/
ObservationsofsurfbeatforcinganddissipationStephenMHendersonandAJBowen ObservationsofsurfbeatforcinganddissipationStephenMHendersonandAJBowen

ObservationsofsurfbeatforcinganddissipationStephenMHendersonandAJBowen - PDF document

amelia
amelia . @amelia
Follow
343 views
Uploaded On 2021-09-02

ObservationsofsurfbeatforcinganddissipationStephenMHendersonandAJBowen - PPT Presentation

TotalenergyofmodeEnergyofmodedissipatedinasinglewaveperiodNotethatisapproximatelythetimescaleforwavedissipationdividedbythewaveperiodsoalowrapiddissipationandahighindicatesslowdissipationOnlyifBryanan ID: 875522

geophys res equation guza res geophys guza equation andr bowen elgar soc 1984 1992 anda herbers 1996 phys surfbeatforcinganddissipation

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Observationsofsurfbeatforcinganddissipat..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

1 Observationsofsurfbeatforcinganddissipat
ObservationsofsurfbeatforcinganddissipationStephenM.HendersonandA.J.BowenDepartmentofOceanography,DalhousieUniversity,Halifax,NovaScotia,CanadaReceived15June2000;revised14August2001;accepted6March2002;published13November2002.2002.1]Weusedasimpleenergybalanceequation,andestimatesofthecross-shoreenergyfluxcarriedbyprogressivesurfbeat,tocalculatetherateofnetsurfbeatforcing(ordissipation)onabeachnearDuck,NorthCarolina.Farinsidethesurfzone,surfbeatdissipationexceededforcing.Outsidethesurfzone,surfbeatforcingexceededdissipation. TotalenergyofmodeEnergyofmodedissipatedinasinglewaveperiodNotethatisapproximatelythetimescaleforwavedissipationdividedbythewaveperiod,soalowrapiddissipationandahighindicatesslowdissipation.Onlyif BryanandBowen,1996;¨ffer,1993,1994]orassumethatdissipationisasymptoticallyweak[,1971;FodaandMei,1981;Lippmannetal.,1997].Thesehighmodelssuccessfullypredictmanyfeaturesoftheobservedcross-shore[,1976;Hollandetal.,1995],longshoreeHuntleyetal.,1981;Oltman-ShayandGuza,1987;etal.,1998],andfrequencydomain[,1981;andThornton,1985]structureofsurfbeat.ThesuccessofmodelssuggeststhattheofsurfbeatisoftenhighighHolman,1981].However,strongcorrelationsareoftenobservedbetweensurfbeatandlocalnonlinearforcingngMunk,1949;Tucker,1950;HuntleyandKim,1984;etal.,1984;,1986,1992;,1995;1998a],suggestingthatasignificantamountofenergyiscarriedbymodesthatarenotresonantlyforced(‘forcedmodes’).ObservationsofstrongcorrelationsbetweensurfbeatandlocalnonlinearforcingleadHuntleyandKim[1984]toconcludethatthelow-frequency()surfbeattheyobservedwasnotdominatedbyfree(i.e.,highresonantlyforced)waves.waves.7]Longuet-HigginsandStewart[1962]showedthatthestrengthoftheresponseofsurfbeattoforcingincreaseswithdecreasingwaterdepth.Symondsetal.[1982]sug-gestedthatasignificantamountofsurfbeatforcingoccursattheedgeofthesurfzone,wherewavebreakingisintermittent,andnoforcingoccursinsidethesaturatedsurfHuntleyandKimKimList[1986],Masselink[1995],and[1998a,1998b]foundthatcorrelationsbetweensurfbeatandnonlinearforcingincreasewithincreasingwaveheightanddecreasingwaterdepthuntilintensewavebreakingoccurs,atwhichstagecorrelationssuddenlydecline.TheseobservationsareinqualitativeagreementwiththetheoriesofLonguet-HigginsandStew-[1962]andSymondsetal.[1982];however,noquanti-tativerelationshipbetweentheobservedcorrelationstrengthandthestrengthofsurfbeatforcingneartheshorehasbeenderived.Fartheroffshore(8mwaterdepth)onlyasmallproportionoflow-frequencyenergycanbeexplainedbylocalnonlinearforcing,althoughthisproportiondoesincreaseduringstorms[Okihiroetal.,1992;Elgaretal.Herbersetal.,1994,1995b].Munketal.al.foundthatstronglyresonant(high)edgewavesdomi-natedtheinfragravityenergytheyobservedin7mwaterdepthontheCalifornianContinentalShelf.Shelf.8]GuzaandBowenBowenBowen[1977],BowenandandHuntleyetal.[1981],andBryanandBowen[1996]suggestedthatwavebreakingmightleadtopartic-ularlystrongsurfbeatdissipationinsidethesurfzone.Feddersenetal.[1998]showedthatthebottomdragcoefficientforthemeanlongshorecurrentisaboutthreetimeslargerinsidethesurfzonethanoutsidethesurfzone.Observationsofprogressiveinfragravitywaves[Elgaret,1994]andinfragravityenergyfluxes[Herbersetal.1995a]in8mwaterdepthsuggestthatinfragravitywavescanbesignificantlydissipatedonthecontinentalshelfduringstorms.torms.9]Thepurposeofthispaperistodeterminetheapprox-imatestrengthandcross-shorestructureofsurfbeatforcinganddissipation.Insection2wepresentasimpleenergybalanceequationforsurfbeat.Weshowthatthisenergybalanceequationcanbecombinedwithmeasurementsofwaterpressure,velocity,anddepthtoyields

