PPT-1 Online Feature Selection for Information Retrieval

Author : briana-ranney | Published Date : 2016-04-13

Niranjan Balasubramanian University of Massachusetts Amherst Joint work with Giridhar Kumaran and Vitor Carvalho Microsoft Corporation James Allan University

Presentation Embed Code

Download Presentation

Download Presentation The PPT/PDF document "1 Online Feature Selection for Informati..." is the property of its rightful owner. Permission is granted to download and print the materials on this website for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.

1 Online Feature Selection for Information Retrieval: Transcript


Niranjan Balasubramanian University of Massachusetts Amherst Joint work with Giridhar Kumaran and Vitor Carvalho Microsoft Corporation James Allan University of Massachusetts Amherst. CSC 575. Intelligent Information Retrieval. Intelligent Information Retrieval. 2. Retrieval Models. Model is an idealization or abstraction of an actual process. in this case, process is matching of documents with queries, i.e., retrieval. Pattern Completion and Recapitulation. Episodic Retrieval and the Frontal Lobes. Cues for Retrieval. The Second Time Around: Recognizing Stimuli by Recollection and Familiarity. Misremembering the Past. By . Rong. Yan, Alexander G. and . Rong. Jin. Mwangi. S. . Kariuki. 2008-11629. Quiz. What’s Negative Pseudo-Relevance feedback in multimedia retrieval?. Introduction. As a result of high demand of content based access to video information.. CSC . 575. Intelligent Information Retrieval. 2. Source: . Intel. How much information?. Google: . ~100 . PB a . day; 3+ million servers (15 . Exabytes. stored). Wayback Machine has . ~9 . PB + . 100 . Date :. . 2012 . / . 04. . / . 12. 資訊碩一 . 10077034. 蔡勇儀 . @. . LAB603 . Outline. Introduction. Preliminaries. Method. Experimental result. Conclusions. Introduction. Image retrieval have more challenge than text retrieval.. Hang Xiao. Background. Feature. a . feature. is an individual . measurable heuristic property of a phenomenon being observed. In character recognition: . horizontal and vertical . profiles, . number of internal holes, stroke . Information. Miles Efron, Jana . Diesner. , Peter . Organisciak. , Garrick Sherman, Ana . Lucic. {. mefron. , et al.}@. illinois.edu. GSLIS 2012. TREC: The Text REtrieval Conference. NIST. Web. Legal. ChengXiang. (“Cheng”) . . Zhai. Department of Computer Science. University of Illinois at Urbana-Champaign. http://www.cs.uiuc.edu/homes/czhai. . Email: czhai@illinois.edu. 1. Yahoo!-DAIS Seminar, UIUC. Class Activity. Action: . Write. down the . 4 or 5 points. that most impact you from this presentation.. You will need this for the group activity at the end of this presentation.. Key to Learning. What is IR?. Sit down before fact as a little child, . be prepared to give up every conceived notion, . follow humbly wherever and whatever abysses nature leads, . or you will learn nothing. . . -- Thomas Huxley --. Fatemeh. Azimzadeh. Books. (Manning et al., 2008). Christopher D. Manning, . Prabhakar. . Raghavan. , and . Hinrich. . Schütze. . Introduction to Information Retrieval. Cambridge University Press, 2008. . . SYFTET. Göteborgs universitet ska skapa en modern, lättanvänd och . effektiv webbmiljö med fokus på användarnas förväntningar.. 1. ETT UNIVERSITET – EN GEMENSAM WEBB. Innehåll som är intressant för de prioriterade målgrupperna samlas på ett ställe till exempel:. Objects from Satellite Imagery Using Genetic AlgorithmByEyad A Alashqar120110378Supervised byProf Nabil M HewahiA Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master i Retrieval Practice: Lesson 3. 1. What is an . autobiography. ?.  .  2. Does Roald Dahl consider . Boy . to be an . autobiography. ? Why or why not?.  .  3. What is an . anecdote. ?.  . 4. Describe one .

Download Document

Here is the link to download the presentation.
"1 Online Feature Selection for Information Retrieval"The content belongs to its owner. You may download and print it for personal use, without modification, and keep all copyright notices. By downloading, you agree to these terms.

Related Documents