/
1IntroductionThequanticationofmarketriskforderivativepricing,forportf 1IntroductionThequanticationofmarketriskforderivativepricing,forportf

1IntroductionThequanti cationofmarketriskforderivativepricing,forportf - PDF document

briana-ranney
briana-ranney . @briana-ranney
Follow
361 views
Uploaded On 2016-03-16

1IntroductionThequanti cationofmarketriskforderivativepricing,forportf - PPT Presentation

2PositivehomogeneityForanyX2L2and0wehaveXX3MonotonicityForanyXandY2L2suchthatXYthenXY4SubadditivityForanyXandY2L2XYXYThesepropertiesinsurethatdiversi cationr ID: 257635

2.Positivehomogeneity:ForanyX2L2and0;wehave(X)=(X):3.Monotonicity:ForanyXandY2L2 suchthatXYthen(X)(Y):4.Subadditivity:ForanyXandY2L2 (X+Y)(X)+(Y):Thesepropertiesinsurethatdiversi cationr

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "1IntroductionThequanti cationofmarketris..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

1IntroductionThequanti cationofmarketriskforderivativepricing,forportfoliooptimizationandpricingriskforinsurancepurposeshasgeneratedalargeamountoftheoreticalandpracticalwork,withavarietyofinterconnections.Twolinesofresearchintheseareasarebasedupon,anduseaspointofdepartureaxiomsthatboth,themarketriskmeasureandtheriskpricingmeasure,havetosatisfy.ValueatRisk(VaR)isoneofthemostpopularriskmeasures,duetoitssimplic-ity.VaRindicatestheminimallossincurredintheworseoutcomesaportfolio.Butthisriskmeasureisnotalwayssub-additive,norconvex.Toovercomethis,Artzner,Delbaen,EbnerandHeath(1999)proposedthemainpropertiesthatariskmeasuresmustsatisfy,thusestablishingthenotionofcoherentriskmeasure.Aftercoherentriskmeasuresandtheirpropertieswereestablished,otherclassesofmeasureshavebeenproposed,eachwithdistinctiveproperties:convex(FollmerandShied,2004),spectral(Acerbi,2002)ordeviationmeasures(Rockafellaretal.2006).ThecoherentriskmeasureshavebeenusedforcapitalallocationandportfoliooptimizationasinRockafellar,UryasevandZabarankin(2002),aswellastopriceoptionsinincompletemarkets,asinCherny(2006).Spectralriskmeasuresarecoherentriskmeasuresthatsatisfytwoadditionalcon-ditions.Thesemeasureshavebeenappliedtofuturesclearinghousemarginre-quirementsinCotterandDowd(2006).AcerbiandSimonetti(2002)extendtheresultsofP ugandRockafellar-Uryasevmethodologytospectralriskmeasures.AdescriptionoftheaxiomsofriskpricingmeasureswithmanyapplicationstoinsurancecanbefoundinWang,YoungandPanjer(1997),andinthemonographbyKass,Goovaerts,DhaeneandDenuit(2001).Theconceptofdistortedriskmeasuresevolvedfromthislineofworkandtiesinwiththenotionofcapacity.Capacitiesarenon-additive,monotonesetfunctionswhichextendthenotionofintegralinapeculiarway.Theevolutionofthisconcept,fromChoquet'sworkinthe1950'suntilthe1990'scanbetracedbackfromthereviewbyDenneberg(1997).Interestinglyenough,therehavebeensomenaturalpointsofcontactbetweenactuarialand nancialrisktheory.Ontheonehand,conceptsinactuarialrisk2 2.Positivehomogeneity:ForanyX2L2and0;wehave(X)=(X):3.Monotonicity:ForanyXandY2L2,suchthatXYthen(X)(Y):4.Subadditivity:ForanyXandY2L2,(X+Y)(X)+(Y):Thesepropertiesinsurethatdiversi