/
SimulatingPhaseSeparationduringSpinCoatingofaFullereneBlend:AJointComp SimulatingPhaseSeparationduringSpinCoatingofaFullereneBlend:AJointComp

SimulatingPhaseSeparationduringSpinCoatingofaFullereneBlend:AJointComp - PDF document

amey
amey . @amey
Follow
343 views
Uploaded On 2021-04-14

SimulatingPhaseSeparationduringSpinCoatingofaFullereneBlend:AJointComp - PPT Presentation

OlgaWodoJacobusJvanFranekerAJJanssen andPeterABobbertMolecularMaterialsandNanosystemsEindhovenUniversityofTechnologyPOBox513NL5600MBEindhovenTheNetherlandsDepartmentofMaterialsDesignandIn ID: 833064

energymater 2018 acsappl 725 2018 energymater 725 acsappl acsappliedenergymaterials inthiswork box513 5600mbeindhoven richdomains bottom top andacceptor eindhovenuniversityoftechnology htz calculated

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "SimulatingPhaseSeparationduringSpinCoati..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

SimulatingPhaseSeparationduringSpinCoati
SimulatingPhaseSeparationduringSpinCoatingofaFullereneBlend:AJointComputationalandExperimentalInvestigationVikasNegi,OlgaWodo,JacobusJ.vanFraneker,A.J.Janssen,andPeterA.BobbertMolecularMaterialsandNanosystems,EindhovenUniversityofTechnologyP.O.Box513,NL-5600MBEindhoven,TheNetherlandsDepartmentofMaterialsDesignandInnovationandDepartmentofMechanicalandAerospaceEngineering,UniversityatBualo,NewYork14260,UnitedStatesInstituteofComplexMolecularSystems,EindhovenUniversityofTechnology,P.O.Box513,NL-5600MBEindhoven,TheNetherlandsCenterforComputationalEnergyResearch,DepartmentofAppliedPhysics,EindhovenUniversityofTechnology,P.O.Box513,NL-5600MBEindhoven,TheNetherlandsSupportingInformationDuringspincoatingofthephotoactivelayerofabulkheterojunctionorganicsolarcell,phaseseparationbetweenthedonor(D)andacceptor(A)componentsistriggeredbysolventevaporation.Themorphologyoftheresultinglayerisoneofthemaindeterminantsofthedeviceeciencyandcriticallydependsonprocessingconditionssuchasthespinningspeed,DAmixingratio,andchoiceofsolvents.Itiscrucialtounderstandhowtheseconditionsinuencethenanostructureofthephotoactivelayer.Opticalexperimentshavealimitedspatialresolutionandcannotprobetheshortlengthscalesofphaseseparation.Inthiswork,wepresentthree-dimensionalsimulationsofevaporation-inducedphasesep-arationinadiketopyrrolopyrrolefullereneDAblend,wherewederivethesimulationparametersfr

ominsitulaserinterferenceandcontactangle
ominsitulaserinterferenceandcontactangleexperiments.Dependingonthedryingrate,phaseseparationinitiatesinerentregionsofthethinninglm.Fromalinearstabilityanalysis,weestimatetheearlystagelengthscaleofphaseseparationandcompareitwithsimulations.Thenormalizeddryingrateisshowntobethekeyparameter.Theexperimentallyfoundpowerlawdependenceofthecharacteristiclengthscaleofphaseseparationonthisparameterisreproducedwithamatchingexponent.organicphotovoltaicdevices,bulkheterojunction,processstructurerelationships,spincoating,phaseseparation,Cookequations1.INTRODUCTIONSolution-processedorganicphotovoltaics(OPV)aimstobeaectivealternativetothetraditionalsilicon-basedtech-nologythatcurrentlydominatesthesolarenergymarket.Otheradvantagesincluderoll-to-rollprocessingonexiblesubstrates,whichisappealingwithregardtoitspotentialforlarge-scaleThepowerconversioneciency(PCE)ofbothandmultijunctionOPVcellshassteadilyimprovedovertheyearsandrecentlyreachedthe13%mark.Inordertocompetewithsilicon-basedphotovoltaics,whichcanhaveaPCEcloseto26%,alotofprogressstillneedstobemade.OneofthekeyreasonsfortheriseinthePCEofsolution-processedOPVhasbeenthedevelopmentoflow-bandgapsemiconductingpolymers.Thesepolymerscontainalter-natingelectron-richandelectron-decientunitsinaso-calledSincetherstpublishedreportindiketopyrrolopyrrole(DPP)hasbecomeapopularcientunitforuseinlow-bandgappolymers.Suchpolymersallowne-tun