2 patiallyaver-agedratesofnetsurfbeatforci
patiallyaver-agedratesofnetsurfbeatforcing(ordissipation).Thismethodprovidesestimatesofthedifferencebetweensurfbeatforcinganddissipation,butdoesnotallowustoevaluateforcinganddissipationseparately.Wewillusethemethoddevelopedinsection2toanalyzedatacollectedfromabeachnearDuck,NorthCarolina.Wedescribethefieldsiteandinstrumentationinsection3andpresentresultsinsection4.Wefindthatnetsurfbeatforcing(ordis-sipation)wasstrongwhenincidentwaveswerelargeandweakwhenincidentwavesweresmall.Forcingexceededdissipationoutsidethesurfzoneanddissipationexceededforcinginsidethesurfzone.Duringstorms,shorewardsurfbeatpropagationmaintainedsurfbeatenergyinsidethesaturatedsurfzone.Wediscusstheimplicationsofourresultsandpresentourconclusionsinsection5.2.EnergyEquationEquation10]Scha¨ffer[1993]derivedanenergybalanceequationforsurfbeatbyassumingthatbeatfrequenciesaremuchlowerthanincidentwavefrequencies.InthissectionweshowthataslightlymodifiedformofScha¨ffer’senergyequationappliesevenwhenbeatfrequenciesarenotmuchlowerthanincidentwavefrequencies.Thisresultisusefulbecausebeatfrequenciesareoftennotmuchlowerthanincident-wavefrequencies(surfbeatfrequenciesareashighas0.05Hzandthepeakfrequencyofincidentwavesisoftenonly0.1Hz).Wealsoderiveasimplerenergyequationforastatisticallysteadywavefieldonalong,straightbeach.beach.11]Let=time,’thhorizontalcoordinate(=1or2),=horizontalwatervelocity,’thcomponentof=stillwaterdepth,=seasurfaceelevation(abovestillwaterlevel),=gravitationalacceleration.Also,foranyvariable,letbethetime-varyingcomplexamplitudeofafrequencyFouriercomponentof(seeAppendixA1fordefinition).definition).12]InAppendixAwederivetheequationforthetime-varyingenergyoffrequencysurfbeat    )=anddepth-integratedrateofdissipationatfrequency=realpart, 2HENDERSONANDBOWEN:SURFBEATFORCINGANDDISSIPATION Tjkhujukjk0 Thesummationconventionhasbeenused,sorepeatedindicesaresummedoverallallowablevalues.values.13]Equation(2)appliestostronglynonlinearwaves.However,inastronglynonlinearwavefield,someenergyissharedbetweenwaveswithdifferentfrequencies,andthewaveenergyatasinglefrequencyisnotwelldefined.Consequently,interpretationofequation(2)isdifficultunlessnonlinearinteractionsareweak.weak.14]u˜isthedepth-integratedmasstransportdividedbythestillwaterdepth.Themomentumfluxtensorcontributionsfromboththemeanflowandthewavefield.Variationsinradiationstress[Longuet-HigginsandStewart1964]areincludedinistheStokesdrift.drift.15]()is,exceptforasmallStokesdriftcontribution,thedepth-integratedenergyofawavewithfrequency)isthethewaveenergyflux,andrepresentsthedepth-integratedrateofworkingbythewaterpressureonthewatermotion.)isthedepth-integratedrateofworkingbythemomentumfluxgradientonthewatermotion.motion.16]NonlinearinteractionsbetweenwavesareassociatedwiththemomentumfluxandStokesdriftofequation(2).Forexample,considerthenonlinearcom-ponentofthewaveenergyflux,,intheshallowwaterlimitwhere.FromageneralizationofParseval’stheorem[e.g.,,1960],formatriadofnonlinearlyinteractingwavesforeveryvalueofof17]Equation(2)wasderivedbyassumingthatbeatfrequencypressurefluctuationsarehydrostatic(equation(A13)),andbyneglectingthedepthdependenceofbeatfrequencyfluctuationsinhorizontalvelocity(equation(A14)).TheseassumptionsarecorrecttoleadingorderforBoussinesqsurfbeatandexactintheshallowwaterlimit.Neglectedeffectsincludereductionsinwaterpres-sureassociatedwiththeverticalfluxofverticalmomentum(which,asweshowinAppendixA,probablyleadstoerrorsoflessthan5%),andnonpotentialflowinthebottomboundarylayer(whichisnegligibleifboundarylayerthicknessiss