cationreducestheriskoftheportfolioandifpositionsizedirectlyincreasesrisk(consequencesoflackofliquidity)thenitisaccountedinthefuturenetworthoftheposition.OneexampleofcoherentriskmeasuresistheConditionalValueatRisk(CVaR).Thismeasureindicatestheexpectedlossincurredintheworstcasesoftheposition.ItisthemostpopularalternativetotheValueatRiskmeasures.CVaR (X)=�1 Z 0VaRt(X)dt;whereVaRt(X)=supfx:P[X�x]�tgSpectralriskmeasuresarede nedbyageneralconvexcombinationofConditionalValueatRisk.De nition2.2Anelement2L1([0;1])iscalledanadmissibleriskspectrumif1.02.isdecreasing3.kk=R10j(t)jdt=1:De nition2.3Foranadmissibleriskspectrum2L1([0;1])theriskmeasure(X)=�Z10qX(u)(u)duiscalledthespectralriskmeasuregeneratedby.iscalledtheRiskAversionFunctionandassigns,infact,di erentweightstodi erentp-con dencelevelsofthelefttail.Anyrationalinvestorcanexpresshersubjectiveriskaversionbydrawingadi erentpro lefortheweightfunction.Spectralriskmeasuresareasubsetofcoherentriskmeasuresasmovedby4 2.gisnon-decreasingfunction.Forapplicationstoinsuranceriskpricingitisconvenienttothinkoftheliabilitiesaspositivevariables,werestrictourselvestoX2L+2(P),i.e.,topositiverandomvariableswith nitevariance,whichwethinkaboutaslossesorliabilities.Ifweweretorelatethistothepreviousinterpretation,wewouldsaythatourpositionis�X:Thecompaniontheoremcharacterizingthedistortedriskmeasureinducedbygisthefollowing.Theorem2.2De nethedistortedriskmeasureDg(X)inducedbygontheclassL2(P)byDg(X)=Z10g(S(x))dx+Z0�1[g(S(x))�1]dx;(3)whereS(x)=1�FX(x).ThenDg(X)hasthefollowingproperties:1.XYimpliesDg(X)Dg(Y):2.Dg(X)=Dg(X)forallpositive:Dg(c)=cwhenevercisaconstantrisk.3.IftherisksXandYarecomonotone,thenDg(X+Y)=Dg(X)+Dg(Y):4.IfgisconcavethenDg(X+Y)Dg(X)+Dg(Y):5.IfgisconvexthenDg(X+Y)Dg(X)+Dg(Y):HardyandWirch(2001)haveshownthatariskmeasurebasedonadistortionfunctioniscoherentifandonlyifthedistortionfunctionisconcave.Itcanbeshownthatifgisconcavethegeneratedriskmeasureisspectral.Adistortionriskmeasureistheexpectationofanewvariable,withchangedprobabilities,re-weightingtheinitialdistribution.Example2.3TheVaRcanbede nedbythedistortionfunction:g(x)=(0ifx 1ifx ;(4)6 Thefollowingcharacterizationsareimportant:foru2(0;1)andx2R.Wehave:q+X(u)x,P(Xx)uqX(u)x,P(Xx)u:(6)Also,foru2(0;1);thefactthatQX(u)=[qX(u);q+X(u)];canbeusedtoestablishthatQ�X(u)=�QX(1�u);andinparticularthatq�X(u)=�qX(1�u):Fortheproofofthe rsttheoremofsection3,weshallneedthefollowingversionofthetransferencetheorem(seesection6.5inKingmanandTaylor(1966)).SetG(x)=P(Xx)=F(x�):ThenclearlyG(x)isincreasingandleftcontinuous.WehaveTheorem2.4(Transferencetheorem)(a)Foreverypositive,measurableh:(0;1)!RwehaveZ10h(u)dq+(u)=ZRh(G(x))dx;whereq+denotestherightquantileofF(x)=P(Xx):(b)Foreverypositive,measurableh:R!R;andeverycontinuousincreasingg:[0;1]![0;1],wehaveZ10h(qX(u))dg(u)=Z1�1h(x)d(gFX)(x):Proof:Toprove(a)itsucestoprovetheresultforh(u)=I(a;b](u)with0ab1:Inthiscase,involvingthecharacterization(6),wehavethatZ10I(a;b](u)dq+(u)=q+(b)�q+(a)=ZRI(q+(a);q+(b)](x)dx=ZRI(a;b](G(x))dx;whichconcludestheproofof(a):Toprove(b),weconsiderqX:((0;1);dg)!R;andtoidentifythetransferedmeasureitsucestoconsiderh(x)=I(a;b](x):Denotingby~gthetransferedmeasure,wehaveZ10h(qX(u))dg(u)=Z1�1h(x)d~g(x);therefore~g(b)�~g(a)=R10I(a;b](x)(qX(u))dg(u)=R10I(FX(a);FX(b)](u)dg(u)=(gFX)(b)�(gFX)(a);forwhichweinvoke(6)oncemore.28 