/
INTERNATIONAL SOCIETY FOR SOIL MECHANICS AND GEOTECHNICAL ENGINEERING INTERNATIONAL SOCIETY FOR SOIL MECHANICS AND GEOTECHNICAL ENGINEERING

INTERNATIONAL SOCIETY FOR SOIL MECHANICS AND GEOTECHNICAL ENGINEERING - PDF document

bency
bency . @bency
Follow
343 views
Uploaded On 2022-09-08

INTERNATIONAL SOCIETY FOR SOIL MECHANICS AND GEOTECHNICAL ENGINEERING - PPT Presentation

This paper was downloaded from the Online Library of the International Society for Soil Mechanics and Geotechnical Engineering ISSMGE The library is available here httpswwwissmgeorgpublicat ID: 953481

2008 00m soil international 00m 2008 international soil mechanics geotechnical engineering issmge mes pier library conference committee proceedings 18th

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "INTERNATIONAL SOCIETY FOR SOIL MECHANICS..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

INTERNATIONAL SOCIETY FOR SOIL MECHANICS AND GEOTECHNICAL ENGINEERING This paper was downloaded from the Online Library of the International Society for Soil Mechanics and Geotechnical Engineering (ISSMGE). The library is available here: https://www.issmge.org/publications/online-library This is an open-access database that archives thousands of papers published under the Auspices of the ISSMGE and maintained by the Innovation and Development Committee of ISSMGE. 655 EquivalentpiertheoryforpiledraftdesignÉquivalencedelathéoriedelajetéepourlaconceptionderadeauempiléBalakumarSimplexInfrastructuresLimited,Chennai,TamilNadu,India.HuangM. ArupGeotechnics,Brisbane,Australia. E.,BalasubramaniamA.S.GriffithUniversityGoldCoastCampus,Brisbane,Australia.ABSTRACT Theobjectiveofgeneratinganeconomicalandsafefoundationsystemreducingthesettlementratherthaneliminating hasledtothechangeinthedesignphilosophy recognisingthefactthatmoststructurescantolerateacertainamountofsettlement Thepiledraftanalysesanddesignisthreedimensionalinteractionproblems,wherein,theappliedloadistransferredbya complicatedinteractionprocessbetweenthepi lesandtheraft..Thenecessitytohavearelativelysimpledesignproceduresothatthe preliminarydesigncangiveadequatebutreasonablyaccuratedataforthefinalanalysesisexplained.Thepaperpresentssucha simpledesignprocessintheformof equivalentpierapproachbyestablishingitsapplicabilitybyapplyingittotwocases.Alsothe studyhasbroughtouttheeffectofdeepcompressibledepositsandwichedbetweentwodenselayers.RÉSUMÉ/¶REMHFWLIGHFUpHUXQV\VWqPHGHIRQGDWLRQpFRQRPL queetfiable,parlaréductiondesaffaissementsplutôtquedeleur éradication,aentraîné unchangementdanslaphilosophiedeconception,admettantlefaitquelaplupartdesstructuressontcapables GHWROpUHUXQFHUWDLQQRPEUHG¶DIIDLVVHPHQWV/HVD nalysesetlaconceptionduradiersurpieuxcomportentdesproblèmes G¶LQWHUDFWLRQWULGLPHQVLRQQHOVRODFKDUJHDSSOLTXpHHVWWUDQVIpUpHSDUXQSURFHVVXVG¶LQWHUDFWLRQFRPSOH[HHQWUHOHVSLHX[HWOH SLOLHU,OHVWH[SOLTXpODQpFHVVLWpGHGLVSRVHUG¶XQ eprocéduredeconceptionrelativementsimple,demanièreàcequelaconception SUpOLPLQDLUHSXLVVHDSSRUWHUGHVGRQQpHVDSSURSULpHVVXIILVDPPHQWSUpFLVHVSRXUOHVDQDO\VHVILQDOHV/¶DUWLFOHSUpVHQWHXQ processusdeconceptionaussisimple,sousformed ¶DSSURFKHGHSLOLHUpTXLYDOHQWHQSURXYDQWVDIDLVDELOLWpSDUVRQDSSOLFDWLRQ GDQVGHX[FDV/¶pWXGHDpJDOHPHQWUpYpOpOHVHIIHWVGXGpS{WIRUWHPHQWFRPSUHVVLEOHFRLQFpHQWUHGHX[FRXFKHVpSDLVVHVEYWORDSPiledraft,Pier,PeatINTRODUCTIONThedesignoffoundationsystemforstructuresthatcannottoleratesettlements,theaspectofbalancingtheperformanceandcost,hadalwaysbeenachallengeforthefoundationdesigners.Duetothecomplexityinvolvedinthesoilstructureinteractionanalyses,requiredforanoptimumdesign,designershavesofarbeenresortingtothetraditionallydesignedpilefoundationssystempermittingverysmalllimitingsettlements.Eventhoughthisapproachproducesasafedesign,theeconomicsofthedesignbecomesquestionable.Theobjectiveofgeneratinganeconomicalandsafefoundat