ingoftheiropticalandelectronicproper-tie
ingoftheiropticalandelectronicproper-tiesbyselectivelychangingthearomaticsubstituents,-conjugatedsegments,andthealkylsidechains.AnimportantfactorknowntolimitthePCEofDPP-basedsolarcellsisthenanostructureofthephotoactivelayer.iswell-establishedthatcharacteristicsofthephotoactivelayermorphologysuchasthedegreeofphaseseparation,thepresenceofpercolatingpathwaystowardtheelectrodesforelectronsandholes,thedonor(oracceptor)-richdomainsizes,andthedegreeofcrystallizationofthedonorpolymer,etc.,playacrucialroleNovember24,2017February2,2018February2,2018www.acsaem.orgCiteThis:ACSAppl.EnergyMater.2018,1,725©2018AmericanChemicalSocietyACSAppl.EnergyMater.2018,1,725indeterminingthenaldeviceeThemorphologyofthephotoactivelayer,inturn,iscriticallydependentonthedeviceprocessingorpostprocessingconditions.Solutionpro-cessingprovidesanelegantwaytofabricateabulkheterojunction(BHJ)typeofmorphologyforthephotoactivelayer.donor(D)andacceptor(A)componentsaredissolvedinavolatilesolventandspincoatedonarapidlyspinningsubstrate.Asthesolventevaporates,thetwocomponentsphaseseparateintodonor-richandacceptor-richdomains.Thedegreetowhichphaseseparationoccursdependsonavarietyoffactors,suchastherateofevaporation,thesolubilityoftheDandAcompo-nents,theDAmixingratio,andthetypeofsolventsused.Thus,foragivenDAcombination,thenumberofwaysinwhichadevicecanbefabricatedisextremelylarge,resultinginanenorm

ousoptimizationspace.Trial-and-error-bas
ousoptimizationspace.Trial-and-error-basedexper-imentalapproachescostalotoftimeandeort,hinderingtechnologicalprogress.Therefore,itisnecessarythatarationaldesignstrategytofabricateBHJdeviceswithwell-balancedmorphologiesisdeveloped.Toachievethisgoal,werstneedaclearunderstandingofhowphaseseparationleadstothefor-mationofthephotoactivelayernanostructure.VisualizingmorphologyevolutionofbulkheterojunctionsforOPVcellsinrealtimeischallengingbecauseoftherequiredtemporalandspatialresolution.Experimentaltechniquesbasedonlightscatteringareusuallylimitedbytheirspatialresolu-Inadditiontoopticalstudies,insituX-rayscat-teringanddiractionmeasurementshavealsobeenusedtoinvestigatethekineticsofmorphologyformationduringdrying,coveringsmallertolongerlengthscales.However,theX-raysignalisaveragedoveralargeareaandneedsfurtheranalysiswhenconvertingfromreciprocaltorealspace.SomestudieshaveuseddirectimagingtechniquestotracktheonsetofphaseseparationastheblendlmthinsovertimeduringspinInordertoobtainclearimages,thephaseseparatingcomponentsneedtohavesucientcontrast,whichlimitstheapplicabilityofsuchtechniques.Moreover,theearlylengthscalesassociatedwithphaseseparationaretoosmalltobetrackedwithopticalimagingmethods.Computersimulationscanaidexperimentstoovercometheselimitationsandhelpelucidatetheroleofprocessingcon-ditionsindeterminingthephotoactivelayermorphologyand,ultimately,thedeviceecienc