Example3.1TheriskmeasureCVaRisaspectralriskmeasure(seeExample2.1).Ifweapplytheprevioustheoremto(2)wehavethattheConditionalValueatRiskisadistortionriskmeasurede nedby:g(u)=Zu0(s)ds=Zu01 1f0s g=(u ifu 1ifu :WethusreobtaintheresultofExample2.4Theprevioustheoremadmitsthefollowingreciprocal,theproofofwhichfollowsreversingthestepsoftheproofoftheprevioustheorem.Theorem3.2Letgaconcavedistortionfunction,andletDgbetheassociateddistortedriskmeasure.Then(u)=g0(u)de nesaspectralmeasuresuchthat(X)=Dg(�X):Example3.2WenowcalculatetheRiskAversionFunctionforthedistortionriskfunctionslistedinExample2.5.1.Dual-powermeasure:(u)=(1�u)�1with1.2.Proportionalhazardmeasure:(u)=1 u1 �1,with 1.3.Wang'smeasure: (u)=e[� �1(u)� 2 2].ObservethatforProportionalHazardandWang'smeasures,theRiskAversionfunctionisnotboundedatzero.Moreover,theRiskAversionfunctiontheWang'smeasuredecreasesmorequicklythanthatofProportionalHazard's.Therefore,theinvestorusingWang'sriskmeasureismoreriskaversethananinvestorthatmeasurestheriskbytheProportionalHazarddistortionbecausethe rstinvestorgivesmoreimportancetohigherlosesthanthelatter.Wehavethusestablishedthatbothmethodstoconstructriskmeasures,eitherbymeansofdistortionriskfunctionsorbyadmissiblespectralfunctions,areequivalent.Inboth,theriskmeasurecanbethoughtofasare-weightingoftheinitialdistribution.Moreover,thederivativeofthedistortionriskfunctionindicatesthewayofthisre-weighting,asBalbaset.al.(2006)haveindicated.Comment3.2Thesecorrespondencesalsoprovideanindirectproofofthefactthatforaconcavedistortionfunctiong,theriskmeasurede nedby3isacoherentriskmeasure.10 Proof:De neg(u)=Ru0 (q(s))ds,wherefor0u1.Wedenotebyq(u)theleftcontinuousinverseofF:Clearly,gisincreasing,continuous,withg(0)=0andg(1)=1:Letusnowverifythatg(F(x))=F(x):Anapplicationofthetransferencethe-orem(oravariationonthechangeofvariablestheme,seeKingmanandTaylor,(1970))yieldsthatF(x)=Rx�1 (t)dF(t)=RRI(�1;x])(t) (t)dF(t)=R10I(�1;x])(F�1(u)) (F�1(u))du=RF(x)0 (F�1(u))du=g(F(x));sinceuF(x),F�1(u)x.2Comment4.1Thistheoremassertsthatanytwopossibledistributionsassignedtoagivenrandomvariable,canberelatedbymeansofadistortionfunction.Theorem4.2Letgbeapiecewisecontinuouslydi erentiabledistortionfunctionasabove,andFX(x)beacontinuous,andstrictlyincreasingdistributionfunctiononitssupport.Thenthemeasuredm=dFXon(R;B(R)),inducedbythedis-torteddistributionfunctionFX,isabsolutelycontinuouswithrespecttodm=dFXhavingdensity (x)=g0(FX(x)):Proof:ItboilsdowntonoticingthatFX(x)=g(FX(x))impliesthatdFX(x)=g0(FX(x))dFX(x).2Comment4.2Inthiscasetherelationshipbetweendistortedmeasuresandspec-tralriskmeasuresiseasytoestablish.NotethatE[X]=�E[�X]=�R1�1xdF�X(x)=�R1�1xg0(F�X(x))dF�X(x)=�R10q�X(u)g0(u)du=(�X)ifweidentify(u)withg0(u):Thefollowingresultshowstherelationshipbetweenspectralriskmeasures,andthosebasedondistortionfunctionsandrelativeentropy.Theorem4.3LetXbearisksuchthatFXiscontinuousandstrictlyincreas-ingonitssupport.Thenthespectral,thedistortedandtherelativeentropyrisk12 distortionfunctionsarestrictlyincreasingandcontinuous,thedi erenceoftheagent'sriskaversionisgivenbyh=g1g�12.5ConclusionsWehaveestablishedthatspectralriskmeasuresarerelatedtodistortedriskpric-ingmeasures.Thuswehavetworepresentationsathandforagivenriskmeasure,andmaychoosewhicheverrepresentationismoreconvenientfortheapplicationathand.Also,distortedriskpricingmeasuresturnouttobeabsolutelycontinuouswithrespecttothemeasurethattheydistort.Thisallowsus,forexample,tointerpretdi erentphysicalprobabilities(ordi erentgeneralizedscenarios)asdis-tortedviewsofreality,onewithrespecttotheother.Moreover,welinkspectralriskmeasures,andthosebasedondistortionfunctionsandrelativeentropy.AcknowledgmentWewanttothanktherefereesandtheeditorfortheircom-ments,whichimprovedthepaper.References[1][A]Acerbi,C.(2002)Spectralmeasuresofrisk:acoherentrepresentationofsubjectiveriskaversion,JournalofBankingandFinance,7,1505{1518.[2][AS]Acerbi,C.,Simonetti,P.(2002)Portfoliooptimizationwithspectralmeasuresofrisk,WorkingPaper,Abaxbank,www.gloriamundi.com.[3][ADEH]Artzner,P.,Delbaen,F.,Eber,J.M.andHeath,D.(1999)Coherentmeasuresofrisk,MathematicalFinance,9203-228.[4][B]Balbas,A.,Garrido,J.,Mayoral,S.(2006)Propertiesofdistortionriskmeasures,WorkingPaper,UniversityofNavarra.[5][Ch]Cherny,A.S.(2006)Pricingwithcoherentrisk,www.citebase.org.[6][C]Cotter,J.,Dowd,K.(2006)Extremespectralriskmeasures:anapplica-tiontofuturesclearinghousemarginrequirements.JournalofBankingandFinance,30,3469{3485.[7][De]DennebergD.(1997).Non{AdditiveMeasureandIntegral.Dordrecht-Boston-London:KluwerAcademicPublishers.14 [21][L]Laurent,J.P.,GourirouxC.andScailletO.(2000)SensitivityanalysisofValuesatRisk,JournalofEmpiricalFinance,7(3-4),225{245.[22][MU]Madan,D.B.andUnal,H.(2004)Risk-neutralizingstatisticaldistribu-tionswithapplicationtopricingreinsurancecontractsonFDIClossesFDICCenterforFinancialResearchWorkingPaper,No.2004-01.[23]P ug,G.(2006)Ondistortionfunctionals,StatisticsandDecisions,24,45{60.[24][RMcL]Reesor,R.M.andMcLeish,D.L.(2003)Risk,entropy,andthetrans-formationofdistributions,NorthAmericanActuarialJournal,7(2),128{144.[25][RUZ]Rockafellar,R.T.;Uryasev,S.andZabarankin,M.(2006)GeneralizeddeviationmeasuresinriskanalysisFinanceandStochastics,10,51-74.[26][S]Schweitzer,M.(2001)Fromactuarialto nancialvaluationprinciples,Insurance:MathematicsandEconomics,28,31-47[27][W]Wang,S.S.(1996).Premiumcalculationbytransformingthelayerpre-miumdensity,ASTINBulletin,26,71-92.[28][WYP]Wang,S.,Young,V.andPanjer,H.H.(1997)Axiomaticcharacteri-zationofinsuranceprices,Insurance:MathematicsandEconomics,21,173-183.[29][W]Wang,S.(2002)Auniversalframeworkforpricing nancialandinsur-ancerisks,ASTINBulletin,32,213-234.16

Related Contents


Next Show more