PDF-Tensor decompositions for learning latest variable models
Author : alida-meadow | Published Date : 2017-04-04
AnandkumarGeHsuKakadeandTelgarskyKeywordslatentvariablemodelstensordecompositionsmixturemodelstopicmodelsmethodofmomentspowermethod1IntroductionThemethodofmomentsisaclassicalparameterestima
Presentation Embed Code
Download Presentation
Download Presentation The PPT/PDF document "Tensor decompositions for learning lates..." is the property of its rightful owner. Permission is granted to download and print the materials on this website for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.
Tensor decompositions for learning latest variable models: Transcript
AnandkumarGeHsuKakadeandTelgarskyKeywordslatentvariablemodelstensordecompositionsmixturemodelstopicmodelsmethodofmomentspowermethod1IntroductionThemethodofmomentsisaclassicalparameterestima. IndexTopicarraytensor,1%*t%(tensor),1%t*%(tensor),1%t*t%(tensor),1aperm,2matmult,2tensor,14 Jiao Tong University . Shanghai, China . June 17, 2013 . The Bridges of Konigsberg . Euler, 1736. A Prescient Observation by Euler. Euler said: . The General Case. STA431: Spring 2013. See last slide for copyright information. An Extension of Multiple Regression. More than one regression-like equation. Includes latent variables. Variables can be explanatory in one equation and response in another. Based on the work with. Masafumi. . Fukuma. . and . Sotaro. . Sugishita. . (Kyoto Univ.). Naoya. . Umeda. . (Kyoto Univ.). [arXiv:1503.08812. ][JHEP . 1507 (2015) 088] . “. Random volumes from matrices. Shenghan Jiang. Boston College. Benasque. February. , 09, 2017. Symmetric tensor-networks and topological phases. Collaborators:. Ying Ran (Boston College) . Panjin. Kim, . Hyungyong. Lee, Jung . Hoon. He Zhang. 1. , He Huang. 2. , . Rui. Li. 1. , . Jie. Chen. 1. , Li-Shi Luo. 2. Jefferson Lab. Old Dominion University. FEIS-2, 05/15/2015. Outline. He Zhang. ---. 3. ---. Introduction of FMM. He Zhang. Trevor Linton, University of Utah. Acknowledgements. Thomas Henderson. Ross Whitaker. Tolga Tasdizen. The support of IAVO Research, Inc. through contract FA9550-08-C-005.. Field of Study. Geographical Information Systems. Author: Maximilian Nickel. Speaker: . Xinge. Wen. INTRODUCTION . –. Multi relational Data. Relational data is everywhere in our life:. WEB. Social networks. Bioinformatics. INTRODUCTION . –. Why Tensor . Author: Maximilian Nickel. Speaker: . Xinge. Wen. INTRODUCTION . –. Multi relational Data. Relational data is everywhere in our life:. WEB. Social networks. Bioinformatics. INTRODUCTION . –. Why Tensor . Overview. Theory. Basic . physics. Tensor. Diffusion . imaging . Practice. How . do you do DTI?. . Tractography. . DTI . in . FSL and other programs. Diffusion . Tensor Imaging. Brownian motion. near the ground states of nuclei. = Study by . 16. O(p,pd). 14. N reaction =. Isao Tanihata, H. J. Ong, s. Terashima and E443 collaboration at RCNP. IRCNPC and SPNEE, Beihang University, Beijing, China. Rong Ge. Duke University. Joint work with Sanjeev Arora, . Tengyu. Ma, Andrej . Risteski. “Provable Learning of Noisy-OR Networks” . STOC 2017. arxiv:1612.08795. “New practical algorithms for learning Noisy-OR networks via symmetric NMF”. Juan Andrés . Bazerque. , Gonzalo . Mateos. , and . Georgios. B. . Giannakis. . August. 8, 2012. . Spincom. group, University of Minnesota. . Acknowledgment: . AFOSR MURI grant no. FA 9550-10-1-0567. . SYFTET. Göteborgs universitet ska skapa en modern, lättanvänd och . effektiv webbmiljö med fokus på användarnas förväntningar.. 1. ETT UNIVERSITET – EN GEMENSAM WEBB. Innehåll som är intressant för de prioriterade målgrupperna samlas på ett ställe till exempel:.
Download Document
Here is the link to download the presentation.
"Tensor decompositions for learning latest variable models"The content belongs to its owner. You may download and print it for personal use, without modification, and keep all copyright notices. By downloading, you agree to these terms.
Related Documents