/
Boštjan Boštjan

Boštjan - PowerPoint Presentation

briana-ranney
briana-ranney . @briana-ranney
Follow
375 views
Uploaded On 2016-09-11

Boštjan - PPT Presentation

Golob University of Ljubljana Jožef Stefan Institute amp BelleBelle II Collaboration The Belle II Project University of Ljubljana Jožef Stefan Institute Epiphany Conference ID: 464376

accelerator introduction calorimeter vertex introduction accelerator vertex calorimeter pid belle general super superkekb lhcb intensity frontier hnn requirements higher

Share:

Link:

Embed:

Download Presentation from below link

Download Presentation The PPT/PDF document "Boštjan" is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Slide1

Boštjan

Golob

University of Ljubljana/

Jožef

Stefan Institute & Belle/Belle II Collaboration

The

Belle

II Project

University

of Ljubljana

“Jožef Stefan”

Institute

Epiphany Conference

,

Cracow, January 2012

Introduction

PID

AcceleratorCalorimeterVertexGeneral

Introduction

Accelerator

Detector

Vertex

physics example

PID

physics example

Calorimeter

physics example

General requirementsSlide2

Introduction

Quest for NP...

....consists of energy frontier

direct observation of new particles &

processes using highest achievable energies

intensity frontier indirect observation of

NP effects on (rare) known processes

(cosmic frontier)

Introduction

PID

Accelerator

Calorimeter

Vertex

General

bližina otoka Veli Drvenik, sept. 2011

Intensity frontier

Energy frontierSlide3

Introduction

Quest for NP

LHC at the energy frontier

V. Sharma, LP11 conference

95% C.L. exclusion limits in mass

SUSY plane

H. Bachacou, LP11 conference

95% C.L. exclusion limits on MSSM A

0

1 TeV

SUSY in the simplest forms

seems to be excluded

Introduction

PID

Accelerator

Calorimeter

VertexGeneralSlide4

Introduction

Quest for NP

B factories, LHCb, ... at the intensity frontier

B mesons sector

D mesons sector

b

=

CKM Fitter, Summer 2011

HFAG, December 2011

Hints of deviations from SM at few

s

level

Introduction

PID

Accelerator

Calorimeter

Vertex

Generaldirect measurementindirect determinationSlide5

Introduction

Quest for NP

Intensity frontier requirements for future facilities (quark sector)

s

1/

N 

O(102) higher luminosity

complementarity to other intensity frontiers experiments (LHCb, BES III, ....); accurate theoretical predictions to compare to

NP flavor violating

couplings(

1 in MFV)

NP reach in terms

of mass

Terra Incognita

Illustrative reach of NP searches

Introduction

PID

Accelerator

Calorimeter

Vertex

GeneralSlide6

Introduction

Accelerator

B-Factory”,

KEKB @ KEK

KEKB:

e

-

(HER): 8.0

GeV

e

+ (LER): 3.5 GeVcrossing angle:

22 mrad

ECMS=M(U(4S))c

2dNf/dt = s(e

+e-→f)

L

Tokyo (40 mins by Tsukuba Exps)BelleHERLER Ldt = 1020 fb-12010

1999

accelerator

institute

e

-

e

+

(1.02 ab

-1

)

Introduction

PID

Accelerator

Calorimeter

Vertex

GeneralSlide7

Introduction

s

(

e

+

e

-

c c)  1.3 nb (~1.3x10

9 X

cY

c pairs)

”continuum” production

“on resonance” productione+e-

→ U

(4S) → B

d0Bd0, B+B- s(e+e- → BB)  1.1 nb (~109 BB pairs)

Belle 

L

dt

1020 fb

-1

Accelerator

B-Factory”,

KEKB

@

, KEK

s

(e

+

e

-

→hadroni) [nb]

b

b

u,d

b

b

u,d

U

(4S)

B

d

0

, B

+

B

d

0

, B

-

energ

. threshold

for

BB

production

g

*

c

c

e

-

e

+

hadrons

hadrons

Introduction

PID

Accelerator

Calorimeter

Vertex

General

running at

Y(nS)

, e.g.

Y(5S)

(

B

s

B

s

)Slide8

Accelerator

Super

KEKB

s

x

~100

m

m,

sy~2mm

sx~10mm,

sy~60

nm

e

-

e+Nano beams design(P. Raimondi)

small b

y*large xy  (by*/ey)  small eyhourglass effect  small bx*increase Ib

*: beta-function (trajectories

envelope) at

IP

x

y

: b

eam-beam parameter

L

[s

-1

cm

-2

]

∫L

dt

[ab

-1

]

design

L

=8·10

35

s

-1

cm

-2

current B factories

∫L

dt=10 ab

-1

(2018)

∫L

dt=50 ab

-1

(2022)