y.Theyfurtherenableustovisu-alizemorphol
y.Theyfurtherenableustovisu-alizemorphologyevolutioninthreedimensions,whichiscur-rentlybeyondexperimentalcapabilities.Theabilitytoperformautomatedhigh-throughputcomputationalanalysisisalsoexpectedtomakeOPVdevicemanufacturingcheaperandmuchmorecient.Duetothehighspatialresolutionrequiredtostudyphaseseparation,continuum-basedsimulationapproachesarethemostpracticaltouse.PhaseeldmethodsbasedonsolvingtheCahnCookequationsarequiteversatileintheirapplicabilityandcaneasilybeusedtorepresentcomplexmor-phologies.SomeprogresshasalreadybeenmadeusingthisHowever,thereportedsimulationshaveeithermadeuseofmodelparametersorhavebeenrestrictedtoa2Ddomain.SuchmorphologiesthereforecannotbedirectlycomparedwithrealisticOPVlms.Wepresentacomputationalframeworkbasedon3Dphaseeldsimulationsthatallowsustoaccesstheexperimentallengthandtimescalesassociatedwithphaseseparation.Thesimulatedmorphologiesarefurthervalidatedbycomparingtheirdominantfeatureswithcorrespondingimagingexperiments.Wefocusourattentiononmodelingphaseseparation,triggeredbysolventevaporationinaternaryblendconsistingofPDPP5T(diketopyrrolopyrrolequinquethiophene)andPC([6,6]-phenyl-C71butyricacidmethylester)dissolvedinchloro-form.Duetosolventremovalduringspincoatingofthephotoactivelayer,theblendenterstheunstableregionoftheternaryphasediagram.Inthisregion,thermaluctuationsinthecompositiongetampliedandresultintheformationofBM-richd

ropletsinaPDPP5T-richphase.Theseisolated
ropletsinaPDPP5T-richphase.TheseisolateddropletsstayuntilthelmdriesandareclearlyvisibleindrylmTEMimages.Insituexperimentshaverevealedthatforaternarysystemwithchloroformasthesolvent,liquidliquid(L-L)phaseseparationinitiatesaroundasolventcontentof80vol%.Polymeraggregationforsuchblendshappenslater,closetoasolventcontentof50vol%.Insuchascenario,thedominantlengthscaleinthedrylmismainlydeterminedbythePCrichdropletsthatformattheonsetofL-Lphaseseparation.Polymeraggregationhasbeenshowntoinuencephasesep-arationinblendswithcosolventssuchasHowever,simulationswithcosolventsareoutsidethescopeofthisworkwherewepresentamodelforaternarysystem.We,therefore,exclusivelyprobetheoriginandevolutionofthedominantlengthscaleduetoformationofPCBM-richdomains.Earlierworkbasedontheternaryphasediagramforasystemofadonor,anacceptor,andasolventareastartingpointforourKouijzeretal.havemadeimportantobservationsregardingthephaseseparationprocessusingtwo-dimensional(2D)phaseeldsimulationsonthePDPP5T:PCBMsystem.However,theirstrategytosimulateaneective2Dtopviewbyremovingsolventuniformlyfromtheentiresimulationdomainerssubstantiallyfromtheactuallmthinningprocess.Itisalsodicult,ifnotimpossible,toimplementsubstrateorairsurfaceinteractionsinthefollowedapproach.Also,verticalcation,ifpresent,wouldnotberevealed.Inthiswork,wepresentresultsobtainedusingarealisticdescriptionofthesolventevaporationprocesswhere

wemakeuseofanite-element-basedapproachto
wemakeuseofanite-element-basedapproachtomodelthegoverningCook(CHC)equationsinthreedimensionsThehomogeneousfreeenergyoftheternarymixtureisdescribedusingtheFloryHugginsformulation,whiletheinterfacialenergyisobtainedusingasquare-gradientapprox-AsshowninFigure1,thekineticinputparametersforoursimulationsareobtainedfrominsitulaserinterferencewhereasthethermodynamicparametersarebasedonsurfaceenergydata.Solventisremovedfromthetopsur-faceataratethatisconsistentwithexperimentalspinningspeeds.Oursimulationsshowthatdependingontherateofevaporation,phaseseparationinitiateseitherinthetoplayersoruniformlyacrossthethicknessofthedryinglm.UsingfastFouriertrans-form(FFT)-basedautocorrelationfunction(ACF)methods,weareabletodeterminetheaveragesizeofPCBMdomainsinoursimulatedmorphologies.Weaccuratelyreproducethescal-inglawbetweenthedominantlengthscaleandthenormalizedevaporation,ordryingrate,reportedpreviouslyfromexperi-Usinglinearstabilityanalysis,weestablishthatuctuationsareresponsibleforsettingtheearlystagelengthscalesofphaseseparationasthesystemcrossesthespinodalboundary.2.DISCUSSIONANDRESULTS2.1.TernaryPhaseFieldModel.Oursimulationsfocusonaternarysystemconsistingofanelectrondonor(thecon-jugatedpolymerPDPP5T),anelectronacceptor(thefullerenederivativePCBM),andasolvent(chloroform).Weassumethatthesystemisincompressible.ThevolumefractionsofeachACSAppliedEnergyMaterialsACSAppl.Ene

