/
BackgroundAccordingtotheInternationalClassificationofDiseasesICD10v BackgroundAccordingtotheInternationalClassificationofDiseasesICD10v

BackgroundAccordingtotheInternationalClassificationofDiseasesICD10v - PDF document

berey
berey . @berey
Follow
342 views
Uploaded On 2022-08-16

BackgroundAccordingtotheInternationalClassificationofDiseasesICD10v - PPT Presentation

TheamplitudeofaccommodationAAwasmeasuredusingaminuslensmethodThesubjectswereaskedtofixateN8targetatadistanceof40cmThenminuslenseswereintroducedin025Dstepsuntilthepatientreportedthefirstsustainedb ID: 937737

2018 fig 2012 eyeandvision fig 2018 eyeandvision 2012 0001 2011 slack 2006 wavemaxerg japan units7 0000010 editors rozanovaetal newyork

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "BackgroundAccordingtotheInternationalCla..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

BackgroundAccordingtotheInternationalClassificationofDiseases(ICD-10,version:2010)presbyopiabelongstotheclassofrefractionandaccommodationdisturbanceandisslow,age-relatedandirreversibleaccommodationde-cline.Currently,over1.7billionpeopleintheworldareafflictedwithpresbyopia[1].Theproblemappearsinpeopleattheageof40–45years,whichistheperiodofmaximalprofessionalandcreativeactivityinvolvingana-lysesofasignificantvolumeofvisualinformation[2–4].Theproblemofpresbyopiacorrectionisanactualtask,butinspiteoftheactiveintroductionofadvancedmethods,thequestionaboutadequatepresbyopiacorrectionremainsopenandunsettled[5].Forthecompensationofaccommo-dationdeficit,differentvariantsofamultifocalopticalsys-temcreationhavebeendescribed[1,5–12].Butthecreationofamultifocalmonocularopticalsys-temoranisometropicbinocularopticalsystemiscloselyassociatedwiththeadaptationprocesses,whichareverycomplicatedinsomepatients.Themultifocalmonocularopticalsystemdoesnothaveanyphysiologicalanalogs[13–15].RegardlessofthemultifocalIOLmodel,thereisalwaysaproportionofpatientswhocomplainofthevisualdysphotopsiaasblurring,misting,“holographic”view,3D-view.In5%ofcases,thisdysphotopsiasyn-dromebecomesrigidandisanindicationforIOLexplantation[16].Thereasonsforthevisualdysphotop-siaarenotclearenough.Theexplantationofmultifocalintraocularlensisdebatedasan“armymethodofre-fractivesurgery”[16]andisabout3to10%accordingtothedatabydifferentauthors[16–20].Mostofthepresbyopiatheoriesconsidertheintraocu-larchangespurely.Thepresbyopiaismainlyviewedasanaccommodationdecreasedeterminedbythereduc-tionoflenticularelasticityandchanginglenssuspensionapparatus[21–24].Atthesametime,theaccommoda-tiveresponseisapartofthenearsynkineticreflex.Theaccommodationhassignificantinteractionswiththepupilresponse,vergenceresponse,andbinocularity.However,basedonthetheoryoffunctionalsystems,thelossofusefulcomponentinthebody’sactivityisaccom-paniedbythemeasurestocompensateortoadaptforit[25–27].Therefore,thereductionoftheaccommodativeresponsethatunderliesthepresbyopiadevelopmentmustbeinevitablyaccompaniedbytheimbalanceamongthecomponentsofthenearsynkineticreflex.Howdoestheaccommodationdecreaseinfluencetheocularmotorforceswhichareresponsibleforthestableconstantvisualimage?Thisproblemhasnotbeensolvedyet.Thechangesofthebinocularcooperationduringthepresbyopiadevelopmentarestillpoorlystudied.Accord-ingtoourpreviousstudies,thereissomedeficitofbinocularcooperationinage-relatedaccommodationloss[28].Besides,theaging-inducedaccommodationdecreaseisstronglylinkedwithotherphysiologicalagingprocessesandthedegradationalchangesofsensoryneu-rons.Thenormalagingisaccompaniedbythevisualacuitydecrease,contrastsensibilitydecrease,colorper-ceptionchanging,stereoacuitydecrease[29–32].Theage-relatedreductionofstereovisionismarginallycorre-latedwithfusionalabilitydecrease[33].Butwhatre-mainsunclearistheroleofbinoculardisordersamongmechanismsunderlyingpresbyopiapathogenesis.There-fore,comprehendingthebinocularinteractionchangesinpeoplewithpresbyopiaisacriti