Introduction

PID

Accelerator

Calorimeter

Vertex

General

KEKB

SuperKEKBSlide9

Accelerator

Damping ring

Low emittance gun

Positron source

New beam pipe

& bellows

Belle II

New IR

TiN

-coated beam pipe with antechambers

Redesign the lattices of HER & LER to squeeze the

emittance

Add / modify RF systems for higher beam current

New positron target / capture section

New superconducting /permanent final focusing quads near

the

IP

Low

emittance

electrons to inject

Low

emittance

positrons to inject

Replace short dipoles with longer ones (LER)

Super KEKB

e

+

e

-

Introduction

PID

Accelerator

Calorimeter

Vertex

GeneralSlide10

Detector

CsI(Tl) EM calorimeter:

waveform sampling

electronics, pure CsI for end-caps

4 layers DSSD

2 layers PXD

(DEPFET) +

4 layers DSSD

Central Drift Chamber:

smaller cell size,

long lever arm

7.4 m

7.1 m

Time-of-Flight, Aerogel

Cherenkov Counter

Time-of-Propagation counter (barrel), prox. focusing Aerogel RICH (forward)RPC m & KL counter: scintillator + Si-PM for end-caps

1.5 m

3.3 m

Belle II

Introduction

PID

Accelerator

Calorimeter

Vertex

GeneralSlide11

Vertex detector

PXD+SVD Belle II

r [cm]

SVD Belle

z [cm]

sBelle Design Group, KEK Report 2008-7

DSSD’s

pixels

z [cm]

DEPFET matrix

DCDB

R/O chip

Switcher control chip

prototype DEPFET

sensor

DEPFET mockup

Si Vertex Det.

Belle

Belle II

10

m

m

20

m

m

z impact parameter

resolution

p

b

*

sin

5/2

(

q

) [GeV/c]

Introduction

PID

Accelerator

Calorimeter

Vertex

GeneralSlide12

t-dependent CPV

B → K

* (→KS

p0)

g t-dependent CPV

SM: SCP

K*g

 -(

2ms/mb

)sin2f1  -0.04Left-Right Symmetric Models: SCP

K*g  0.67 cos2

f1  0.5

SCPKsp

0g = -0.15 ±0.20 A

CPKsp0g

= -0.07 ±0.12 HFAG, Summer’11

(~SM prediction)

D. Atwood et al., PRL79, 185 (1997)

B. Grinstein et al., PRD71, 011504 (2005)s(SCPKsp0g)= 0.09 @ 5 ab-1 0.03 @ 50 ab-1

t-dependent decays rate of

B → f

CP

;

S

and

A

: CP violating parameters

5 ab

-1

50 ab

-1

Introduction

PID

Accelerator

Calorimeter

Vertex

GeneralSlide13

Proximity focusing Aerogel RICH

(endcap)

PID

Time Of Propagation counter (barrel)

partial Cerenkov ring reconstruction

from x, y and t of propagation

prototype quartz bar

Hamamatsu

16ch MCP-PMT

Aerogel radiator

Hamamatsu

HAPD

Cherenkov photon

200mm

n~1.05

Hamamatsu

HAPD

Aerogel

Introduction

PID

Accelerator

Calorimeter

Vertex

General

x

ySlide14

Direct CPV

DCPV puzzle:

tree+penguin processes,

B+(0)

→K+

p0(-)

DA

Kp=

A(K+

p -)- A(K+p 0)= -0.1

27±0.022

model independent sum rule:

A(K

0

p+)=0.009 ±0.025A(K+

p0)=0.050 ±0.025A(K+p-)=-0.098 ±0.012A(K0p

0)=-0.01 ±0.10

M. Gronau, PLB627, 82 (2005);

D. Atwood, A. Soni, PRD58, 036005 (1998)HFAG, Summer’11Belle II 50 ab-1A(K0p0)A(K0p+)sum rule

d

A(K

+

p

0

)

measured

(HFAG)

expected

(sum rule)

Belle, Nature 452, 332 (2008), 480 fb

-1

misidentif.

bkg.

B

0

→K

+

p

-

Introduction

PID

Accelerator

Calorimeter

Vertex

General

P. Chang

,

EPS

11Slide15

EM Calorimeter

ECL (barrel):

new electronics with2MHz w

ave form sampling

ECL (endcap):

pure CsI crystals;(may be staged)

faster performance and better rad. hardness than Tl doped CsI

t

ECL

signal

t

ECL

signal

amplitude

time sampling

2x improved

s

at 20x bkg.