3 mallcomparedtothewaterdepth).Equation(2)
mallcomparedtothewaterdepth).Equation(2)isverysimilartotheenergyequationof¨ffer[1993],butdoesnotrelyontheassumptionthatthesurfbeatperiodismuchlongerthantheincidentwavewave18]Letbethecross-shoreandlongshorecoor-dinatesrespectively(positiveonshore).Letbethecomponentsofthevelocity.Applyingtheexpect-ationoperator[.]toequation(2),assumingstationarityrityt=0)andlongshorehomogeneity((y=0),andgatheringnonlineartermstogetherintoasingleterm)gives  gMxuj 19]Fromequation(12)isthedensityofthecospectrumbetweenisthefrequencyresolutiondefinedbyequation(A2)).A2)).20]EldeberkyandBattjesBattjesElgaretal.al.ChenandGuza[1997],andHerbersetal.[2000]usedequation(11)tostudywaveshoaling,buttheyassumedshorewardpropagation(althoughHerbersetal.[2000]allowedforsmalldeparturesfromthisassumption),sotoleadingorderwhere)=groupvelocity.Theassumptionofshorewardpropagationisprobablyagoodapproximationfortheincidentwavefrequenciestowhichequation(16)hasprimarilybeenapplied,butitsapplicationtosurfbeatisnotjustified.Reflectionofsurfbeatfromtheshore,broaddirectionalspread,andrefractivetrappingofedgewavesensurethatequation(16)doesnotapplytosurfbeat.Incontrast,equation(14)allowsforreflectionanddirectionalspreadandisfreefromtheseproblems.roblems.21]Integratingequation(11)fromapplyingequation(14)gives)isthedissipationperunitfrequency(similarlyforfor22]Givenmeasurementsofwaterpressure,waterveloc-ity,andmeanwaterdepthattwopointsthecross-shore,equation(17)canbesolvedfortheexcessofdissipationoverforcing(negativeifforcingexceedsdissipation)between.Alternatively,wecanchoosetobetheshoreline,acrosswhichthereisnofluxofsurfbeatenergy.ThentheshorewardenergyfluxatHENDERSONANDBOWEN:SURFBEATFORCINGANDDISSIPATION theexcessofdissipationoverforcingonshoreof.Unfortu-nately,itisdifficulttoseparatetheforcinganddissipationtermsofequation(17),butthedifferencebetweenforcinganddissipationstillprovidesusefulinformation.Equation(17)appliesateverysurfbeatfrequency,butforsimplicitywewillintegrateequation(17)overallsurfbeatfrequenciestoobtainatotalsurfbeatenergybalance.3.FieldSiteandInstrumentationInstrumentation23]WewillanalyzedatacollectedonanoceanbeachnearDuck,NorthCarolinabytheDalhousienearshoreresearchgroupduringtheSandyduckbeachexperimentof1997.Figure1showsthecross-shorearrayoffourinstru-mentedframesfromwhichthedatawerecollected,togetherwithmeasuredbeachprofiles.Waterpressuresandveloc-itiesweremeasuredat2Hzateveryframe.DuringtheSandyduckexperiment,theU.S.ArmyCorpsofEngineersregularlymeasuredseabedelevationprofilesusingtheCoastalResearchAmphibiousBuggy[LeeandBirkemeier1993].Seabedelevationsbeneaththeinstrumentedframeswerealsomeasuredcontinuouslyusingsonaraltimeters.4.ResultsResults24]Cross-periodogramsbetweenwaterpressureandvelocitywerecalculatedfromquadraticallydetrendedhalf-hourtimeseries.Spectraofthewaveenergyfluxwereestimatedbyaveragingthesecross-periodogramsandapplyingequations(14)and(A13).Figure2showsaspectrumoftheshorewardenergyfluxmeasuredovertwohoursduringastormonday293.TheshadedregionofFigure2isthesurfbeatband(0.005–0.05Hz).Foreveryhalfhouroftheexperimentweestimatedthetotalsurfbeatenergyfluxbyintegratingrawcross-periodogramsbetweenpressureandvelocityovertheentiresurfbeatbandandmultiplyingbythewaterdepth.Otherstatistics,suchassignificantwaveheightandthesurfbeatseasurfaceelevationvariance,werealsocalculatedeveryhalfhour.Weestimatedseasurfaceelevationsfromwaterpressuremeas-urementsusinglinearwavetheory.Thesignificantwaveheightwascalculatedas4 ,where istheseasurfaceelevationvarianceduetowaveswithf

4 requenciesgreaterthan0.05Hz.Hz.25]Equati
requenciesgreaterthan0.05Hz.Hz.25]Equation(11)neglectsthelongshoregradientofthelongshoreenergyflux.Theratioofthelongshorefluxgradienttothecross-shorefluxgradientis qyqx  qyqx =longshorecomponentofsurfbeatenergyflux,=cross-shorelengthscaleoverwhich=longshorelengthscaleoverwhichSincethebeachatDuckislongandstraight,weassume1.Whenincidentwaveswerelarge,theobservedmeansquarelongshoresurfbeatenergyfluxwasusuallyanorderofmagnitudesmallerthanthemeansquarecross-shoresurfbeatenergyflux.Whenincidentwavesweresmall,thelongshoreandcross-shoreenergyfluxeswereofthesamemagnitude.Therefore,whenincidentwaveswerelarge1,sothelongshoreuniformapproximationmadeinthederivationofequation(11)wasreasonable.Wecannotbesurehowaccuratethelongshoreuniformapproximationwaswhenincidentwavesweresmall.small.26]Figure3showsthetimeseriesofsignificantwaveheight,surfbeatseasurfaceelevationvariance,andshore-wardsurfbeatenergyflux,measuredatframe4.Similarresultswereobtainedfromtheotherthreeframes.Surfbeatenergyincreasedwithincreasingsignificantwaveheight,consistentwiththefindingsofTucker[1950],HolmanlmanGuzaandThornton[1985],andothers.Thesurfbeatenergyfluxwasdirectedonshorein86%ofcases,suggestingthatthenearshorezone(mdepth)wasusuallyaregionofnetsurfbeatdissipationduringtheSandyduckexperiment(equation(17)).Shorewardenergyfluxesweremostpronouncedwhenincidentwaveswerelarge:whenthesignificantwaveheightwasgreaterthan1mthesurfbeatenergyfluxwasalwaysdirectedonshore.Theobservedshorewardenergyfluxdoesnotimplythatsurfbeatforcingwasweakneartheshore,butitdoesimplythatdissipationwasusuallystrongerthanforcing.DuringtheSandyduckexperiment,incidentwave(0.05–0.33Hz)energyfluxesrangedfrom0.08mto12mwerealwaysdirectedonshore. Figure1.Measuredbeachprofilesandlocationofinstrumentedframes1–4. Figure2.Spectrumoftheenergyfluxdensityatframe1foratwohourperiodfollowing10:30pmonday293,estimatedusingequation(14).Theshadedregionisthesurfbeatband.Thecospectralestimateshave10dof.4HENDERSONANDBOWEN:SURFBEATFORCINGANDDISSIPATION 27]Figure4showsthesignificantwaveheightasafunctionofwaterdepthatframes1and4.Waveheightswerelimitedbybreaking,asdescribedbytherelationwherethebreakerratioequals0.66atframe1and0.43atframe4.SallengerandHolman[1985]andRaubenheimeretal.[1996]discusstheapplicationofequation(19)tothesurfzoneatDuck.Inordertodetermineapproximatelywhetherframe1wasinsideoroutsidethesaturatedsurfzone,wedefinetheshoaledsignificantwaveheight(4)and(4)arethesignificantwaveheightandwaterdepthatframe4,andisthelocalwaterdepth.thewaveheightthatwouldbeobservedgivenlinear,nondissipativeshoalingofshorenormalshallowwaterwaves.Roughly,frame1isinside(outside)thesaturatedsurfzonewhenisgreaterthan(lessthan)atframe1.Atframe4,4,28]TheshorewardsurfbeatenergyfluxshowninFigure3impliessomeshorewardpropagationofsurfbeat.Wedefinetheonshoreprogressivenessastheratiobetweentheactualsurfbeatenergyflux,calculatedfromequation(14),andthesurfbeatenergyfluxexpectedforapurelyshorenormal,shorewardpropagatingwave,calculatedfromequation(16).Ifallsurfbeatpropagatesdirectlyshoreward=1,ifallsurfbeatpropagatesdirectlyseawardandifallsurfbeatisstandinginthecross-shore=0.Directionalspreadingofwaves(awayfromshorenormal)reducesthemagnitudeof.Weestimatedthetotalsurfbeatenergydensityastwicethepotentialenergydensity,or 2sb istheseasurfaceelevationvarianceduetosurfbeat.Theuseofequation(20)introducedsmallerrorsintoestimates,butallowedustoseparatesurfbeat(gravitywave)energyfromtheshearwaveenergythatoftencontributesalargeproportionofthetotallow-frequencykineticenergy[,1999].Figure5show

