/
Precision Cavity-enhanced Dual-comb Spectroscopy: Precision Cavity-enhanced Dual-comb Spectroscopy:

Precision Cavity-enhanced Dual-comb Spectroscopy: - PowerPoint Presentation

alida-meadow
alida-meadow . @alida-meadow
Follow
370 views
Uploaded On 2018-02-06

Precision Cavity-enhanced Dual-comb Spectroscopy: - PPT Presentation

Application to the Gas Metrology of CO 2 H 2 O and N 2 O Adam J Fleisher David A Long Joseph T Hodges Material Measurement Laboratory National Institute of Standards amp Technology ID: 628540

preparation fleisher dcs opt fleisher preparation opt dcs aom

Share:

Link:

Embed:

Download Presentation from below link

Download Presentation The PPT/PDF document "Precision Cavity-enhanced Dual-comb Spec..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Slide1

Precision Cavity-enhanced Dual-comb Spectroscopy:

Application to the Gas Metrology of CO2, H2O, and N2O

Adam J. Fleisher,

David A. Long, Joseph T. Hodges

Material Measurement Laboratory

National Institute of Standards & TechnologyGaithersburg, MD 20899, USASlide2

Quantitative CE-DCSElectro-optic frequency combs are an agile laser platform for rapid spectroscopy from 0.4 – 2.0 µm.

To perform quantitative cavity-enhanced dual-comb spectroscopy (CE-DCS), we require an accurate model of the complex multiheterodyne signal.

D.A. Long et al.,

Opt. Lett. 39, 2688 (2014).A. J. Fleisher et al.,

Opt. Express 24, 10424 (2016).Slide3

Electro-optic frequency combs

Utilize two EOFCs originating from the same CW laser to perform DCS

PD

EC

ECDL

FS

FS

EOM

LO

EOM

probe

AOM

LO

Sample

FC

FC

FL

FL

FA

Local Oscillator + Probe

or

Local Oscillator + Reference

D.A. Long et al.,

Opt. Lett.

39

, 2688 (2014).

A. J. Fleisher et al.,

Opt. Express

24

, 10424 (2016).Slide4

Cavity-enhanced DCS

A.J. Fleisher et al., in preparation.

Cavity locked to

HeNe (dither)CW laser locked to cavity (PDH)fAOM phase locked to RF reference (Cs clock)

EO comb spacing phase locked to RF reference (Cs clock)CW laser frequency measured against stabilized OFC (Cs clock)Slide5

Ideal case: frep = FSR

f

rep

=

FSR

1

2

3

−3

−2

−1

0

qSlide6

Mode mismatch I

1

Δ

2

Δ

3

Δ

−3

Δ

−2

Δ

−1

Δ

PDH

f

rep

− FSR= +

ΔSlide7

Mode mismatch II

molecular absorber

±1

Δ

±2

Δ

±3

Δ

±3

Δ

±2

Δ

±1

Δ

PDH

f

rep

− FSR= +

Δ

f

rep

− FSR= −

ΔSlide8

Model of CE-DCS

A.J. Fleisher et al, in preparation.

A.

Foltynowicz

et al.,

Appl. Phys. B

110

, 163 (2013).

 

L

= 74 cm

F

= 18,500

L

eff

= 4.4 km

FSR

= 203 MHz

δ

cav

= 10 kHz

R

+

T

+

= 1

q

= mode order (-M/2 … 0 … M/2)

Δ = mode spacing offset

δ

0

= PDH lock offset

 Slide9

Carbon dioxide (12C16O

2)A.J. Fleisher et al., in preparation.

30012 Band of

12C16O2 at

cm

−1

 

R16e line at

cm

−1

 Slide10

Carbon dioxide (12C16O

2)

Fit transition frequencies vs. m to obtain upper-state inertial parameters and origin frequency for 30012 band of 12C16O

2Uncertainty in Gv

of 1.9 MHz(

)

CE-DCS inertial parameters and origin frequency are in good agreement with FS-CRDS

 

A.J. Fleisher et al, in preparation.

D.A. Long et al.,

JQSRT

161

, 35 (2015).

30012 Band of

12

C

16

O

2

at

cm

−1

 Slide11

Water (H216O)

A.J. Fleisher et al., in preparation.

040

 000

10

1,10

 9

0,9

and

040

 000

6

2,5

 6

1,6

Obs. − Calc. ≤ 0.01

rms

in 1 s

Pressures of 2.68, 4.50, and 6.20

Torr

 Slide12

Water (H216O)

Deviations from HITRAN12 are as large as 20

MHz.

Absolute transition frequencies for H

2O measured by CE-CRDS agree with highly accurate FS-CRDS experiments.

A.J. Fleisher et al., in preparation.

040 Band of H

2

16

O from

= 6300 - 6335 cm

−1

 Slide13

Nitrous Oxide (14N216

O)A.J. Fleisher et al., in preparation.

Analysis of the 4200 band of N2

O currently in progress65 transitions at low pressureP = 0.55 TorrSlide14

Performance and Outlook

Single-element noise-equivalent absorption coefficient

cm

−1

Hz

−1/2

Broadband applications – Octave-spanning EO combs

High-resolution applications – Self-heterodyne read-out to reduce

 

K. Beha et al,

Optica

4,

406 (2017).