ionsystemreducingthesettlementratherthaneliminatinghasledtothechangeinthedesignphilosophyKeepingtheaboveobjectiveinmindresearcherslikeBurland(1995)andsubsequentlyPolous(2001)hadbroughtouttheuseofpileswiththerafttoreducethesettlementoftheraft.Thishadledtheadventofthecombinedpiledraftfoundationsystem,whichprovidesaskilfulgeotechnicalconcepttodesignthefoundationforstructureswhicharesensitivetolargesettlements.Thepiledraftanalysesthreedimensionalinteractionproblems,wherein,theloadtransfermechanismisacomplicatedinteractionprocessbywhichtheloadissharedTheinteractiveprocessbetweentVariousproceduresbasedonobservationalstudy(Katzenbachetal.,2000a)smallscalemodelstudiessuchascentrifugemodelsHorikoshi1995)1gmodelstudies(Balakumar,2008)andtheresultinginteractiveprocesswiththenumericalmodeling(Clancy1993;Russo1998;supportedbythedevelopmentofnewgeotechnicalcomputationalfacilities(PolousandSmall2007hasledtothethepiledraftfoundationsystembeingextensivelyusedtosupporttallandheavilyloadedstructuresinasuccessfulmannerpermittinglargersettlementsclosetothepermissiblevalue(Polous,2008;.,Yamashitaetal.,2010).SIGNPROCESSThesatisfactoryperformancesofpiledraftlargelydependupontheperformanceofthepilegroupofpiledraftinprovidingtheinitialstiffnessandthenallowtherafttohaveahighercapacitybyfunctioningassettlementreducer.Henceafterascertainingthefeasibilityofthepiledrafttosupportthestructure,apreliminaryanalyseshastobedonetofinalizethecomputationaldetailoftheconstituentelements.rimarilythenumber,lengthofthepiles,theloadsharedbythepilegrouparetheessentialparametersinadditiontothepropertiesofthesupportingsoillayers.thecaseofthepiledraftthepilegroupcapacityandtheoverallcapacityofthepiledraftplayanimportantrole.Thesecondstageofanalyseshastoproducethesedatainareliablemannersuchthatwhenusedinthefinalanalyses,theanalyseswillproduceadesignwhichneednotbesubjectedtoanyiterationprocess.hisrequirementmakestheproceduretobemorerealisticandsimpleenoughsuchthatthecomputationaleffortsareminimumandeconomicalEventhoughtheexistingmethodscanprovideadesignapproach,theseinvolveaverydetailedcomputationalefforts,notreallywarrantedforthesecondstageofdesign,fromthecommercialdesignorganisationpointofview..Thereforeitisessentialtohavearelativelysimpledesignproceduresothatthesecondstageofworkcangiveadequatebutreasonablyaccuratedataforthefinalanalyses. 656 Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering, Paris 2013 SELECTIONOFDESIGNPROCESSAmongthevariousmethodsstudieditwasconsideredthattheequivalentpierconceptwasfoundtobemoresuitable.TheapplicabilityoftheequivalentpiertheorytopledraftanalyseshasbeenestablishedbyHorikosh(1995)Butthestudywasrestrictedonlytoasmallpilegroupplacedinthecenteroftheraft,placedonaoverconsolidatedclaylayer.Althoughthestudyhasproducedveryimportantandusefuldata,theapplicabilityneedstobevalidatedwithotheravailableresultsfromageneralsoilprofile.Inthisparticularstudytheresultsoftwosuchcasesonefromtheobservationalstudyconductedonaninstrumentedpiledraftsupportinga12storeyedbuildingandtheotherfromtheparametricstudyconductedindependentlyarereanalyzedusingequivalentpierconcept.InthisparticularcasetheratioLe/Lnamelytheratioofthepierlengthtothepileworksouttounityandhencetheequivalentlengthofthepieristakentobethesameasthatofthepile.Oncethepilesarereplacedbyapierthenthesolutionforthesinglepilecanbeappliedtoestimatetheloadsettlementcharacteristics,andtheloadsharingresponse;theloadsharedbythepierbecomestheloadsharedbythepilegroup.WiththisidealisationitispossibletoruntheanalysessanaxisymmetrictwodimensionalproblemVALIDATIONInordertoestablishtheapplicabilityoftheequivalentpiertheorytwo