rgyMater.2018,1,725ofthecomponentsateve
rgyMater.2018,1,725ofthecomponentsateveryposition)inthesystemaretheorderparameters(ofpolymer),(offullerene),and(ofsolvent),respectively,andsatisfy=1.Hence,weonlyneedtokeeptrackoftwoindependentorderparameters,e.g.,,andput.Wenowhavetospecifyfortheternarysystem.Initsbasicform,consistsofanintegraloverthefreeenergydensityofmixing,,andtheinterfacialfreeenergydensity,=+FfIV[(,)(,)]dpfpf,alsoknownasthehomogeneousfreeenergydensity,iscon-structedusingalattice-basedapproachpioneeredbyFloryandwidelyusedforpolymermixtures:=+++++fVNNN(,,)ln()ln()ln()pfspfpfpspsfsfsisthegasconstant,isthetemperature,theeectivedegreeofpolymerization,withbeingthemolarvolumeofcomponent),andistheFlorybinaryinteractionparameterbetweencomponents.Therstthreetermsineq2describetheentropicandthelastthreetermstheenthalpiccontributionstothefreeenergydensityofmixing.TheFloryHugginsinteractionparametershavebeenestimatedbyanapproachpreviouslyusedbyMoonsetal.Wemakeuseofthevalues(seeTable1)asgiveninliter-areestimatedbasedonthemolarvolumesofthepolymerandfullerenewithrespecttothesolvent.Theinter-facialenergydensityisdescribedusingasquare-gradient=I(,)ipfInthiswork,wesettheinterfacialparametersThereislittleexperimentalinformationaboutinterfacesbetweenPDPP5TandPCBM.Wethereforetakethevalue=10whichiscommonlyusedfororganicsystems.nedtheorderparametersandthefreeenergyofthesystem,wec

annowsetupthegoverningequationsforthetwo
annowsetupthegoverningequationsforthetwoindepen-,whiletheisknownthroughtheincompressibilityassumption.Masstransportisdrivenbygra-dientsinchemicalpotentialsofthepolymerandfullerenecom-ponents.Thechemicalpotentialsforthepolymerandfullerenearedenedas.UsingFickslawfordiandthecontinuityequation,=0for,wegetthefollowingCHCequations:Š+htz(,)Š+htz(,)Intheseequations,)linksthemobilityofacomponenttoits(self-)di,withbeingthefreeenergydensityofanidealsolutionwherethehavebeenputequaltozero.Thesecondterm(advectionterm)attheleft-handsidesineqs3accountsforthechangeinheightTable1.FloryHugginsInteractionParametersandDegreesofPolymerizationCalculatedforthePDPP5T:PCSystem87511.00.10.9WenotethatKouijzeretal.tobearound0.4butreportresultsusing=0.1,inwhichcasetheentropiccontributionisnotconsidered(seeeq7inref).Forafaircomparison,wealsouse=0.1inthiswork.Wetested=0.4andfoundthatthisdoesnotaecttheconclusionsfromoursimulations.Figure1.Summaryofexperimentalandcomputationaltechniquesusedinthiswork.(a)Schematicillustrationofaninsitulaserinterferencesetupusedtodeterminetherateofchangeoflmheightasthelmthinsovertime.ThisratedeterminestheBiotnumber,whichisacrucialinputparameterforourphaseeldmodel.(b)ContactanglemeasurementsprovidingsurfaceenergydatausedtoestimatetheFloryHugginsinteractionparameters.Thisimage(usedasanexamplehere)hasbeenreproducedwithpermissionfromref.Copyright2018

TheRoyalSocietyofChemistry.(c)Simulation
TheRoyalSocietyofChemistry.(c)Simulationsnapshotshowingsolventremovalfromthetopofthelmasimplementedinthephaseeldmodel,resultinginareductionoftheheightofthelm.Evaporation-inducedphaseseparationleadstoformationofPCBM-richdropletssuspendedinthePDPP5Tmatrix.ThecolorscaledepictsthePCBMvolumefraction,withdeepredrepresentingthehighestconcentration.Theothercomponentsarerenderedtransparentforclarity.ACSAppliedEnergyMaterialsACSAppl.EnergyMater.2018,1,725(thickness)ofthelmassolventevaporatesfromthetopsurface.Thefraction)equalszeroatthebottomsurface=0)andoneatthetopsurface()),with)beingtheheightofthelmattime.Therateofchangeofheightis.Thelasttermsontheright-handsidesofeqs3aretheLangevinforceterms,whicharerelatedtothemobilitiesofthecomponentsbythedissipationtheorem.WefollowtheimplementationoftherandomLangevinforcesbyShenetal.inthecaseofspaceandtimediscretization.Theserandomforcesareknowntoplayanimportantroleintheearlystagesofspinodaldecomposition.2.2.ModelingSolventEvaporationUsinginSituLaserInterferenceData.Intheexperiments,aslightlydefocusedlaserbeamisincidentonaspinningsubstrateduringspincoating.Thereectedsignaliscollectedbyaphotodiodepositionedataspecularangle(seeFigure1a).Theoscillatingspecularsignalisduetotheinterferencebetweenthereectionsfromthetopandbottomsurfaceofthelm.Asthelmheightdecreasesduetosolventevaporation,itsthicknesssatisesconditionsforcon-structiv