Introduction

PID

Accelerator

Calorimeter

Vertex

General

trigger

trigger

off-time

bkg.

signalSlide16

E

miss

measurements

B

tn,

hnn

, ...

fully (partially) reconstruct B

tag;reconstruct h from Bsig→hnn

or t(→

hn)n;

no additional energy in EM calorim.; signal at EECL

~0;Btag

full reconstruction:NeuroBayes;TOP detector;ECL, increased background

;Example of B  hnn measurement:

Missing E

(

n

)

B

sig

tn

candidate

event

B

sig

B

tag

--

exp. signal (20xBr)

exp. bkg. (scaled to sideband)

Belle, PRL99, 221802 (2007), 490 fb

-1

hadr. tag

signal

region

Introduction

PID

Accelerator

Calorimeter

Vertex

General

B

(B

0

K*

0

nn

) < 3.4 ·10

-4

@ 90% C.L.Slide17

E

miss

measurements

B

hn

n

B

sigBtag (hnn)(X

ln) semil. tag

(

hnn)(X) hadr. tag

B

(B+  K(

*)+nn) can be measured to ±30% with 50 ab-1

;limits on right-handed

currents

W. Altmannshofer et al., arXiv:0902.0160

SM

Introduction

PID

Accelerator

Calorimeter

Vertex

GeneralSlide18

SuperKEKB requirements

O(10

2) higher luminosity

SuperKEKB will deliver 50 ab-1

complementarity to other intensity frontiers

experiments (LHCb, BES III, ....);

accurate theoretical predictions to compare to

∫L

dt[ab-1

]

current B factories

∫L

dt=50 ab

-1 (2022)

2010 2012 2014 2016 2018 2020 2022

Introduction

PID

AcceleratorCalorimeterVertexGeneralSlide19

SuperKEKB requirements

O

(102) higher luminosity

complementarity to other intensity frontiers experiments (LHCb, BES III, ....);

accurate theoretical predictions to compare to

G. Isidori

et al.,

Ann.Rev.Nucl.Part.Sci.

60, 355 (2010)

Super B factory

LHCb

K experiments

Introduction

PID

Accelerator

Calorimeter

Vertex

General

B

(B

X

s

g

) 6% Super-B

B

(B

X

d

g

) 20% Super-B

S(B

rg

) 0.15 Super-B

B

(

t

mg

)

3

·

10

-9

Super-B (90% U.L.)

B

(B

+

D

tn

) 3% Super-B

B

(B

s

gg

)

0.25

·

10

-6

Super-B (5 ab

-1

)

sin

2

q

W

@

U

(4S)

3

·

10

-4

Super-B Slide20

SuperKEKB requirements

Introduction

PID

Accelerator

Calorimeter

Vertex

General

Methods and processes where Super B factory can provide

important insight into NP

complementary to other experiments

:

(shown are expected sensitivities @ 50 ab

-1

)

Emiss:

B(B→ tn), B(B →

Xctn),

B(B

→ hnn),... ±3% ±3% ±30%Inclusive: B(B → sg), ACP(B → sg), B(B → sll ), ... ±6% ±5 ·10-3

±

1

·

10

-7

Neutrals:

S

(

B

K

S

p

0

g

),

S

(

B

h

’ K

S

),

S

(

B

K

S

K

S

K

S

),

B

(

t

mg

),

B

(

B

s

gg

), ...

±

0.03

±

0.02

±

0.03

±

3

·

10

-9

±

3

·

10

-7

Detailed description of physics program at Super B factories at:

A.G. Akeroyd et al., arXiv: 1002.5012

B. O’Leary et al., arXiv: 1008.1541Slide21

SuperKEKB requirements

A.G.

Akeroyd

et al.,

arXiv:1002.5012

contours of S(K

S

p

0

g

)

Example of complementarity:

MSSM searches

Belle II

constraints shown @ 5 ab

-1

LHCb

: Br(B

s

m

+

m

-

)~

(4-5)

x10

-9

(

@ 3 fb

-1

)

S(K

S

p

0

g

) ~ -0.4

±

0.1

S(K

S

p

0

g

) ~ 0.1

±

0.1

Belle II/

LHCb

combination

:

stringent limits on Re(

d

d

RL

)

23

,

tan

b

tan

b

Re(

d

d

RL

)

23

Introduction

PID

Accelerator

Calorimeter

Vertex

GeneralSlide22

SuperKEKB requirements

O

(102) higher luminosity

complementarity to other intensity frontiers

experiments (LHCb, BES III, ....);

accurate theoretical predictions to compare to

G. Isidori

et al.,

Ann.Rev.Nucl.Part.Sci. 60, 355 (2010)

theory uncertainty

matches the expected

exp. precision

theory uncertainty will

match the expected

exp. precision with

expected progress in

LQCD

Introduction

PID

Accelerator

Calorimeter

Vertex

GeneralSlide23

Summary

Introduction

PID

Accelerator

Calorimeter

Vertex

General

The SuperKEKB and Belle II project approved

by the Japanese government

Truly int. coll. with strong European participation

Groundbreaking ceremony in November last

year

Both accelerator upgrade and detector

re-building are well on track

SuperKEKB will provide 50 ab

-1 by 2022, Belle II detector with equal or better performance than Belle under higher backgrounds Next collaboration meeting: March 2012, open to everyone

Related Contents


Next Show more