caseswereconsideredforwhichpublishedresultsareavailable.Themodelswereselected,onefromaparametricstudycarriedoutanalyticallyandtheothermodelwasfromanobservationalstudycarriedoutonthebehaviourofpiledraftsupportinga12storiedstructure.4.1ValidationbasedonnumericalstudyExtensiveparametricstudieshavebeencarriedoutinGriffithuniversityGoldCoastcampusandtheresultshadbeenpublishedbyOhetal.,().Thesestudieshadbeenbasedonthegeneralsoilprofilecompiledfromthenumberofgeotechnicalinvestigationdatacollected.A9pilegroup(3x3)with5dspacinghasbeenconsideredThespacingofthepilesconsideredis5d(ddiameterofthepile).Thed/tratioistakenasunityandaccordinglytheraftthicknessandthepilediameterhavebeentakenas800mm.Thegeneralsoilprofilecomprisesof13mthickmediumdensetodensesandlayer,followedby3mthickhighlycompressibleorganiclayertermedaspeat.Thislayerisfollowedbydensesandandhardclay.heEsvaluesofvariouslayershavebeentakenbasedontheNvaluesfromthestandardcorrelations.Theequivalentpiermodulusistakenfromtheexpression,+(E(1)WhereEeqistheequivalentpiermodulus,Esistheelasticmodulusofthesoil,Epistheelasticmodulusofthepile,Atistotalcrosssectionalareaofthepile,andAgistheplanareaofthepilegroup.ThepierconsideredalongwiththeparametersispresentedinFigure1.4.2TheobservationalstudyAsapartofanextensiveresearchprogramme,a12storeyedcommercialcumresidentialapartmentwasdesignedandsupportedonpiledraft(BalakumarandIlamparuthy)wasinstrumentedandmonitored.Thepiledraftsystemcomprisedof93pilesof600mmdiameterand14Mdeepfromthebottomoftheraft.Theraftthicknesswas600mmsothatthed/tratiowasmaintainedasunity.Thelayoutofpilesandotherpertinentdataaregiveninearlierpublications.Atwopilegroupswithatributaryraftdiameterof6mwasconvertedintoanequivalentpierandwasloadedinsmallincrementstillthesettlementreached100mm.Thepierwasrestinginamediumdensetodensesand.Thedetailsofthepier,andthegeotechnicalparameterstogetherarepresentedinFigure2.TheanalysesinboththecaseswerecarriedoutwithPlaxis2DthemodelandthemesharegivenFigure3.Figure1.Pier&geotechnicaldata(numericalstudy)Eforraft=2.74x10 4 MN/m 2 16.00m Peat V N1P=17kN/mEs=8MN/mDenseSand I=36º;=20kN/mEs=35MN/mStifftoHardclay V N1P=19kN/mEs=20MN/m22.00m 22.00m d/2 D/2=5.65DenseSand I=36º=20kN/mEs=30MN/m C/LofPIER 0.0 13.00m 0.00m 4.00m 11.00m 14.00m 650mm I PIER Sandysiltyclayc=0.2kg/cm=25º J =1.6t/m 3 ;E=50N/mm Clayeysiltysandc=0.1kg/cm=27º=1.7t/m;E=50N/mm=34º;=1.8t/m 3 E=60N/mm VerydensestrataE=70N/mm 600mm 3000mmFigure2.Observationalstudy Figure3.TypicalmeshPLAXIS2D 657 Technical Committee 103 / RESULTS,ANALYSES,ANDDISCUSSION.Theresultsobtainedfromthemodel1areplottedintheformofloadsettlementresponsecurvesandpresentedinFigure4.Theloadsettlementresponseof12mpierispresentedseparatelyinfigure5.orthepierlengthsof12m,16.8m,and18mmAtanystageofsettlement,itwasfoundthattheloadtakenbythepiledraftwasfarhigherthantheloadtakenbytheunpiledraftforthecorrespondingsettlement.Theresultsarestudiedindependentlyforthethreecasesanalysed,andthentheyarecompared.Fromtheloadsettlementresponseoftheunpiledraftandthepiledraft,theloadsharedbythepier(pilegroup)iscomputedatdifferentsettlementlevelsnamely12mm,25mm,50mm,80mmand100mmandhasbeenpresentedinTable1.Table1LoadSharingRatioAtVariousSettlementLevelsSettlement Pierlength20mm50mm100mm 12.0m0.540.530.370.300.25 16.8m0.640.650.600.580.56 18.0m0.610.560.640.590.59 Inthecaseofloadsettlementresponseofallthethreecases,theinitialstagesuptoasettlementlevelof25mm,thepiledraftexhibitsahigherstiffness,withtheverysmallrateofchangeinthestiffness.Asseenfromthetable1,theloadss