5 sthe Figure4.Significantwaveheight,,vers
sthe Figure4.Significantwaveheight,,versuswaterdepth,:(a)frame1and(b)frame4.Dashedlineisis0.66atframe1and0.43atframe4.Eachdatapointisestimatedfromahalf-hourtimeseriessegment. Figure5.Onshoreprogressivenessofsurfbeat,),versusshoaledsignificantwaveheight(equation(20))dividedbywaterdepth,:(a)frame1and(b)frame4.TheverticaldashedlinesindicateEachdatapointisestimatedfromahalf-hourtimeseries Figure3.Timeseriesofhalf-hourlysignificantwave,surfbeatseasurfaceelevationvariance, ,andshorewardsurfbeatenergyflux,,duringSandyduckatframe43.5mdepth).HENDERSONANDBOWEN:SURFBEATFORCINGANDDISSIPATION observeddependenceofonthenondimensionalshoaledwaveheight.Whenthenondimensionalwaveheightwassmall,0andsurfbeatwasapproximatelystandinginthecrossshore.Whenthenondimensionalwaveheightwaslarge,�0andtherewasasignificantshorewardpropagatingcomponentofsurfbeat.beat.29]Wewillnowshowthattheobservednetsurfbeatdissipationcanbepredictedusingastandardbottomstressparameterization.Thedissipationoftheenergyofafre-wavebybottomfrictionisisadimensionlessenergydissipationfactor.Valuesobservedinthefieldforincidentfrequencywavesareusuallyintherange0.01–1[,1984].1984].30]Feddersenetal.[1998]showedthatthedragforce(dividedbythewaterdensity),,retardingthemeanlong-shorecurrent,,atDuckiswherethebottomdragcoefficient,,isroughly0.001outsidethesurfzoneand0.003insidethesurfzone.Applyingthesameparameterizationtosurfbeat Equation(22)differsfromequation(21)onlyinthemagnitudeofthenondimensionalcoefficient:dissipationfactorsforwavesareoneortwoordersofmagnitudelargerthandragcoefficientsforthemeancurrent[,1992].].31]Fromequations(21)and(22)thetotaldissipationofsurfbeatenergybybottomdragscaleswith u212 u2sb isthecontributiontovelocityvariancefromsurfbeatfrequencies.Toseparategravitywavedissipationfromshearwavedissipationwerewriteequation(23)intermsoftheseasurfaceelevationvariance.Forgravitywavesinshallowwater[Lippmannetal.,1999] u2g 2h  212 Fromequations(17)and(24) 212 32]Figure6showsthattheshorewardsurfbeatenergyfluxatframe1scaleswith 212 =0.92),aspredictedbyequation(25)ifthenonlinearenergyexchangetothesurfbeatband,,isneglected.Anorderofmagnitudeestimate isthedistancefromframe1totheshore,istheslopeofthedashedlineinFigure6,andisatypicalwaterdepthshorewardofframe1(takentobehalfthedepthatframe1).Applyingequation(26)gives0.08,whichisanormalvalueforawavedissipationfactorandis27–80timeslargerthanthedragcoefficientsFeddersenetal.[1998]foundwereappropriateforthemeanlongshorecurrent.current.33]Weneglectedinthederivationofequation(26).�0(i.e.,ifnonlinearinteractionsforce,ratherthandissipate,surfbeat)thenactualratesofdissipationandtruevalueswerehigherthanweestimated.Alternatively,nonlineardamping(,[e.g.,¨ffer,1993;VanDongerenetal.,1996])couldaccountforsomeoftheobservedenergyloss,inwhichcasetruevalueswouldbelowerthanestimated.However,theslopewaslargelydeterminedbythestrongenergyfluxesthatweremeasuredduringstorms,whenframe1waswellinsidethesaturatedsurfzone(Figure4)andnonlinearforcingwasprobablyweak.Wealsoassumedthatwavevelocityvarianceswereconstantonshoreofframe1.Thisassumptionmightintro-duceasignificanterrorintoourestimate.Becauseofthesecrudeassumptions,ourestimatecanonlyberegardedasanorderofmagnitudeapproximation.Furthermore,wecannotbesurethatbottomstresswasthemechanismresponsiblefordissipatingsurfbeat,inspiteofthegoodagreementbetweenobserveddissipationandthestandardbottomstressparameterization.Nevertheless,itisusefultonotethatnetsurfbeatdissipationinthesurfzonecanbeparameterizedinasimplemanner..3