calissue,andthere-gularitiesofvisualsystemviolationinthepresbyopiaformationneedtobecharacterized.Thepurposeofthisstudyistoexaminethetransformationofvisualreceptionprocessingandtodeterminetheroleofbinocularinteractionsdisturbanceinpresbyopiaformation.MethodsSubjectsThestudyadheredtothetenetsofHelsinkiDeclarationandwasapprovedbytheInstitutionResearchandEthicsCommittee(protocolnumber8/13from25/11/2013).Allpatientswereadequatelyinformedandsignedacon-sentform.Ofthe60peopleexamined,thefirstgroupconsistedof30people(from18to27yearsold)withoutpresbyopia,andthesecondgroupcomprised30patients(from45to55yearsold)withpresbyopia.Thecriteriaforinclusioninthisstudycomprisethepresenceofemmetropicrefraction(i.e.,thesphericalequivalentofcycloplegicmeasurementsfrom+0.25Dto0.25D),uncorrecteddistancevisualacuityofeacheye1.0(decimalscale)orhigher,normalcolorperception,ophthalmopathologyabsence.Allpatientsofthesecondgroupcomplainedoftheinsufficientnearvision,andtheymadeuseoftheglasses.Consideringthatbinocularitycorrelatesthehetero-phoriavalueandinterpupillarydistance[34,35],theex-clusioncriteriacomprisedaheterophoriadegreegreaterthanfiveprismdiopter,thepupillarydistancelessthan62mmandgreaterthan64mm.MeasurementsAllpatientshadafullophthalmologicalexaminationin-cludingtheevaluationof80parametersofeyeanatomy,visualprocessing,andbinocularity.AssessmentoftheeyeanatomyandthephysiologicalopticsTherefractiveerrorwastheaveragesphericalequivalentoffivecycloplegicmeasurementstakenwithanautorefractor/keratometer(KR8800,Topcon,Japan).Allcycloplegicmea-surementsweremade25minaftertheadministrationof1%tropicamide(2dropsduring5minintervaltwice).Theotherinvestigationswereperformed7-10dayslater.Rozanovaetal.EyeandVision (2018) 5:1 Page2of10 Theamplitudeofaccommodation(AA)wasmeasuredusingaminuslensmethod.ThesubjectswereaskedtofixateN8targetatadistanceof40cm.Thenminuslenseswereintroducedin0.25Dstepsuntilthepatientreportedthefirstsustainedblurthatcouldnotbeclearedbythefurtherconsciouseffort.Thisprocedurewasdoneforeacheyefirstmonocularlyandthenbinocularly.ThetotalAAwasestimatedastheendpointminuslenswhichwaspos-sibletoseethetargetat40cmunderbinocularcondi-tions.TheAAmeasurementinpeoplewithpresbyopiawasdoneusingthenearadditionlens.Theaxiallength,lensthickness,anteriorchamber(AC)measurementsweremadewiththehelpofanultrasoundbiometer(AL-3000,Tomey,Japan).Anaver-ageofthreemeasurementsforeachparameterwasused.Ultrasoundbiomicroscopy(UBM)measurementsweremadeusingHiScan2000(Optikon,Italy),andUBMwasdoneinthesupinepositionasdescribedbyC.PavlinandF.Foster[36].Imagesfromtheirisroottotheparsplicatazonewereobtainedin12o’clockdirection.TheciliarybodythicknessincrosssectionandthelengthofanteriorportionZinn’sligamentwereexamined.Theocularwavefrontaberrationacrossa3mmzoneinthepupilandthepupildiameter(underphotopicandmeso-picconditions)wereobtainedusingtheprincipleofau-tomatedretinoscopy(OPD-Scan,NIDEK,Japan).Theanteriorchambervolume,irisandlensconfiguration,cornealaberrations,lenslighttransmission,were

