLARBEAR-2 receiver system(led by KEK)2012/04/04ISSTT 2012 Tokyo Masashi Hazumi (KEK) 26Overview(Focal plane cryostat +Optical cryostat) Pulse-tube cooler Sorption cooler (3stage: 4He+3He+3He) Antenna- coupled TES array (f380mm)ADR(forupgrade) Deployment in 2014 (Tbath = 250mK  100mK) End-to-end demonstrations of Large multi- chroic TES array (7588 TESes ) ADR (Tbath = 100mK) Wide-band AR coating Wide-band HWP w/ continuous rotation More information on systematics and foregroundsMain cryostat at KEK

GroundBIRD2012/04/04ISSTT 2012 Tokyo Masashi Hazumi (KEK)27 “Satellite on the ground” 30% sky coverage from Atacama, Chile MKID TES Low-l (l down to ~6) w/ better sensitivity than Planck Test-bench for LiteBIRD detector technologies Initial deployment in Japan in 2014, then to Atacama See Poster P-51 by Osamu Tajima for details

Discussions andsummary2012/04/04ISSTT 2012 Tokyo Masashi Hazumi (KEK)28

Why observation in space ?Whole-sky survey required for reionization bumplensing is subdominant even at r = 0.001No atmospheric noiseNo constraint in frequency band selection(except CO lines) Important to remove foregrounds292012/04/04ISSTT 2012 Tokyo Masashi Hazumi (KEK)

Why small satellite ?2012/04/04ISSTT 2012 Tokyo Masashi Hazumi (KEK) 30 Much less expensive More launch options than a big satellite Better in terms of mirror cooling No compromise on r measurements Ground-based telescopes for supporting measurements ~0.5 ° angular resolution ( @150GHz ) is sufficient Mirror diameter ~60cm does the job110LiteBIRD3sigma discoveryregion

Three key technologies to make LiteBIRD light2012/04/04ISSTT 2012 Tokyo Masashi Hazumi (KEK) 31Small mirrors (~60cm)Warm launch with mechanical coolersTechnology alliance with SPICA (JAXA technology) for pre-cooling (JT/Starling)Alliance with DIOS (X-ray mission) for ADRMulti-chroic focal plane ~2000 TES (Tbath=100mK, dn/n ~ 0.3), or equivalent MKIDsTechnology demonstration with ground-based projects (POLARBEAR-2, GroundBIRD )

Current limit r~0.2POLARBEAR-2 r~0.01LiteBIRD r~0.0012012/04/04ISSTT 2012 Tokyo Masashi Hazumi (KEK)32 Take-home message

Conclusion2012/04/04ISSTT 2012 Tokyo Masashi Hazumi (KEK)33 CMB polarization is the frontier in post-Planck eraBest probe to discover primordial gravitational wavesUnique tests of inflation and quantum gravityThe goal of LiteBIRD is to search for primordial gravitational waves with the sensitivity of r~0.001, for testing all the representative inflationary models.Focal plane technology is a key to the success. Technology verification in ground-based projects in next ~5 years will be crucial. Very exciting period and big challenge ahead of us.

Backup slides2012/04/04ISSTT 2012 Tokyo Masashi Hazumi (KEK)34

35Major contribution to S/N ratio Lensing limited Foreground limited Foreground limited Cosmic variance limited Cosmic variance limited 2012/04/04 ISSTT 2012 Tokyo Masashi Hazumi (KEK)

LiteBIRD optics 2012/04/04ISSTT 2012 Tokyo Masashi Hazumi (KEK)36 Boresight 2ndary mirror Primary mirror Focal plane 4K Reflective Optics 30cm Focal plane area 30cm 50cm HWP HWP example T. Matsumura, doctoral thesis Prototype mirrors

LiteBIRD thermal design2012/04/04ISSTT 2012 Tokyo Masashi Hazumi (KEK)37 2-stage Stirling Cooler Thermal studies on Precoolers (JT/ST) A solution w/reasonable margin (28.8%) Structure analysis was also OK 3-stage ADR (32kg): Leak B-field is small enough: less than 0.5Gauss for > 100mm from ADR FP

LiteBIRD DAQ・telemetry2012/04/04ISSTT 2012 Tokyo Masashi Hazumi (KEK) 38on-board data suppression required, and demonstrated using FPGAs data rate requirements on antenna gain low-gain low-power options exist