haredbythepierintheinitialstagesarehigherandthengraduallyreduceswithsettlement.Thisindicatesthatthemajorpartoftheappliedloadistakenbythepilegrouporthepier.Beyondthisleveltherateoffallinthestiffnessincreasesrapidlyindicatingthatthefullfrictionhasbeenmobilisedandtheraftstartstakingahigherload.Thisstageexistsuptoasettlementlevelof75mm.Beyondthisleveltherateoffallofstiffnessfurtherincreasesrapidlyevenforasmallincrementintheload.Inthecaseofpiledraftwith16.8mdeeppiertheloadcorrespondingto25mmsettlementishigherthanthepreviouscaseby100%indicatingthatthepiermobilisesahigherfrictioninthelinearelasticstage.At75mmsettlementleveltheincreaseintheloadtakenbythe16.8mdeeppierishigherby60%,indicatingthattheloadsharedbythepierreducesgradually.andinthecaseof18mdeeppierthisincreaseisonly15%whencomparedto16.8mdeeppier.EFFECTOFPEATLAYERThestudyoftheTable1andtheFigurewhichpresentstheshaftstressdistributionwiththedepthindicatesthattheloadsharingratioandtheshaftstressindicateanincreaseandthenafall.Theshaftstressincreasecommencesatalevelof13mandextendsupto16mlevel;andthenitreduces.Inthecaseofloadsharingratiotheincreasetakesplaceatasettlementlevelof20mminthecaseof16.8mdeeppierand50mmlevelinthecaseof18mdeeppier.Thistrendisabsentinthecaseof12mdeeppierwhichisabovethepeatlayer.Themostprobablereasonforthisbehavioristhatatahigherloadthepeatlayergeneratesanegativeskinfrictioncausingahigherloadonthepilegroup.Thisresultsinthesuddenincreaseintheshaftstressandtheloadsharingratiovalue.Figurepresentsthemobilisationofshaftfrictionwithdepth.Itisseenthattheshaftfrictionincreasesandthenfallsdownrapidlywithdepthconfirmingtheductilebehaviourinthesensethatmajorpartoftheloadistransferredbyfriction.HYPERBOLICBEHAVIOURThecurverelatingtothe12mdeeppierexhibitsinadistinctmannerathreephasebehaviour;namelyOA,whichisalinearelasticstageABaviscoplasticstageandBCtheplasticstage.Intheothertwocasesthethirdstageishasnotreachedmainlybecausethepiledwasstillcapableoftakinghigherload.Typicallythepiledraftwith12mpierdepthhadexhibitedahyperbolicbehaviourandithasbeenloadedclosetofailure Figure4Loadsettlementresponse Figureoadsettlementresponse12mpierFigure6Shaftstressmobilisation(18mdeeppile) Figure 7 &KLQ¶VJUDSK PSLHU 658 Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering, Paris 2013 hasexhibitedahyperbolicbehaviour.IthasbeenestablishedthatthehyperbolicbehaviourcanbeexpressedintermsofChin-Kondtnertypefunctions,whentheinverseofthestiffnessisplottedagainstsettlement,alinearplotcanbeobtained.Inthatcasetheinverseoftheslopegivestheasymptoticultimatecapacityofthepier.Accordinglyasatypicalcasetheloadsettlementresponseofthepiledraftwith12mpierwasplottedDV&KLQ¶VJUDSKFigureTheasymptoticultimatecapacitywasfoundtobeoftheorderof750kN,indicatingthattheasymptoticultimatecapacityisthreetimesthecapacityattheelasticlimitand1.5timestheloadcorrespondingtotheelastoplasticstage.Thiswouldmeanthatthecapacityhastobelimitedtotheloadcorrespondingtotheelastoplasticstage.Thereforethelimitingcapacityofthepiledraftcanbethecapacityatasettlementlevelof10%ofthepilediameterwhenthepilecanbeseatedinthenoncompressiblelayerandwhenthepilehastopassthroughacompressiblelayer,andthenthenegativefrictionhastobeaccountedfor.OBSERVATIONALSTUDYMODELFigurepresentstheloadsettlementresponseofthepierrepresentingthepilegroupandtheraftwhichformsapartofthepiledraftsupportingthestructure.Hereitisseenthattheelasticstageisseenuptoaloadlevelof200kNpersq.m.Howeverintheanalysesthepressurewasappliedcontinuouslywhereasduringconstructiontheloadwasappliedingradualmanneroveraperiodoftime.Howeverthesettlementshownbt