fixedusingPentacam(OculusOptikgeräteGmbH,Germany).AssessmentofvisualprocessingundermonocularconditionsThedistancevisualacuityandthenearvisualacuityweremeasuredwithlogicalgeometricscaleBailey-Lovie(logMAR).Otherexaminationsincludedevaluationofthecontrastsensitivityatspatialfrequencies3,6,12,18cyclesperdegree(CSV-10000E,VectorVision,USA),thethresholdoflightsensitivity(EP3000,Tomey,Japan),theflickerfusionthreshold,theamplitudeandimplicittimeofmaximalelectricretinalresponse,andtheampli-tudeandimplicittimeofvisualevokedpotentials(EP1000,Tomey,Japan).BinocularityassessmentForthispurpose,thedatareflectingthedifferentlevelsofbinocularinteractionweresystematized.Thesein-cludethenearphysiologicaldiplopia,thestereovisiontestLangI&II,andthebinocularityfield(spatiallimitsofdisparatefusionalreflex).Toinducethephysiologicaldiplopia,eachpatientwasaskedtolookintothefardistance(5m).Thenanear-lyingtarget(inthedistance10cm,i.e.,notinthehorop-tercurve)waspresented.Thepresence(yes/no)ofdoublevirtualobjectswasfixed.Inthecaseofphysiologicaldiplopia,theregistrationofthedisparatefusionalreflexlimitswasperformed.Forthis,adiplopticdevice(AVIS01,Krasnogvardeec,Russia)wasused,whichfacilitatedinvestigationofthebinocularinteractionundernaturalconditionswithouttheaccommodationresponse,butwiththedifferentvergenceload[37–41].Thefirstpointofthemeas-urementis40cm.Thenthedoubletargetsweremovedinwardsuntilthevirtualstereoimagewasob-served(Fig.1).Itwasapointofbinocularitywithoutvergenceload.Thechangeinthedistancebetweenthecentersofthedoublenearlyingtests(p)andthedistancefromtheeyestothetargets(n)whilemaintainingofthevirtualbinocularimageperceptionmakesitpossibletodefinethefusionalreflexlimitsinspace.Thenthetargetsweremovedincreasinglyinwardandoutwardtoforcethever-genceresponse(Fig.2).Thereweresomepointsofmax-imumconvergenceanddivergence.Thepatientreportedallthevisualimageswhichwererecorded.Thedisparatefusionalreflexwasanalyzedusingthefollowingparameters:1.Theproximalfusionborder(PF)anddistalfusionborder(DF)weredeterminedwhilethedoubletargetswereapproachingandmovingaway(Fig.2).Thedifferencebetweentheseparameterscorrespondstothelengthofthebinocularityfield.2.Theconvergencefusionborder(CF)andthedivergencefusionborder(DivF)weredeterminedwiththehelpofthedecreaseandtheincreaseofthedistancebetweenthedoubletargets(thepointofthemeasurementis40cmfromtheeyes).The Fig.1TheperceptionofvirtualbinocularvisualimageRozanovaetal.EyeandVision (2018) 5:1 Page3of10 differencebetweentheseparameterscorrespondstothewidthofthebinocularityfield.3.Finally,weperformedthecalculationofthebinocularityfieldarea(A)incm2(Fig.3).StatisticalanalysisAlldatawereanalyzedwithaspreadsheetapplication(Statisticaver.8.0;StatSoftInc.,USA).Thedatawererepresentedasthemeanvalue±standarddeviation(Mean±SD).TheShapiro-Wilktestwasusedforasses-singofnormalitydistribution.Thestatisticaldifferencesinmeasuredvalueswereanalyzedusingat-test.Thecriticallevelofsignificance(p)upontheexaminationofstatisticalhypotheseswas0.05.Thecomparisonan

alysis,thePearsoncorrelationanalysis,andthelogisticregres-sionmodelsweredone.ThePearsoncorrelationcoeffi-cientwithabsolutevaluesequaltoorgreaterthan0.7withp0.001wasacceptedasthecloserelation.Thediscriminantfunctionanalysis(DFA)wasusedfortheselectionoftheanalytesthatmaximallydiscriminatedthestudiedgroups.TheDFAwasbuiltinastep-wisemannerafterdirectstandardization.Thefinaldiscrimin-atorypowerofeachanalytewascharacterizedbyapar-tialWilk’sLambdacoefficient;1.0(nodiscriminatorypower)to0.0(perfectdiscriminatorypower).TheMaha-lanobisdistanceD2betweencentroidvaluesforeachgroupwasmeasured.ResultsThebaselinefeaturesofthestudypopulationweresum-marizedinTable1.Themeanpatientagewas22.3±3.2yearsinthefirstgroup,and52.4±2.2yearsinthesecondgroup.Thegroupsdidnotdifferingender,sphericalrefractionequivalent,eyeglobeaxiallength,oculomotorstatus.Inthefirst(control)group,themeanaccommodationamplitudewas6.93±1.12D(minimum Fig.2MethodofAssessingtheDisparateFusionReflexBorders Fig.3CalculationoftheBinocularityFieldArea Table1StudiedGroupsDescriptiveStatistics(M±SD)CharacteristicsControlPresbyopiaP-valueAge,years22.3±3.252.4±2.20.0001Female:Male15:1515:15–Meansphericalequivalentofrefraction,D0.2±0.10.2±0.21.00Axiallength,mm23.5±0.523.5±0.41.00Keratometry,ax90°,D43.2±1.343.3±1.10.61Keratometry,ax180°,D43.0±1.143.1±1.10.62Amplitudeofaccommodation,D6.93±1.121.99±0.890.0001Meanprismequivalentofdistanceheterophoria,PD1.2±0.21.1±0.30.88D=diopter;PD=prismdiopterRozanovaetal.EyeandVision (2018) 5:1 Page4of10 5.75D,maximum10.0D).Allpatientswithpresbyopiahadadecreasedaccommodation:themeanaccommoda-tionamplitudewas1.99±0.89D(minimum0.5D,maximum4.0D).IntraocularanatomyandopticsThepresbyopiaformationischaracterizedbyachangeinanintraocularanatomy.Significantdifferenceswerede-tectedintheanterior-posteriorsizeofthelens–from3.73±0.23to4.41±0.21(p=0.0001).Theopticaldensity(lighttransmissioncoefficient)ofthelensincreasedinthenuclearareafrom15.5±1.2to26.6±3.4%(p=0.0001),andinthecorticallayers–from9.1±0.9to10.8±1.3%(p=0.03).Thechangeoftheintraocularanatomywasexpressedas:thedecreaseoftheciliarybodythickness(intheinnertopprojection)from0.82±0.10to0.63±0.11mm(p=0.001),theincreaseofthedistancebetweenthetrabeculaandtheciliaryprocessesfrom0.79±0.10to1.02±0.11mm(p=0.001),andtheshortageofthefrontportionZinnligamentlengthfrom1.23±0.31to1.04±0.26mm(p=0.002).Thevariationofbothstaticanddynamiccomponentsoftheopticalphysiologicalsystemwasestablishedintheeyesofpresbyopicpatients.Thiswasevidencedbyasig-nificantincreaseofthetotalrootmeansquarewavefronterrors(from0.13±0.04to0.17±0.05minpupildiam-eter3mm,p=0.0001)andthecornealrootmeansquarewavefrontaberrations.Inpatientswithpresbyopia,anincreaseintheZernikecoefficientsofthecornealsphericalaberrationZ40from0.17±0.05to0.23±0.06m(p=0.0001)wasobserved.Also,asignificantdecreaseofthepupilexcursionwasfound.Thephotopicpupildiameterdecreasedfrom3.81±0.76to3.35±0.78mm(p=0.0001)whereasthemesopicpupildiameterde-creasedfrom6.47±0.56to5.50±0.94mm(p=0.00