6 4]Insection1wediscussedasameasureofthest
4]Insection1wediscussedasameasureofthestrengthofsurfbeatdissipation.Sincewecanmeasureonlyspatiallyaveragednetforcingordissipation,wecannotvaluesforindividualsurfbeatmodes.Instead,wedefinethenetforcingstrength NetsurfbeatenergygeneratedinonebeatperiodTotalsurfbeatenergy  Figure6.Onshoresurfbeatenergyflux,,versus 212 atframe1.Dashedlineis 212 ,withchosentogiveleastsquaresfit.Eachdatapointisestimatedfromahalf-hourtimeseriessegment.6HENDERSONANDBOWEN:SURFBEATFORCINGANDDISSIPATION ,andareintegratedoverthesurfbeatband.Fromequation(17) where0.025hasbeenchosenasatypicalsurfbeatfrequency.Sincethis‘‘typical’’beatfrequencywaschosensomewhatarbitrarily,onlythesignandorderofmagnitudearesignificant.Wherepossibleweestimatedtheintegralinequation(28)usingthetrapezoidalrule.Toestimatetheintegralbetweenbetweenframe1andtheshore,wemultipliedtheenergydensityatframe1bythedistancetotheshore.Theenergydensitywasestimatedusingequation(20).20).35]Sispositive(negative)iftotalforcingexceedstotaldissipation(dissipationexceedsforcing)between.Ifisorderone,thenthesurfbeatenergyforced(ordissipated)betweeninasinglebeatperiodisofthesameorderasthetotalamountofsurfbeatenergystoredbetween.If1,thennetforcing(ordissipation)isweak,butthisdoesnotimplythatactualforcinganddissipationareweak.Ifstrongforcingandstrongdissipationhappentocancel,then1.Therefore,largevaluesindicatestrongforcingordissipation,whereassmallvaluesareambiguous.ambiguous.36]Figure7ashowstheestimatedstrengthofnetsurfbeatforcing,,fortheregionbetweenframes1and4.Figure7bshowsfortheregionbetweenframe1andtheshore.Theverticaldashedlinesindicatethenondimensionalwaveheightatwhichframe1isapproximatelyontheedgeofthesaturatedsurfzone.Whenincidentwavesweresmall,valueswerescatteredaroundzero.Whenincidentwaveswerelarge,wasorderone,soforcinganddissipationwerestrong.Betweenframes1and4(betweenabout2and3.5mdepth),netforcingincreasedwithincreasingwaveheightuntilitreachedamaximumvaluewhenframe1wasslightlyoutsidethesaturatedsurfzone.Whenframe1wasinsidethesaturatedsurfzone,dissipationsometimesexceededforcingbetweenframes1and4.Onshoreofframe1,dissipationusuallyexceededforcingandnetdissipationgrewstrongerasincidentthewaveheightincreased.Wesuggestthat,whenincidentwaveswerelarge,dissipationwasstronginsidethesurfzoneandforcingwasstrongjustoutsidethesurfzone.zone.37]Fromequations(1)and(28)itisclearthatrelatedto2,butthereareimportantdifferencesbetweenmeasuresthedissipationofasinglewave(modeofmotion),whereasmeasuresthenetforcingordissipa-tionofallmodesinsomelimitedregion.Consequently,wecannotusethemeasuredvaluestoestimatevaluesforindividualsurfbeatmodes.Nevertheless,thenegative,orderonevaluesobservedduringstormsdoindicatethatthesurfbeatenergylostwithinthesurfzoneinasinglebeatperiodwasofthesameorderasthetotalsurfbeatenergystoredwithinthesurfzone.5.DiscussionandConclusionsConclusions38]Asimpleenergybalanceequationrelatestheenergyfluxcarriedbyprogressivesurfbeattonetsurfbeatforcingordissipation.Weusedwaterpressures,velocities,anddepthsmeasuredonabeachnearDuck,NorthCarolina,toestimatecross-shoresurfbeatenergyfluxes,andappliedtheenergybalanceequationtoestimatenetsurfbeatforcingordissipation.DuringtheSandyduckexperiment,thenear-shorezone(mdepth)wasusuallyaregionofnetsurfbeatdissipation.Shorewardpropagatingsurfbeatcarriedenergyintothenearshorezonetobalancethisnetdissipa-tion.Thisshorewardpropagatingcomponentofsurfbeatwaslargeduringstorms,whenthenetshorewardenergyfluxwasabouthalfaslargeastheenergyfluxthatcouldbecarriedifallsurfbeatpropagateddirectlyonshore.onshore.39]Thestrongs