D.A. Long et al.,

Phys. Rev. A

94

, 061801(R) (2016).Slide15

Acknowledgements

MMLDavid Long

Zachary ReedJoseph Hodges

PMLDavid Plusquellic

NIST Greenhouse Gas Measurements and Climate Research ProgramNRC Postdocs opportunities: adam.fleisher@nist.govSlide16

Blank

A.J. Fleisher et al., Opt. Express 24, 10424 (2016)Slide17

Model

A.J. Fleisher et al., in preparation

.Slide18

Model evaluation I

Δ = −2 kHz

δPDH = 2 kHz

P = 13 Pa (0.1

Torr) CO2

ν0 = 6364.750 cm

−1

λ

0

= 1571 nm

G.-W. Truong et al.,

J. Chem. Phys.

138

, 094201 (2013)Slide19

Model evaluation II

Δ = −2 kHz

δPDH = 0

P

= 13 Pa (0.1 Torr) CO

2ν0

= 6364.750 cm

−1

λ

0

= 1571 nmSlide20

Model evaluation III

Δ = +2 kHz

δPDH = 0

P

= 13 Pa (0.1 Torr) CO

2ν0

= 6364.750 cm

−1

λ

0

= 1571 nmSlide21

Carbon dioxide (12C16O

2)A.J. Fleisher et al, in preparation.

D.A. Long et al., JQSRT 161, 35 (2015).

30012 Band of 12C16O

2 at

cm

−1

 

G

v

B

v

D

v

(10−3)

H

v

(10−9)

11698.469997536

-3.998627717

0.411169933

30012 (CRDS)

190303782.258(59)

11585.62864(39)

-2.94262(69)

15.81(32)

30012 (CE-DCS)

190303781.5(1.9)

11585.62636(69)

-2.9373(21)

14(22)

G

v

B

v

D

v

(10−3)

H

v (10−9)

11698.469997536

-3.9986277170.411169933

30012 (CRDS)190303782.258(59)11585.62864(39)-2.94262(69)15.81(32)

30012 (CE-DCS)190303781.5(1.9)11585.62636(69)

-2.9373(21)14(22)

Spectroscopic constants in MHzSlide22

EOM comb outline

Explore MULTIHETERODYNE (Dual-Comb) using commercially-available low V

π fiber-coupled waveguide electro-optic modulators (EOMs) and tunable CW lasers in the near-IR

Retro-fit to existing CW lasers throughout the laboratory (fiber, DFB, ECDL, etc.)

Interrogate samples using existing optical cavities throughout the laboratory (i.e., no need to construct a cavity of specific FSR)

+

6dB

<10 kHz – 18 GHz

Dual-Drive MZM

<4

V

rms

T. Sakamoto et al.,

Opt. Lett

.

32

, 1515 (2007)

 Slide23

RF Detuning

Amplitude

Amplitude

Amplitude

Optical Detuning

Optical Detuning

Optical Detuning

Amplitude

Local Oscillator (LO)

f

n,LO

=

nf

mod

+

f

0

Probe

f

n,Probe

=

n(

f

mod

+

δ

f

mod

)

+

f

0

+

f

AOM,

Probe

Heterodyne RF Signal

f

n,RF

=

n

δ

f

mod

+

f

AOM

,Ref

+

n

δ

f

mod

+

f

AOM,

Probe

Reference (Ref)

f

n,Ref

=

n(

f

mod

+

δ

f

mod

)

+

f

0

+

f

AOM

,RefSlide24

Relative phase stabilization

Detector

Phase Frequency Detector

Loop Filter

BPF

VCO

AOM

Laser

Amp

RF Reference

10 MHz Clock

Probe or Ref.

RF Cable

Optical Fiber

Local Oscillator

A.J. Fleisher et al.,

Opt. Express

24

, 10424 (2016)Slide25

Reduction in RF linewidth

t = 10 sRBW = 10 Hzinset:

t = 10 sRBW = 200 mHz

A.J. Fleisher et al.,

Opt. Express 24, 10424 (2016)Slide26

Coherent averaging

A.J. Fleisher et al., Opt. Express 24, 10424 (2016)

Without the AOM phase lock, successively triggered interferograms can not be coherently averaged

With the AOM phase lock, the signal-to-noise on a single comb tooth amplitude improves by

Coherent averaging for more than 2 hours!

6 TB/h

 Slide27

Coherent averaging

t

acq = 200 μs

Δfmod = 300 kHzN = 1000noise reduction by

 Slide28

Fast acquisition

t

acq = 10 μs

Δfmod = 300 kHzN = 1000noise reduction by

 Slide29

Nitrous Oxide (14N216

O)A.J. Fleisher et al, in preparation.R.A. Toth, “

Linelist of N2O Parameters from 500 to 7500 cm−1,” database.

4200 Band of 14N2

16O at

cm

−1

 

G

v

B

v

D

v

(10−3)

H

v

(10−9)

12561.6338

5.279910

-0.49552

4200e (Toth)

18873277.1

12363.7210

6.472684

122.51

4200e (CE-DCS)

190303781.5(1.9)

11585.62636(69)

-2.9373(21)

14(22)

G

v

B

v

D

v

(10−3)

H

v (10−9)

12561.6338

5.279910-0.49552

4200e (Toth)18873277.112363.72106.472684122.51

4200e (CE-DCS)190303781.5(1.9)11585.62636(69)

-2.9373(21)14(22)

Spectroscopic constants in MHz