01).MonocularvisualcharacteristicsInthenextstep,acomprehensivestudyofthesensoryactivityofthevisualsystemwascarriedout.Thepatientswithpresbyopiahadadecreasenotonlyinaccommoda-tionamplitudeanduncorrectednearvisualacuitybutalsointhemostofthevisualreceptionparameters(Table2).Asignificantdecreaseofthecontrastsensitivityinlowandhighspatialfrequencyranges,theaveragevaluesoftheb-waveERGmaximumamplitude,theflickerfusionthresholdandanincreaseinthea-waveandb-waveERGmaximumlatencywerefoundinpatientswithpresbyopia.BinocularityThechangeintheperceptionLangstereotestswasnotsignificant.Astudyofbinocularcooperationshowedaninhibitionofthenearphysiologicaldiplopiain20%ofthepatientswithpresbyopia.Thereweremultiplechanges.Theseincludeasignifi-cantdistortionofthebinocularinteractionzonewiththereductionoftotalbinocularityarea,shiftinthespacetowardsthenearfocalpoint,andthefusionneutralizationintheconvergencezone.Thechangesintheproximal,distalandconvergencefusionbordersweredetermined(Table3).TheregressionsbetweendisparatefusionreflexlimitsandaccommodationamplitudeareshowninFig.4.Inthefirst(control)group,themeanareaofbinocularityfieldwas365.6±45.1cm2(minimum280cm2,maximum Table2Comparisonsofvisualcharacteristicsinstudiedgroups(M±SD)CharacteristicsControlPresbyopiaP-valueUDVA,logMAR0.071±0.0450.003±0.0260.0001UNVA,logMAR0.033±0.0430.575±0.2150.0001CSS,frequency3cpd,units7.41±0.495.66±0.540.0001CSS,frequency6cpd,units7.54±0.456.95±0.500.01CSS,frequency12cpd,units7.41±0.456.83±0.370.01CSS,frequency18cpd,units7.41±0.456.02±0.550.0001Thresholdofretinasensitivity,dB27.9±1.124.6±3.50.01ImplicittimeVEPonflash,msec32.1±14.529.1±10.50.19AmplitudeVEPonflash,V99.7±6.4100.6±8.20.17Implicittimea-wavemaxERG,msec15.7±7.521.3±11.00.001Amplitudea-wavemaxERG,V149.7±36.0139.8±42.70.17Implicittimeb-wavemaxERG,msec36.2±3.245.9±6.60.0001Amplitudeb-wavemaxERG,V311.8±57.7287.0±63.40.027FFT,Hz34.7±2.132.3±2.90.001UDVA=uncorrecteddistancevisualacuity;UNVA=uncorrectednearvisualacuity;CSS=contrastspatialsensitivity;VEP=visualevokedpotentials;ERG=electroretinogram;FFT=flickerfusionthreshold Table3ComparisonsofFusionReflexCharacteristicsinStudyGroups(M±SD)CharacteristicsControlPresbyopiaP-valueProximalfusionborder,cm5.23±1.5818.90±6.850.0001Distalfusionborder,cm90.05±7.3569.20±12.210.0001Convergencefusionborder,101cm24.83±6.1430.31±6.910.0001Divergencefusionborder,101cm63.38±3.5558.21±5.610.056Lengthofbinocularityfield,cm84.78±7.7550.82±16.050.0001Widthofbinocularityfield,101cm41.88±3.3530.39±6.340.0001Areaofbinocularityfield,cm2365.60±45.10174.40±87.700.0001Rozanovaetal.EyeandVision (2018) 5:1 Page5of10 456cm2).Allpatientswithpresbyopiahadadecreasedfusionabilitywiththemeanareaofbinocularityfieldat174.4±87.7cm2(minimum48cm2,maximum385cm2).Theregressionbetweenbinocularityfieldareaandaccom-modationamplitudeisshowninFig.5.Itisinterestingtonotethat77%patientswithpresby-opiahadbinocularsuppressioninsomegrade,while6%ofpatientshadextremedecreaseinthebinocularityfielda