heequivalentpieranalysesis12mmasagainsttheobservedvalueof14mmreportedinthereferredpublication,Theloadsharingbehaviourandtheshaftstressmobilisationexhibitedasimilartrendasinthecaseofearliermodelandasobservedintheobservationalstudy.Inthiscasetheloadlevelwasfoundtobewellwithintheelasticlimits.Thesettlementobservedfromtheobservationalstudywas14mmandfromthepieranalysesthesettlementobtainedwas12mmindicatingaverycloseagreementindicatingthattheequivalentpierconceptcanfilltheneedofasimpledesignprocedure.CONCLUSIONTheextensivestudycarriedoutonthetwoindependentcasesadoptingtheequivalentpiertheoryhasestablishedthattheequivalentpiertheory,althoughinvolvesnumericalapproximation,theperformanceofthepiledraftinboththecasespredictedbyequivalentpiertheoryisinconformitywiththeearliarworksbyOhetal.,(2008)andBalakumar(2008)Thestudyhasfurtherpointedoutthatinthecaseofpiledraftswiththepilegrouppassingthroughseamsofcompressiblelayerthebehaviourisaffectedbythemobilisationofnegativeskinfrictionandtheequivalentpierconceptisabletopredictthiseffectively.Thecompressiblelayergeneratesnegativeskinfrictionandincreasestheloadonthepileasshownbytheincreaseintheloadsharingratioandthenallowsthepilegroupbehaviourtobeductile.Inshorttheequivalentpiertheoryisanidealtheoryforthepiledraftanalyses.REFERENCESClancyP.(1993),NumericalAnalysisofPiledRaftFoundations,UniversityofWesternAustralia,PhDThesis.µ.DW]HQEDFK5$UVODQ9DQG0RRUPDQFK D µ1XPHULFDOStimulationsofCombinedPiledRaftFoundationsfortheNewHighRiseBuilding,MaxLQ)UDQNIXUWDPPDLQ¶3URFQG,QWConf.onSoilStructureInteractioninUrbanCivilEngineering.3RXORV+*  µ3LOHG5DIW)RXQGDWLRQ'HVLJQDQG$SSOLFDWLRQ¶*HRWHFKQLTXH9RO1RSS113+RULNRVKL.  µ2SWLPXP'HVLJQRI3LOHG5DIW)RXQGDWLRQV¶DissertationsubmittedforthedegreeofDoctorofPhilosophy,UniversityofWesternAustralia.E.Y.NOH,M.Huang,C.Surarak,R.Adamecand$6%DODVXEUDPDQLDP  µ)LQLWH(OHPHQW0RGHOLQJIRU3LOHGRaftFoundationiQ6DQG¶(OHYHQWK(DVW$VLDPacificConferenceonStructuralEngineering&Construction(EASEC11).3RORXV+*  ³7KH3LOHG5DIW)RXQGDWLRQIRUWKH%XUM'XEDL'HVLJQ 3HUIRUPDQFH´,*6FerrocoTerzaghi,Oration2008.Balakumar.V(2008),³([SHULPHQWDO6WXGLHVRI0RGHO3LOHG5DIWRQ6DQGDQG)LHOG6WXG\RI3URWRW\SH%HKDYLRU´3K'7KHVLV$QQDUniversity,Chennai.%XUODQG-%  µ3LOHVDV6HWWOHPHQW5HGXFHU¶WK,WDOLDQ&RQJUHVVonSoilMech.,Pavia.5XVVR*  µ1XPHULFDO$QDO\VHVRI3LOHG5DIWV¶,QWO-QO1XPandAnl.MethodsinGeomech,Vol.22,pp.477493.6PDOO-DQG3RXORV+*  ³$0HWKRGRI$QDO\VLVRI3LOHG5DIW´10thAustraliaNewzelandConferenceonGeoMechanics,PP.555.Yamashita.K,Hamada.J,Yamada.T.(2010),FieldMeasurementsOnPiledRaftswithGridFormDeepMixingWallsonSoftGround,GeaotechnicalEngineeringSEAGSVol.42No2June2011 Figureoadsettlementresponse