LiteBIRD scan strategy2012/04/04ISSTT 2012 Tokyo Masashi Hazumi (KEK)39 150 Mkm Sun  Earth Satellite 0.38 Mkm Earth  Moon  = 76 degs  = 34 degs x y z Spin axis Anti-sun Boresight altitude 600 km - Spin axis rotation about anti-sun axis (i.e. satellite period around the earth) f s = 90 min - Boresight axis rotation about spin axis f b ~ 1 min 6000K 300K 175K Boresight Spin axis Anti-sun  : relative angle betw/n moon and boresight (60 degs) 3rpm scan uniformity cross link LEO

Discovery potential(>3s) and model predictions2012/04/04ISSTT 2012 Tokyo Masashi Hazumi (KEK) 40 r ~2014 ~2014 ~2015 ~2016 ~2020 ※   statistical and foreground uncertainties taken into account present upper limit ( 95%C.L.)Competition BICEP2, KECK(South pole)EBEX, SPIDER(balloon-bourne)etc. Both sensitivity and schedulesimilar to POLARBEAR 1 2 3 4 5 Single-field slow-roll w/ ns-r relations Power-law Chaotic p=8 SSB (Ne = 47-62) Chaotic p=0.1 String theory examples     1 . N-flation, 2 . Axion Monodromy, 3 . Monodromy 4 . Fiber inflation, 5 . Warped D-brane, Kahler, Racetrack, .. Pagano-Cooray-Melchiorri- Kamionkowski 2008 Baumann, arXiv:0907.5424 Bound from Lyth relation (0.002)

Scientific Shopping List2012/04/04ISSTT 2012 Tokyo Masashi Hazumi (KEK)41 Primordial gravitational wave (low-l B mode)inflation model selectionTests of quantum gravity, even string theories !Lensing(high-l)B-mode precision measurements neutrino mass, gravitinos etc.(early) dark energy Beyond the Standard Modelparity violation in gravity (non-zero C EB etc.) Cosmic reionization science (low l ) Foreground scienceCosmology andFundamentalphysics Astronomy Rich and important science from CMB polarization Bonus: Cross correlations w/ other frequencies

Projects in the world2012/04/04ISSTT 2012 Tokyo Masashi Hazumi (KEK) 42South PoleAtacama, Chile 2. Balloon 3. Satellite 1. Ground S-E L2 SPTPol In addition, POLAR, ... WMAP (obs. end in 2010) Planck EBEX SPIDER PIPER In addition, ABS, CLAS, ...QUIET POLARBEAR ACTPol

Comparison with laser interferometer- my personal comment2012/04/04ISSTT 2012 Tokyo Masashi Hazumi (KEK) 43 CMB polarization is much more sensitive than interferometry. Discovery (on ground or in space) of PGW from CMB polarization will give a specific target for future gravitational wave detection experiments.  a very strong science case can be made.

LensingStatistics ForegroundSystematics Systems Engineering for LiteBIRD 2012/04/04 ISSTT 2012 Tokyo Masashi Hazumi (KEK) 44 d r <0.001

Sub-component status Optics: completed a baseline design and fabricated a prototypeFocal plane: completed a baseline designThermal/mechanical design: preliminary studies and found solutions w/ ~30% marginOrbit/attitude control: choose <1rpm (requiring HWP) for feasibility studiesTelemetry: requirements for L2/LEO obtained, Foreground studies: dr=0.0006 w/ 3 or more bands in 50-270GHzSystematics:Studying requirements to make a systematic error budget2012/04/04 ISSTT 2012 Tokyo Masashi Hazumi (KEK) 45

KEK CMB Members (2007~ )46Also getting strong support from cryogenics center, electronics system group and machine shop at KEK. In total ~30 members Various “previous lives” including Belle, SuperK, BESS, gravitational wave detection, sub-mm astronomy, theory. 2012/04/04 ISSTT 2012 Tokyo Masashi Hazumi (KEK)

KEK CMB Group HistoryNov. 2007:Established, joined QUIETJun. 2008 :Joined POLARBEARSep. 2008:Proposed LiteBIRD, WG accepted by JAXAMar. 2009 :CMB session established at JPS Apr. 2009:MEXT Grant-in-Aid started (http://cbr.kek.jp/) Oct. 2010 : JSPS Brain Circulation program started Dec. 2010 :Initial results from QUIETApr. 2011: CMB B-mode and dark energy selected as two most important cosmic connections by HEP community in JapanAug. 2011: Official support on LiteBIRD from Japanese radio astronomy communitySep. 2011 :POLARBEAR deployment in Chile started 47 QUIET Low frequenciesPOLARBEARHighfrequenciesLiteBIRDUltimate observations2012/04/04ISSTT 2012 Tokyo Masashi Hazumi (KEK)