rea(Fig.6).IntrasysteminteractionsThemultivariatekindsofstatisticalanalyseswereusedfortheunderstandingofthevisionreceptiontransform-ationinpresbyopiaformation.APearsoncorrelationanalysisofvisualsystemparameterswasmade.Thecomparisonofthecorrel-ationPleiades(correlationswithP-valueequalorlessthan0.001)withinControlandPresbyopiaGroupsre-vealedareductioninthestrengthofmostrelation-ships.ThecorrelationPleiadesarerepresentedinFig.7,wherethepositivecorrelationswereshownasredarrowsandthenegativecorrelationsasblueones.Itisevidentthatyoungpeoplewithoutpresbyopiahaveamuchlargernumberofinterdependenciesbetweenstructuralandfunctionalindicatorsofthevisualsystemthaninpatientswithpresbyopia.Inyoungpeople,25closerelationshipswereestablished,butinpatientswithpresby-opia,therewereonly6suchrelationships.Insteadofdestroyedrelationships,therewasanewcorrelationbe-tweenthewidthofthebinocularityfieldandtheimplicittimeofvisualevokedpotentials(r=0,7;p=0.001).Intheforwardstepwisediscriminantanalysis,eightin-diceswereselectedfor100%discriminationofstudiedgroups.Thematrixofmostinformativevariablesfordis-criminationisrepresentedinTable4.Theseparationbetweengroupsisnotonlyduetotheaccommodationstatebutalsotosomeothersignificant Fig.4RegressionsbetweenFusionReflexBordersandAccommodationAmplitude.arelationshipbetweenproximalfusionborderandaccommodationamplitude,brelationshipbetweendistalfusionborderandaccommodationamplitude,crelationshipbetweenconvergencefusionborderandaccommodationamplitude,drelationshipbetweendivergencefusionborderandaccommodationamplitude Fig.5RegressionsbetweenBinocularityFieldAreaandAccommodationAmplitudeRozanovaetal.EyeandVision (2018) 5:1 Page6of10 changesinthestructuralandfunctionalparameters.Thein-dicatorsofthetoleranceshowthatallfeaturesareorthogonalandtheircontributionstotheseparationdonotoverlap.Theresultsofthediscriminantanalysisshowedthatthefusionalabilitymadethehighcontributionintheseparationoftwogroups.Atthesametime,thecontri-butionofothersensoryparametersinthedivisionwaslessexpressed.DiscussionThisresearchaimedtodescribethetransformationofthevisualsystemfunctionalorganizationduringthepresbyopiaformation.Theresultsofthestudybroadenourunderstandingofthepresbyopiamechanisms.Itwasfoundthatthestructuralandfunctionalstateofthevis-ualsysteminmiddle-agedpatientswithpresbyopiaissignificantlydifferentfromyoungpeople.Thereductionoftheaccommodationissignificant,butnottheonlysignofvisualtransformationinpatientswithpresbyopia.Theincreaseinthenumberofopticalerrorsdespitethepupiltourdecreaseworsenstheconditionsfortheformationoftheretinalimage.Theformationofpres-byopiaisaccompaniedbythemisalignmentofvisualsen-soryprocessingwithvaryingdegreesoffunctionaldefectseverity(Fig.8).Thedecreaseofthecontrastsensitivityatfrequenciesbelowfourcpdreflectstheamplificationofthevisualsysteminternalnoise(atthelevelofreceptivefields).Whereasthecontrastsensitivityathighspatialfrequen-ciesislimitedwithopticalparameters(aberrations,dif-fractionphenomenonor“samplingnoise”ofth

