/
Fundamentals of Radio Astronomy Fundamentals of Radio Astronomy

Fundamentals of Radio Astronomy - PowerPoint Presentation

beatrice
beatrice . @beatrice
Follow
27 views
Uploaded On 2024-02-03

Fundamentals of Radio Astronomy - PPT Presentation

CASS Radio Astronomy School R D Ekers 25 Sep 2017 25 Sep 2017 R D Ekers 2 WHY National Facilities Easy for nonexperts to use dont know what you are doing Cross fertilization Doing the best science ID: 1044561

2008r sep fourier 2017r sep 2008r 2017r fourier radio telescope beam transform david imaging swinburne lectures anita wilner optical

Share:

Link:

Embed:

Download Presentation from below link

Download Presentation The PPT/PDF document "Fundamentals of Radio Astronomy" is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

1. Fundamentals of Radio AstronomyCASS Radio Astronomy SchoolR. D. Ekers25 Sep 2017

2. 25 Sep 2017R D Ekers2WHY?National FacilitiesEasy for non-experts to usedon’t know what you are doingCross fertilizationDoing the best scienceValue of radio astronomy

3. 27 Sep 2015R D Ekers3Indirect Imaging ApplicationsInterferometryradio, optical, IR, space...Fourier synthesisEarth rotation, SAR, X-ray crystallographyAxial tomography (CAT)NMR, Ultrasound, PET, X-ray tomographySeismologyFourier filtering, pattern recognitionAdaptive optics, speckleAntikythera

4. 29 Sep 2008R D Ekers4Doing the best scienceThe telescope as an analytic toolhow to use itintegrity of resultsMaking discoveriesMost discoveries are driven by instrumental developments recognising the unexpected phenomenondiscriminate against errorsInstrumental or Astronomical specialization?

5. 29 Sep 2008R D Ekers5Why Radio Astronomy?Provides unique information about the Universenon-thermal processes: quasars, pulsars, ...highest angular resolution: VLBIlow opacity: Galactic nuclei

6. Synchrotron Radiation25 Sep 2017R D Ekers6- David Wilner, ANITA lectures, Swinburne, 2015

7. Bremsstrahlung (braking radiation)25 Sep 2017R D Ekers7- David Wilner, ANITA lectures, Swinburne, 2015Radio Image ofIonised Hydrogen in Cyg XCGPS (Penticton)

8. Dust Emission25 Sep 2017R D Ekers8- David Wilner, ANITA lectures, Swinburne, 2015

9. Spectral line25 Sep 2017R D Ekers9- David Wilner, ANITA lectures, Swinburne, 2015

10. 29 Sep 2008R D Ekers10HOW ?Don’t Panic!Many entrance levels

11. 29 Sep 2008R D Ekers11Basic conceptsImportance of analogies for physical insightDifferent ways to look at a synthesis telescopeEngineers modelTelescope beam patterns…Physicist electromagnetic wave modelSampling the spatial coherence functionBarry Clark Synthesis Imaging chapter1Born & Wolf Physical OpticsQuantum modelRadhakrishnan Synthesis Imaging last chapter

12. References29 Sep 2008R D Ekers12 ─ David Wilner, ANITA lectures, Swinburne, 20153rd2017,

13. 25 Sep 2017R D Ekers13Detecting Signals from Radio Telescopes

14. 25 Sep 2017R D Ekers14Planck’s LawRayleigh-Jeans approximation

15. 25 Sep 2017R D Ekers15Noise in Radio and OpticalRadhakrishnan ”noise” ASPC 180 671, 1999

16. 29 Sep 2008R D Ekers16Resolving PowerAngular resolution = wavelength/apertureLightRadioWavelength0.00005cm10cmAperture10cm100mResolution0.00005/10 rad = 1” arc10/1000 rad = 200” arc

17. 29 Sep 2008R D Ekers17Imaging at Radio WavelengthsBad newsRadio waves are bigNeed large aperture or an interferometerGood newsRadio frequencies are lowInterferometers are easy to build