7 horewardenergyfluxesthatweobservedarecon
horewardenergyfluxesthatweobservedareconsistentwiththeincompletereflectionofsurfbeatobservedinthethesurfzonebyNelsonandGonsalvesGonsalvesRaubenheimeretal.al.Saulteretal.l.Hendersonetal.[2001],andSheremetetal.al.[40]Mostexistingsurfbeatmodelsdonotpredictthestrongshorewardpropagationthatweobservedbecausetheydonotsimulatestrongsurfzonedissipation.Unforced,undampedsurfbeatmodels[,1951;,1952;,1970;HolmanandBowen,1979,1982;Howdet,1992;BryanandBowen,1996]predictthatsurfbeathasacross-shorestandingstructure.Nondissipativeandweaklydissipativemodelsthatallowforthepossibilityofedgewaveresonance[Gallagher,1971;BowenandGuza,1978;¨ffer,1994;Lippmannetal.,1997]alsopredictthatsurfbeatiscross-shorestanding.Thebreakpoint-forcingmodel Figure7.Estimatednetforcingstrength,,definedbyequation(28)versusshoaledsignificantwaveheight(equation(20))dividedbywaterdepth,,atframe1:(a)netforcingstrengthbetweenframes1and4and(b)netforcingstrengthonshoreofframe1.Theverticaldashedlinesindicate(1)=.Eachdatapointisestimatedfromahalf-hourtimeseriessegment.HENDERSONANDBOWEN:SURFBEATFORCINGANDDISSIPATION Symondsetal.[1982]predictscross-shorestandingwavesonshoreofthebreakpointandseawardpropagatingwavesoffshoreofthebreakpoint.Themodelsof¨ffer[1993]andVanDongerenetal.[1996]predictthatnon-linearforcingduetointermittentwavebreakingopposesincidentboundwavemotions,leadingtonetnonlineardampingofsurfbeatatthebreakpointandshorewardpropagationjustoutsidethebreakpoint.However,theselastthreemodelsexcludethepossibilityofedgewaveresonancethroughthearbitraryassumptionthatforcingisentirelyshorenormal.normal.41]DuringtheSandyduckexperiment,dissipationwasstrongestwellinsidethesaturatedsurfzone,exactlywhereincidentwaveswerelimitedbybreakingandsurfbeatmadeanimportantcontributiontothetotalflowfield.Wesuggestthatmodelsofsurfbeatdynamicsshouldincorporaterapidsurfzonedissipation.ion.42]Astandardbottomdissipationparameterizationpre-dictedtheobservednetsurfbeatdissipationwell.Thewavedissipationfactorforsurfbeatwas),withintherangeofdissipationfactorsusuallyobservedforhigher-frequencyincidentwaves.waves.43]Theregionbetween2mand3.5mdepthwasaregionofnetsurfbeatforcing,exceptwhenincidentwaveswereverylargeandthesaturatedsurfzoneextendedbeyond2mdepth.Wesuggestthatsurfbeatforcingusuallyexceededdissipationoutsidethesurfzone,whereasdissi-pationexceededforcinginsidethesurfzone.Thisisconsistentwiththecross-shorestructureofsurfbeatforcingpredictedbyLonguet-HigginsandStewart[1962]andSymondsetal.[1982]andwiththesuggestionofandBowen[1976a]andothersthatsurfbeatdissipationmightbemostrapidinsidethesurfzone.zone.44]Surfbeatforcinganddissipationwereverystrongduringstorms.Whenincidentwaveswerelarge,thesurfbeatenergydissipatedwithinthesurfzoneduringasinglebeatperiodwasofthesameorderasthetotalsurfbeatenergystoredwithinthesurfzone.Thesurfbeatenergyforcedinasinglebeatperiodneartheedgeofthesurfzonewasalsoofthesameorderasthetotalsurfbeatenergystoredneartheedgeofthesurfzone.AppendixA:DerivationofNonlinearFrequencyDomainEnergyEquationA1.FourierRepresentationofaTime-VaryingWaveave45]Atimeseries)canberepresentedbythepro-gressiveFourierseriesisthefrequencyresolution,and isthecomplexamplitudeofafrequency-sinusoidfittedtoalengthsegmentofcenteredontime.Notethatisafunctionoftimetime46]WenowderiveanidentityforuseinsectionA3.Fromequation(A1), Xt tjXj  But,bydefinition, Xtj so,fromequations(A5)and(A6) XtiX Xt XXt Xt Combiningequations(A7)and(A8),andnotingthatisthecomplexconjugateofforanyreal,gives X2t2 A2.Massan

8 dMomentumConservationConservation47]Anex
dMomentumConservationConservation47]Anexact,depth-integratedmomentumequationforwavesinwaterofconstantdensityandarbitrarydepthissPhillips,1977,equation(3.6.7)] thuj xkhujuk xjh p p| hxj00h ujt0h p|xj Tjkxk aredefinedbyequations(7)and(8),waterpressure,and=waterdensity..48]Equation(A11)canberewrittenusingtheFouriercomponentsdefinedbyequations(7)and(8): ujt 1 pxj Tjkxk 8HENDERSONANDBOWEN:SURFBEATFORCINGANDDISSIPATION WenowapproximatethemotionatfrequencyisindependentofEquations(A13)and(A14)arecorrecttoleadingorderiffrequencywavessatisfytheBoussinesqassumptions,andareexactintheshallowwaterlimit.limit.49]Inreality,dependsinpartonfluxesofverticalmomentum.Theeffectsofthesemomentumfluxesareareusuallyincorporatedintotheradiationstress,buthavebeenneglectedinequation(A13).Longuet-HigginsandStewart[1964]dividedthenormalradiationstressintothree,anddLonguet-Higginsand,1964,equation(9)].Wehaveincludedbut,throughequation(A13),haveneglectedthepressuredeficitterm(2).Fromlineartheory,theratiobetweentheneglectedandretainedradiationstresstermsforlongwavegroupsis S2xS1x S3x  sinh2sinh2isthewavenumber.FigureA1showshowwithwaveperiodandwaterdepth.DuringSandyduck,peakperiodswereusuallyabout7–13s,anddepthsattheinstrumentedframesrangedfrom1mto5m.FromFigureA1,assumption(A13)leadstoerrorsofabout2–5%inradiationstressestimates.Usually,sotherelativeerrorinestimatesduetotheneglectedpressuredeficittermwasprobablylessthan5%.5%.50]Equation(A14)neglectsvariationsofinthesurfaceandbottomboundarylayers.Weassumethatthethicknessoftheseboundarylayersismuchlessthanthewaterdepth,sothattheproportionofthedepth-integratedmomen-tumstoredintheboundarylayersisnegligible.negligible.51]Fromequations(6),(A12),(A13),and(A14), ujt xj Similarly,theexactdepth-integratedmassconservation t togetherwithequation(A14),leadsto t A3.EnergyEquationEquation52]Addingequation(A16)tothecomplexconjugateofequation(A16)andapplyingequation(A9)gives hu2t 2uj xjuj Tjkxk0ghuj xj ujxjg sofromequations(A18),(A20),and(A9), xj2 ujxj Substitutingequation(A21)intoequation(A19)gives t ,andaredefinedbyequations(3)–(5).Finally,addingtoequation(A22)atermtorepresenttheeffectsofdissipationgivesequation(2).2).53]Acknowledgments.ThisresearchwassupportedbytheIzaakWaltonKillamFoundation,theAndrewMellonFoundation,andtheNaturalSciencesandEngineeringResearchCouncilofCanada.Through-outtheSandyduckExperiment,excellentlogisticalsupportwasprovidedbythestaffoftheFieldResearchFacilityoftheU.S.ArmyEngineerWaterwaysExperimentStation’sCoastalEngineeringResearchCenter.ReferencesBatchelor,G.,TheTheoryofHomogeneousTurbulence,CambridgeUniv.Press,NewYork,1960.Bowen,A.,Wave-waveinteractionsneartheshore,Lect.NotesPhys.102–113,1977.Bowen,A.,andR.Guza,Edgewavesandsurfbeat,J.Geophys.Res.1913–1920,1978.Bryan,K.,andA.Bowen,EdgewavetrappingandamplificationonbarredJ.Geophys.Res.,6543–6552,1996. FigureA1.Effectofwaterdepthandwaveperiodonthebetweenneglectedandretainedradiationstresscomponents.Intervalbetweencontoursis0.02.Lowestcontouris=0.02.HENDERSONANDBOWEN:SURFBEATFORCINGANDDISSIPATION Bryan,K.,P.Howd,andA.Bowen,Fieldobservationsofbar-trappededgeJ.Geophys.Res.,1285–1305,1998.Chen,Y.,andR.Guza,Modelingspectraofbreakingsurfacewavesinshallowwater,J.Geophys.Res.,25,035–25,046,1997.Chen,Y.,andR.Guza,Resonantscatteringofedgewavesonlongshoreperiodictopography:Finitebeachslope,J.FluidMech.,255–269,Eckart,C.,Surfacewavesinwaterofvariabledepth,Wa