evisualimage).Thepatientswithpresbyopiahadthesignsbothinternalnoiseandsamplingnoise(noiseofsignalpro-cessing).Thechangeoftemporalparametersofthevis-ualsystematmiddleagepatientsindicatestheinitialdeficiencyofinteractionsbetweenneuronsandthesignsofthecentralnervoussystemfatigue.Thesechangescanbeviewedassignsofaging. Fig.6DistributionofPatientsDependingonthevalueofBinocularityFieldArea Fig.7CorrelationPleiadesofControlandPresbyopiaGroupsRozanovaetal.EyeandVision (2018) 5:1 Page7of10 Thenewdataaboutbinocularvisualsystemactivitywasestablished.Theprocessesofbinocularinteractioninhibitionmakeasignificantcontributiontothemis-alignmentofthevisualperception.Theareaofbinocu-larityfield,wherethedisparatefusionispossible,wasreducedtwice.Thevariationofproximalfusionlimitandadecreaseofthebinocularityfieldareaaremoreseriousthanthevariationinothersensorparameters.Ontheonehand,thisphenomenonmaybearesultofage-relatedchangesintheneurons.Ontheotherhand,theinhibitionprocesscanbemotivatedbythedesiretoliberatethebodyfromtheexcessiveflowofthevisualinformationundertheshortageofaccommodation.Theprocessofefferentsynthesisisanactiveselectionofin-formationaimedtoreleasebiologicallysignificantflowsandisformedinsuchintegralefferentexcitationsthatarerequiredbythebodyinagivensituation.Ourresultscorrespondtotherelevantstudies.Granger-Donettirevealedthatmajorityofpresbyopeshaddisordersofbinocularcooperationinsomedegreeduetoadecreaseintheslowconvergence[42].Theaccommodationampli-tudedecreaseisaccompaniedbytheincreaseofvergence Table4MatrixofmostinformativevariablesfordiscriminationstudiedgroupsDiscriminantFunctionAnalysisSummaryStep8,Wilks’Lambda:0.02771,approx.F(9.74)=288.46MahalanobisD2=139.84,p0,0001VariablesWilks’LambdaF-remove(1.74)p-levelToleranceUNVA0.068917110.01510.0000010.621721Proximalborderoffusionfield0.04934357.75210.0000010.667574Amplitudeofaccommodation0.04052834.21520.0000010.619955Binocularityarea0.03842128.58710.0000010.567583CoefficientcornealsphericalaberrationZ400.03760926.42060.0000020.545072Pupildiameterinphotopicconditions0.03373916.08660.0001430.718888Implicittimeb-wavemaxERG,msec0.0307838.19420.0054620.803496CSS,frequency3cpd,units0.0296725.22710.0251010.850332 Fig.8TheChangesofthevisualparameters(M)inpatientswithpresbyopiaincomparisonwithindicatorsofyoungpeopleRozanovaetal.EyeandVision (2018) 5:1 Page8of10 movementlatency,thereductionofthevergencefusionandthespeedofthefastvergence[43].Inthisstudy,weanalyzeddatainpeoplewiththevis-ualsystemthatmostlymeetstheideal.Eveninthissitu-ation,77%ofpresbyopiapatientshadbinocularityshortage.In6%ofcases,therewereprofoundsignsofthedeepinhibitionprocesses.Thesedataarelikelyuse-fulinpresbyopiasurgery.Theanalysisofthesurgeryre-sultsusingmonovisionormultifocalopticalstrategiesinpatientswithanextremedeficitofbinocularityisthenextstepofresearch.ConclusionsThepresbyopiaformationisaccompaniedbyasignificantreorganizationofthevisualsystemactivityandthecreationofthenewvisualprocessinginteractions.Itwasrevealedthat77%ofthepre

sbyopiapatientshadbinocu-larityshortage.Theoverallreductionofbinocularityfieldareainextremegradewasseenin6%ofcases.Thesedatamayhaveimplicationsforpresbyopiasurgery.AcknowledgementsTheauthorsaregratefultoIsayM.MikhalevichandVladimirV.Malyshevfortheirhelpandadvice.FundingTheauthorshavenofinancialsupportandsponsorship.Authors’contributionsOIRmadesubstantialcontributionstoconceptionanddesign,analysis,andinterpretationofdata,totalstatisticalanalysis,AGSreviseditcriticallyforimportantintellectualcontentandsupervision,TSMparticipatedindataacquisition,draftedthemanuscript.Allauthorsreadandapprovedthefinalmanuscript.CompetinginterestsTheauthorshavenoproprietaryorcommercialinterestsinthemedicaldevicesthatareinvolvedinthismanuscript.Authordetails1IrkutskbranchofS.FyodorovEyeMicrosurgeryFederalStateInstitution,Irkutsk,RussianFederation.2IrkutskStateMedicalUniversity,Irkutsk,RussianFederation.Received:31August2016Accepted:4January2018 References1.BelvilleJK,SmithRJ.Presbyopiasurgery.NewYork:SLACK;2006.2.HashemiH,KhabazkhoobM,JafarzadehpurE,MehravaranS,EmamianMH,YektaA,etal.Population-basedstudyofpresbyopiainShahroud,Iran.ClinExpOphthalmol.2012;40:863–8.3.HudsonC.Howtosucceedwithmultifocalcontactlenses.OptometryToday.2011;51:2.4.VarmaR,WangMY,Ying-LaiM,DonofrioJ,AzenSP;LosAngelesLatinoeyestudygroup.TheprevalenceandriskindicatorsofuncorrectedrefractiveerrorandunmetrefractiveneedinLatinos:theLosAngelesLatinoEyeStudy.InvestOphthalmolVisSci.2008;49:5264–73.5.PallikarisIG.Presbyopiasurgery.In:PallikarisI,PlainisS,CharmanWN,editors.Presbyopia:origins,effects,andtreatment.Danvers:Slack;2012.p.141–2.6.NijkampMD,DoldersMG,deBrabanderJ,vandenBorneB,HendrikseF,NuijtsRM.Effectivenessofmultifocalintraocularlensestocorrectpresbyopiaaftercataractsurgery:arandomizedcontrolledtrial.Ophthalmology.2004;111:1832–9.7.BellucciR.Multifocalintraocularlenses.CurrOpinOphthalmol.2005;16:33–7.8.ChangDF.MasteringrefractiveIOLs.Theartandscience.Thorofare,NJ:SLACK;2008.9.Gierek-CiaciuraS,CwalinaL,BednarskiL,Mrukwa-KominekE.Acomparativeclinicalstudyofthevisualresultsbetweenthreetypesofmultifocallenses.GraefesArchClinExpOphthalmol.2010;248:133–40.10.CochenerB,LafumaA,KhoshnoodB,CourouveL,BerdeauxG.Comparisonofoutcomeswithmultifocalintraocularlenses:ameta-analysis.ClinOphthalmol.2011;5:45–56.11.FriedrichR.Intraocularlensmultifocalitycombinedwiththecompensationforcornealsphericalaberration:anewconceptofpresbyopia-correctingintraocularlens.CaseRepOphthalmol.2012;3:375–83.12.LichtingerA,RootmanDS.Intraocularlensesforpresbyopiacorrection:past,present,andfuture.CurrOpinOphthalmol.2012;23:40–6.13.CalladineD,EvansJR,ShahS,LeylandM.Multifocalversusmonofocalintraocularlensesaftercataractextraction.CochraneDatabaseSystRev.2012;9:CD003169.14.JavittJC,SteinertRF.Cataractextractionwithmultifocalintraocularlensimplantation:amultinationalclinicaltrialevaluatingclinical,functional,andquality-of-lifeoutcomes.Ophthalmology.2000;107:2040–8.15.TanN,ZhengD,YeJ.Comparisonofvisualperformanceafterimplantationof