eanddestructiveinterferencerepeatedly.Th
eanddestructiveinterferencerepeatedly.Thenalthick-ness()ofthedrylayerismeasuredindependentlyusingalometer.Thethicknessofthelmcanthenbeback-calculated,thusprovidingtherateofdecreaseofdasshowninFigure2Weassumethatsolventistheonlycomponentlostfromthelm.Inourmodel,itisremovedfromthetopsurfaceofthelmatauniformrateasshowninFigure1c.Thisleadstoadecreaseofthelmheightovertime.Insitulaserinterferenceexperimentsmeasureaninitialrapiddecreaseinlmheightthatisattributedtoradiallyoutwardowonthespinningsub-lmthinningoccursduetoevaporationwithalinearrateofchangeofheight.Ourassumptionofacon-stantsolventevaporationrateisthereforevalid.Assolventisremovedfromthetoplayer,thelayerbecomesenrichedinpolymerandfullerenecomponents.Solventfromthebulkofthelmwillthereforemovetothetoplayertoreplenishthesolventlostduetoevaporation.Theeectivenessofthisprocessdependsontherateofdiusionofthesolventtowardthetoplayercomparedtotherateofsolventremoval.Toquantifythiscom-petition,weintroducethemassBiotnumber,nedasd/dwheredistherateofchangeoflmheight,usivityofthesolvent,andacharacteristiclength,whichwetaketobetheinitialheightofthe=0).AsshowninFigure2a,weestimatedbydeterminingtheslopeoftheexperimentaldryingcurveinthelinearregime.Westartoursimulationswhenthesolventcontentis90vol%whichliesoutsidethespinodalregionoftheternaryphasediagramasshownFigure3.Thedryingcurvesindicatethatthelmthicknessiscloseto10

00nmatthispoint.Using=1000nmandforchloro
00nmatthispoint.Using=1000nmandforchloroform,wecalculatetheBiotnumbersfordierentdryingspeeds;seeTable2.TherelativeusivitiesofPDPP5TandPCBMaresetto0.001and=0.005respectively.Furtherdetailscanbefoundinsection1oftheSupportingInformation(SI)ThegoverningCHCequationsaresolvedusingaapproach.Technicaldetailsregardingthenumericalmethodscanbefoundinsection2ofthe.Wehaveperformed3Dand,forcomparison,also2Dsimulations;seesection3ofthe.Asmentionedabove,thestartingsolventfractionis=0.90,xesthesumofpolymerandfullerenefractionsduetotheincompressibilityassumption.Experimentsindicatethatafullereneweightratioof1:2(w/w)leadstodevicesFigure2.(a)(Top)DryingcurveofaPDPP5T:PClmforaspinningspeedof6000rpm.Theinitialdecreaseinheightisduetoradialowoftheuidonthespinningsubstrate.Thereafter,lmthinningoccursprimarilyduetoevaporation.Therateofchangeofheightdobtainedfromalineart.Thestartingheight=0)inoursimulationboxis1000nm.(Bottom)Laserinterferencesignalsmeasuredasthethinsovertime.Knowingthelmthickness,theheightofthelmatanyinstantisback-calculated,resultinginthedryingcurveforagivenevaporationrate.(b)Transmissionelectronmicroscopy(TEM)imagesofdrylmsobtainedusingaspinningspeedof6000rpm(top)and500rpm(bottom).PCBMregionsappeardarkerandformdroplet-likestructuresembeddedinthePDPP5Tmatrix.(c)Chemicalstructureofthepolymerandfullerenederivativeused.ACSAppliedEnergyMaterialsACSAppl.EnergyMater.20

Related Contents


Next Show more