9 veRep.100ScrippsInst.ofOceanogr.,LaJolla
veRep.100ScrippsInst.ofOceanogr.,LaJolla,Calif.,1951.Eldeberky,Y.,andJ.Battjes,Spectralmodelingofwavebreaking:Applica-tionsofBoussinesqequations,J.Geophys.Res.,1253–1264,1996.Elgar,S.,T.Herbers,M.Okihiro,J.Oltman-Shay,andR.Guza,Observa-tionsofinfragravitywaves,J.Geophys.Res.,15,573–15,577,1992.Elgar,S.,T.Herbers,andR.Guza,Reflectionofoceansurfacegravitywavesfromanaturalbeach,J.Phys.Oceanogr.,1503–1511,1994.Elgar,S.,R.Guza,B.Raubenheimer,T.Herbers,andE.L.Gallagher,Spectralevolutionofshoalingandbreakingwavesonabarredbeach,J.Geophys.Res.,15,797–15,805,1997.Feddersen,F.,R.Guza,S.Elgar,andT.Herbers,Alongshoremomentumbalancesinthenearshore,J.Geophys.Res.,15,667–15,676,1998.Foda,M.,andC.Mei,Nonlinearexcitationoflong-trappedwavesbyagroupofshortswells,J.FluidMech.111,319–345,1981.Gallagher,B.,Generationofsurfbeatbynon-linearwaveinteractions,J.FluidMech.,1–20,1971.Green,E.I.,ThestoryofQ,Am.Sci.,584–594,1955.Guza,R.,andA.Bowen,Resonantinteractionsforwavesbreakingonabeach,paperpresentedat15thInternationalConferenceonCoastalEn-gineering,Am.Soc.ofCiv.Eng.,Honolulu,Hawaii,1976a.Guza,R.,andA.Bowen,Finiteamplitudeedgewaves,J.Mar.Res.269–293,1976b.Guza,R.,andR.Davis,ExcitationofedgewavesbywavesincidentonaJ.Geophys.Res.,1285–1291,1974.Guza,R.,andE.B.Thornton,Swashoscillationsonanaturalbeach,J.Geophys.Res.,483–491,1982.Guza,R.,andE.Thornton,Observationsofsurfbeat,J.Geophys.Res.3161–3172,1985.Guza,R.,E.Thornton,andR.Holman,Swashonsteepandshallowbea-ches,paperpresentedat19thInternationalConferenceonCoastalEngi-neering,Am.Soc.ofCiv.Eng.,Houston,Tex.,1984.Hasselmann,K.,W.Munk,andG.MacDonald,Bispectraofoceanwaves,ProceedingsoftheSymposiumonTimeSeriesAnalysis,editedbyM.Rosenblatt,pp.125–139,JohnWiley,NewYork,1963.Henderson,S.M.,S.Elgar,andA.Bowen,Observationsofsurfbeatpropagationandenergetics,paperpresentedat27thInternationalCon-ferenceonCoastalEngineering,Am.Soc.ofCiv.Eng.,Sydney,Austra-lia,2001.Herbers,T.,S.Elgar,andR.Guza,Infragravity-frequency(0.005–0.05Hz)motionsontheshelf,part1,Forcedwaves,J.Phys.Oceanogr.,917–927,1994.Herbers,T.,S.Elgar,andR.Guza,Generationandpropagationofinfra-gravitywaves,J.Geophys.Res.,24,863–24,872,1995a.Herbers,T.,S.Elgar,R.Guza,andW.O’Reilly,Infragravity-frequency(0.005–0.05Hz)motionsontheshelf,part2,Freewaves,J.Phys.Ocea-nogr.,1063–1079,1995b.Herbers,T.,N.Russnogle,andS.Elgar,Spectralenergybalanceofbreak-ingwaveswithinthesurfzone,J.Phys.Oceanogr.,2723–2737,Holland,K.,B.Raubenheimer,R.Guza,andR.Holman,Runupkinematicsonanaturalbeach,J.Geophys.Res.,4985–4993,1995.Holman,R.,Infragravityenergyinthesurfzone,J.Geophys.Res.6442–6450,1981.Holman,R.,andA.Bowen,Edgewavesoncomplexbeachprofiles,J.Geophys.Res.,6339–6346,1979.Holman,R.,andA.Bowen,Bars,bumpsandholes:Modelsforthegen-erationofcomplexbeachtopography,J.Geophys.Res.,457–468,Holman,R.,andA.Bowen,Longshorestructureofinfragravitywavemo-J.Geophys.Res.,6446–6452,1984.Howd,P.A.,A.Bowen,andR.A.Holman,Edgewavesinthepresenceofstronglongshorecurrents,J.Geophys.Res.,11,357–11,371,1992.Huntley,D.,Longperiodwavesonanaturalbeach,J.Geophys.Res.6441–6449,1976.Huntley,D.A.andC.S.Kim,Issurfbeatforcedorfree?,paperpresentedat19thInternationalConferenceonCoastalEngineering,Am.Soc.ofCiv.Eng.,Houston,Tex.,1984.Huntley,D.,R.Guza,andE.Thornton,Fieldobservationsofsurfbeat,1,Progressiveedgewaves,J.Geophys.Res.,6451–6466,1981.Kenyon,K.,Anoteonconservativeedgewaveinteractions,DeepSeaRes.,197–201,1970.Lee,G.andW.Birkemeier,Beachandnearshoresurveydata:1985–1991,CERCfieldresearchfacility,Tech.Rep.CERC-93-3,U.S.ArmyCorpsofEng.,Vicksburg,Miss.,1993.Li