3typesofintraocularlenses:accommodative,multifocal,andmonofocal.EurJOphthalmol.2014;24:693–8.16.BassamA,DonnenfeldE.Bonusfeature:IOLExplantation:indicationsandstrategiesformultifocalIOLexplantation.CataractandRefractiveSurgeryToday.2011;4:18-20.17.BucciFAJr."VaselineVisionDysphotopsia"andExplantationoftheReSTORMultifocalImplant.InvestOphthalmolVisSci.2007;48(13):3119.18.Fernández-BuenagaR,AlioJL,Muñoz-NegreteFJ,BarraquerCompteRI,Alio-delBarrioJL.CausesofIOLexplantationinSpain.EurJOphthalmol.2012;22:762–8.19.ShimizuK,ItoM.Dissatisfactionafterbilateralmultifocalintraocularlensimplantation:anelectrophysiologystudy.JRefractSurg.2011;27:309–12.20.WoodwardMA,RandlemanJB,StultingRD.Dissatisfactionaftermultifocalintraocularlensimplantation.JCataractRefractSurg.2009;35:992–7.21.TimirasPS.Physiologicalbasisofagingandgeriatrics.4thed.Berkeley:InformaHealthcare;2007.22.GlasserA,CampbellMC.Biometric,opticalandphysicalchangesintheisolatedhumancrystallinelenswithageinrelationtopresbyopia.VisionRes.1999;39:1991–2015.23.CroftMA,McDonaldJP,KatzA,LinTL,Lütjen-DrecollE,KaufmanPL.Extralenticularandlenticularaspectsofaccommodationandpresbyopiainhumanversusmonkeyeyes.InvestOphthalmolVisSci.2013;54:5035–48.24.CroftMA,KaufmanPL.Roleoftheciliarymuscleandzonulainaccommodationandpresbyopia.In:PallikarisI,PlainisS,CharmanWN,editors.Presbyopia:origins,effects,andtreatment.Danvers:Slack;2012.p.69–76.25.AnokhinPK.Biologyandneurophysiologyoftheconditionedreflexanditsroleinadaptivebehavior.NewYork:PergamonPress;1974.26.MeersonFZ.Adaptation,stressandprophylaxis.Berlin:Springer-Verlag;1984.27.SudakovKV.Thetheoryoffunctionalsystems:generalpostulatesandprinciplesofdynamicorganization(dedicatedtotheAnokhinCentenary).IntegrPhysiolBehavSci.1997;32:392–414.28.RozanovaOI,ShchukoAG,MikhalevichIM,MalyshevVV.[Regularitiesandmechanismsofvisualperceptiontransformationinpresbyopiadevelopment].VestnOftalmol.2011;127:17–20.29.OwsleyC.Agingandvision.VisRes.2011;51:1610–22.30.CiuffredaKJ,ThiagarajanP.Presbyopiaandthevergencesystem.In:PallikarisI,PlainisS,CharmanWN,editors.Presbyopia:origins,effects,andtreatment.Danvers:Slack;2012.p.103–9.31.WernerJS,SchefrinBE,BradleyA.Opticsandvisionoftheagingeye.In:BassM,EnochM,LakshminarayananV,editors.HandbookofOptics.Vol.III.NewYork:McGrawHillInc;2010.32.AndersenGJ.Agingandvision:changesinfunctionandperformancefromopticstoperception.WileyInterdiscipRevCognSci.2012;3:403–10.33.LaframboiseS,DeGuiseD,FaubertJ.Effectofagingonstereoscopicinterocularcorrelation.OptomVisSci.2006;83:589–93.34.ShafieeD,JafariAR,ShafieAA.CorrelationbetweenInterpupillaryDistanceandstereoacuity.BullEnvPharmacolLifeSci.2014;3(12):26–33.35.EomY,SongJS,AhnSE,KangY,SuhYW,OhJ,etal.Effectsofinterpupillarydistanceonstereoacuity:theFrisbyDavisdistancestereotestversusa3-dimensionaldistancestereotest.JpnJOphthalmol.2013;57:486–92.Rozanovaetal.EyeandVision (2018) 5:1 Page9of10 36.PavlinCJ,FosterFS.Ultrasoundbiomicroscopyoftheeye.NewYork:Springer-Verlag;1995.37.MogilevLN.Mechanismsofspatialvisi