18. 29 Sep 2008R D Ekers18Greenbank 300' Radio Telescope

19. 29 Sep 2008R D Ekers19Greenbank 300’ Radio Telescope

20. 23 Sep 2012R D Ekers20Analogy with single dishBig mirror decomposition

21. 21

22. 22

23. 23(  Vi )2Free spaceGuided

24. 24( Vi )2Free spaceGuided

25. 25( Vi )2Phased arrayFree spaceGuidedDelay

26. 26( Vi )2Free spaceGuidedPhased arrayDelay

27. 27( Vi )2 =  (Vi )2 +  (Vi  Vj )Free spaceGuidedPhased arrayDelay

28. 28( Vi )2 =  (Vi )2 +  (Vi  Vj )Free spaceGuidedPhased arrayDelayCorrelation arrayRyle & Vonberg (1946) phase switch

29. 29

30. 30IPhasedArrayx2x2x2x2x2x2Split signalno S/N losstPhased array ( Vi )2I() ( Vi )2

31. 31IPhasedArrayx2x2x2x2x2x2Split signalno S/N losstPhased array ( Vi )2I() ( Vi )2Tied arrayBeam former

32. 32<Vi  Vj>t=  t/correlatorFourier TransformI(r)van Cittert-Zernike theoremSynthesis Imaging

33. Fourier Transform33

34. 23 Sep 2012R D Ekers34Analogy with single dishBig mirror decompositionReverse the process to understand imaging with a mirrorEg understanding non-redundant masksAdaptive opticsSingle dishes and correlation interferometersDarrel Emerson, NRAOhttp://www.gb.nrao.edu/sd03/talks/whysd_r1.pdf

35. 29 Sep 2008R D Ekers35Filling the apertureAperture synthesismeasure correlations with multiple dishesmoving dishes sequentiallyearth rotation synthesisstore all correlations for later usePartially unfilled aperturesome spacings missingRedundant spacingssome interferometer spacings occur twiceNon-redundant aperture

36. 1 2 3 4 5 61unit 5x (source same atmosphere different)2units 4x3units 3x4units 2x5units 1x 15n(n-1)/2 = Redundancy

37. 1 2 3 4 5 6 7 81unit 1x2units 1x3units 1x4units 1x5units 0x6units 1x7units 1xetcNon Redundant

38. 29 Sep 2008R D Ekers38Basic Interferometer

39. 27 Sep 2015R D Ekers39Storing visibilitiesStorage A powerful tool to manipulate the coherence function and re-image. Not possible in most other domainsBut will this be part of our future?

40. 29 Sep 2008R D Ekers40Aperture Array or Focal Plane Array?Why have a dish at all?Sample the whole wavefrontn elements needed: n  Area/( λ/2)2For 100m aperture and λ = 20cm, n=104Electronics costs too high!Computer

41. 29 Sep 2008R D Ekers41Radio Telescope Imagingimage v aperture planeComputerComputerDishes act as concentratorsReduces FoV Reduces active elementsCooling possibleλIncrease FoV Increases active elementsActive elements ~ A/λ2

42. 29 Sep 2008R D Ekers42Fourier Transform and ResolutionLarge spacingshigh resolutionSmall spacingslow resolution

43. Fourier Transform Propertiesfrom Kevin Cowtan's Book of Fourierhttp://www.ysbl.york.ac.uk/~cowtan/fourier/fourier.htmlFTFT

44. Fourier Transform PropertiesFT10% data omitted in rings

45. Fourier Transform PropertiesAmplitude of duckPhase of catFT

46. Fourier Transform PropertiesAmplitude of catPhase of duckFT

47. 29 Sep 2008R D Ekers47Analogies RADIOgrating responsesprimary beam directionUV (visibility) planebandwidth smearinglocal oscillator OPTICAL aliased orders grating blaze angle hologram chromatic aberration reference beam

48. 25 Sep 2017R D Ekers48Terminology RADIOAntenna, dish SidelobesNear sidelobesFeed legsAperture blockageDirty beamPrimary beam(single pixel receivers) OPTICAL Telescope, element Diffraction pattern Airy rings Spider Vignetting Point Spread Function (PSF) Field of View

49. 22 Sep 2012R D Ekers49Terminology RADIOMap SourceImage planeAperture planeUV planeApertureUV coverage OPTICAL Image Object Image plane Pupil plane Fourier plan Entrance pupil Modulation transfer function

50. 22 Sep 2012R D Ekers50Terminology RADIODynamic rangePhased arrayCorrelatorno analogReceiverTaperSelf calibration OPTICAL Contrast Beam combiner no analog Correlator Detector Apodise Wavefront sensing (Adaptive optics)