10 ppmann,T.,R.Holman,andA.Bowen,Generation
ppmann,T.,R.Holman,andA.Bowen,Generationofedgewavesinshallowwater,J.Geophys.Res.,8663–8679,1997.Lippmann,T.,T.Herbers,andE.Thornton,Gravityandshearwavecon-tributionstonearshoreinfragravitywavemotions,J.Phys.Oceanogr.231–239,1999.List,J.,Wavegroupinessasasourceofnearshorelongwaves,paperpre-sentedat20thInternationalConferenceonCoastalEngineering,Am.Soc.ofCiv.Eng.,Taipei,Taiwan,1986.List,J.,Amodelforthegenerationoftwo-dimensionalsurfbeat,J.Geo-phys.Res.,5623–5635,1992.Liu,P.L.,Anoteonlongwavesinducedbyshort-wavegroupsoverashelf,J.FluidMech.,163–170,1989.Longuet-Higgins,M.,andR.Stewart,Radiationstressandmasstransportingravitywaves,withapplicationto‘‘surfbeats’’,J.FluidMech.481–504,1962.Longuet-Higgins,M.,andR.Stewart,Radiationstressesinwaterwaves:Aphysicaldiscussion,withapplications,DeepSeaResearch,529–562,Masselink,G.,Groupboundlongwavesasasourceofinfragravityenergyinthesurfzone,Cont.ShelfRes.,1525–1547,1995.Mathew,J.,andT.Akylas,Ontheradiationdampingoffiniteamplitudeedgewaves,Proc.R.Soc.London,Ser.A,419–431,1990.Mei,C.C.,andC.Benmoussa,Longwavesinducedbyshort-wavegroupsoveranunevenbottom,J.FluidMech.,219–235,1984.Munk,W.,Surfbeats,EosTrans.AGU,849–854,1949.Munk,W.,F.Snodgrass,andF.Gilbert,Longwavesonthecontinentalshelf:Anexperimenttoseparateleakyandtrappedwaves,J.Fluid,529–554,1964.Nelson,R.,andJ.Gonsalves,Surfzonetransformationofwaveheighttowaterdepthratios,CoastalEng.,49–70,1992.Nielsen,P.,CoastalBottomBoundaryLayersandSedimentTransportWorldSci.,RiverEdge,N.J.,1992.Okihiro,M.,R.Guza,andR.Seymour,Boundinfragravitywaves,J.Geo-phys.Res.,11,453–11,469,1992.Oltman-Shay,J.,andR.Guza,InfragravityedgewaveobservationsontwoCaliforniabeaches,J.Phys.Oceanogr.,644–663,1987.Phillips,O.,TheDynamicsoftheUpperOcean,2nded.,CambridgeUniv.Press,NewYork,1977.Raubenheimer,B.,R.Guza,S.Elgar,andN.Kobayashi,Swashonagentlyslopingbeach,J.Geophys.Res.,8751–8760,1995.Raubenheimer,B.,R.Guza,andS.Elgar,Wavetransformationacrosstheinnersurfzone,J.Geophys.Res.,25,589–25,597,1996.Ruessink,B.,Boundandfreeinfragravitywavesinthenearshorezoneunderbreakingandnonbreakingconditions,J.Geophys.Res.10312,795–12,805,1998a.Ruessink,B.,Thetemporalandspatialvariabilityofinfragravityenergyinabarrednearshorezone,Cont.ShelfRes.,585–605,1998b.Sallenger,A.H.,andR.A.Holman,Waveenergysaturationonanaturalbeachofvariableslope,J.Geophys.Res.,11,939–11,944,1985.Saulter,A.N.,T.J.O’Hare,andP.E.Russell,Analysisofinfragravitywave-drivensedimenttransportonmacrotidalbeaches,inCoastalDy-,pp.1033–1042,Am.Soc.ofCiv.Eng.,Reston,Va.,1998.¨ffer,H.,Infragravitywavesinducedbyshort-wavegroups,J.Fluid,551–588,1993.¨ffer,H.,Edgewavesforcedbyshort-wavegroups,J.FluidMech.125–148,1994.Sheremet,A.,R.Guza,S.Elgar,andT.Herbers,Estimatinginfragravitywavepropertiesfrompressure-currentmeterarrayobservations,paperpresentedat27thInternationalConferenceonCoastalEngineering,Am.Soc.ofCiv.Eng.,Sydney,Australia,2001.Sleath,J.,SeaBedMechanics,JohnWiley,NewYork,1984.Symonds,G.,D.Huntley,andA.Bowen,Two-dimensionalsurfbeat:Longwavegenerationbyatime-varyingbreakpoint,J.Geophys.Res.492–498,1982.Tucker,M.,Surfbeats:Seawavesof1to5min.period,Proc.R.Soc.London,Ser.A,565–573,1950.Ursell,F.,Edgewavesonaslopingbeach,Proc.R.Soc.,Ser.A,79–97,1952.VanDongeren,A.,I.Svendsen,andF.Sancho,Generationofinfragravitywaves,paperpresentedat25thInternationalConferenceonCoastalEn-gineering,Am.Soc.ofCiv.Eng.,Orlando,Fla.,1996.S.HendersonandA.Bowen,DepartmentofOceanography,DalhousieUniversity,Halifax,NovaScotia,Canada,B3H4J1.(steveh@phys.ocean. 10HENDERSONANDBOWEN:SURFBEATFORCINGANDDISSIPA

Related Contents


Next Show more