on.Leningrad:Nauka;1982.(inRussian)38.RabitchevIE.Themechanismsofbinocularfunctioncorrectionatdifferentformsofstrabismus.JFrd’Orthoptique.1998;30:153–9.(inFrench)39.HofstetterHW.DictionaryofVisualScienceandRelatedClinicalTerms.Boston:Butterworth-Heinemann;2000.40.RychkovaSI,NinioJ.Paradoxicalfusionoftwoimagesanddepthperceptionwithasquintingeye.VisionRes.2009;49:530–5.41.ByShchukoAG,MalyshevVV.Theoreticalandclinicalbinarimetry.Novosibirsk:Nauka;2006.(inRussian)42.Granger-DonettiB.Centralsuppressionatnearvisioninpresbyopicsubjects.Perception.2006;35(Suppl1):172.43.CiuffredaKJ.Accommodation,pupil,andpresbyopia.In:BenjaminWJ,editor.Borish’sclinicalrefraction.St.Louis:ButerworthHeinemann;2006.p.93–144. • We accept pre-submission inquiries  Our selector tool helps you to Þnd the most relevant journal We provide round the clock customer support  Convenient online submission Thorough peer review Inclusion in PubMed and all major indexing services  Maximum visibility for your researchSubmit your manuscript atwww.biomedcentral.com/submitSubmit your next manuscript to BioMed Central and we will help you at every step: Rozanovaetal.EyeandVision (2018) 5:1 Page10of10 RESEARCHOpenAccess FundamentalsofPresbyopia:visualprocessingandbinocularityinitstransformationOlgaI.Rozanova1*,AndreyG.Shchuko1,2andTatyanaS.Mischenko1AbstractBackground:Theaccommodationhasconsiderableinteractionswiththepupilresponse,vergenceresponseandbinocularity.Thetransformationofvisualreceptionprocessingandthechangesofthebinocularcooperationduringthepresbyopiadevelopmentarestillpoorlystudied.So,theregularitiesofvisualsystemviolationinthepresbyopiaformationneedtobecharacterized.Thisstudyaimstorevealthetransformationofvisualreceptionprocessingandtodeterminetheroleofdisturbancesinbinocularinteractionsinpresbyopiaformation.Methods:Thisstudyincluded60peoplewithemmetropicrefraction,uncorrecteddistancevisualacuity1.0orhigher(decimalscale),normalcolorperception,withoutconcomitantophthalmopathology.Thefirstgroupconsistedof30people(from18to27yearsold)withoutpresbyopia,thesecondcohortcomprised30patients(from45to55yearsold)withpresbyopia.Theeyeballanatomyandopticswereevaluatedusingultrasoundbiomicroscopy,aberrometry,and *Correspondence:olgrozanova@gmail.com1IrkutskbranchofS.FyodorovEyeMicrosurgeryFederalStateInstitution,Irkutsk,RussianFederationFulllistofauthorinformationisavailableattheendofthearticle ©TheAuthor(s).2018OpenAccessThisarticleisdistributedunderthetermsoftheCreativeCommonsAttribution4.0InternationalLicense(http://creativecommons.org/licenses/by/4.0/),whichpermitsunrestricteduse,distribution,andreproductioninanymedium,providedyougiveappropriatecredittotheoriginalauthor(s)andthesource,providealinktotheCreativeCommonslicense,andindicateifchangesweremade.TheCreativeCommonsPublicDomainDedicationwaiver(http://creativecommons.org/publicdomain/zero/1.0/)appliestothedatamadeavailableinthisarticle,unlessotherwisestated.Rozanovaetal.EyeandVision (2018) 5:1 DOI10.1186/s40662-018-009

Related Contents


Next Show more