/
Figure1:Left:Schematicofthebifurcationdiagramfortheunperturbedsystem(2 Figure1:Left:Schematicofthebifurcationdiagramfortheunperturbedsystem(2

Figure1:Left:Schematicofthebifurcationdiagramfortheunperturbedsystem(2 - PDF document

briana-ranney
briana-ranney . @briana-ranney
Follow
370 views
Uploaded On 2015-10-26

Figure1:Left:Schematicofthebifurcationdiagramfortheunperturbedsystem(2 - PPT Presentation

31BasicassumptionsFirstwewillprovideanintuitivetreatmentoftherealizationoflocalizedrollpatternsfromsimplerbuildingblocksInthisspiritratherthanspecifyingaformforthePDEorODEgoverningoursystemofinter ID: 172250

3.1BasicassumptionsFirst wewillprovideanintuitivetreatmentoftherealizationoflocalizedrollpatternsfromsimplerbuildingblocks.Inthisspirit ratherthanspecifyingaformforthePDEorODEgoverningoursystemofinter

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Figure1:Left:Schematicofthebifurcationdi..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Figure1:Left:Schematicofthebifurcationdiagramfortheunperturbedsystem(2.1)with"=0,withillustrativesolutionpro les.Thedasheddarkbluesnakingbranchconsistsoftwobranchesofevenparitysolutions,whilethedottedorangebranchconsistsoftwobranchesofoddparitysolutions.Solidgreencross-connectingbranchesconsistoffoursetsofasymmetricsolutions.Right:Schematicofthebifurcationdiagramforaperturbedsystemasin(2.1)with"6=0.Snakingbranchesforevensymmetricpatternswithcentralmaximumandminimumareshownindarkandlightbluedashed,respectively.Asymmetricbranchesareinsolidblackandgreen.Dashedverticallinesindicatethesaddlenodelocationsfromtheunperturbedsystem.ThoughweusetheSwift{Hohenbergequationtodemonstrateourresultsnumerically,wewishtoemphasizethatthehypothesesweimposearenotspeci ctotheSwift{Hohenbergsetting.Inparticular,asshownin[3],wedonotrequirethesystemtobeconservativewhenposedasaspatialdynamicalsystem,meaningthattheunderlyingPDEsystemneednotbevariational.Furthermore,whilewehavefocusedonsymmetry-breakingterms,thisapproachisapplicabletoanyperturbativetermspreservingspatialreversibility.Thepaperisorganizedasfollows:inSection2,wereviewthenumericalresultsofHoughtonandKnobloch[15]onsymmetrybreakinginthe1DSwift{Hohenbergmodel,whichinitiatedthepresentwork.InSection3,welinktheframeworkintroducedin[3]withaformalgluingapproachoffrontsandbacks, rsttoindicatethebroadapplicabilityoftheapproachtakenin[3]and,second,tounderstandsomeofthemajorfeaturesobservedinsystemsadmittinglocalizedpatterns.Wenotethatthissectionisintendedtoprovideintuitionandmotivatetheparticularhypothesesemployedinthefollowingsection,ratherthantopresentpreciseresultsforaparticularsystem.InSection4,wedetailpredictionsontheevolutionofbifurcationdiagramsupontheintroductionofperturbativesymmetrybreakingterms.InSection5weprovidenumericalcontinuationstudiesonplanarstripeandspotpatterns,studiedpreviouslyin[2];thesenumericalresultscon rmouranalyticalpredictionsfromSection4,includingtheexistenceofisolasproducedbytherearrangementofodd-symmetricandasymmetricsolutionbranches.Wealsoexplainandillustratehowthefullbifurcationdiagramforawidevarietyofperturbationscanbeobtainedfromthebifurcationdiagramofanunperturbedsystem,withoutactuallycarryingoutthenumericalcontinuation.Finally,inSection6weidentifyareasforfuturework.2 3.1BasicassumptionsFirst,wewillprovideanintuitivetreatmentoftherealizationoflocalizedrollpatternsfromsimplerbuildingblocks.Inthisspirit,ratherthanspecifyingaformforthePDEorODEgoverningoursystemofinterest,wemakethebasicassumptionthatthesystemadmitsfronts,i.e.,solutionsevolvingfromaconstantstatetoaspatiallyoscillatoryone.Moreprecisely,ifwewritestationarysolutionsasu(x)2Rnwithx2R,weassumethatthereexiststeadystatesuf(x)suchthatuf(x)!u0asx!�1anduf(x)!v(x)asx!+1,wherev(x)isperiodicinxwithnonzerominimalperiod.Infact,wecanmoregenerallyconsidersystemsadmittingsolutionsuf(x;y),wherey2 bRd�1,whichsatisfyuf(x;y)!w(y)asx!�1,wherew(y)isanyfunctionindependentofx,aswellasuf(x;y)!v(x;y)asx!+1,wherev(x;y)isperiodicinx.Inessencewerequireonlythattheevolutioninspaceoccuralongonedimension,perhapsafteranappropriatecoordinatetransformation.Forsimplicityinthissectionwewritesolutionsasu(x),butinsubsequentsectionswewillusethemoregeneralformulationtopredictsomeinterestinge ectsofsymmetrybreaking,includingtheformationofisolasinplanarsystemsunderappropriateconditions,andtoverifythesepredictionsnumerically. Figure2:Illustrationofafrontandaback,relatedbyx7!�x.Wewillassumethroughoutthatoursystemisreversibleinthefrontevolutionvariable.Withtheabovenotation,thismeanswehavex7!�xsymmetry,sothatgivenanysolutionu(x),u(�x)isalsoasolution.Inthecasethatuf(x)isafront,ub(x):=uf(�x)istermedaback;seeFigure2.Theperiodicorbitv(x)approachedbyfrontsisassumedtobeinvariantunderx7!�x.OurprimaryinterestwillbeinsystemsthathaveanadditionalZ2symmetry,andinSection4wewilldescribetheresultsofbreakingthissymmetryinaperturbativemanner.Consequently,inthefollowingwewilllooktounderstandthecharacteristicsofsystemswithandwithouttheZ2symmetry.Forconcreteness,inthissectionwewillassumethesymmetryis:u7!�u,andinthiscasefurtherassumethattheconstantsolutionapproachedasx!1isu0=0.Wewill nallyassumethatthelimitingoscillatorysolutionv(x)iscompatiblewiththesymmetry,whichimpliesthat�v(x)=v(x+).Then,givenafrontsolutionuf(x),wewillalsohavethefrontsolutionuf2(x):=�uf(x),aswellasthebacksolutionsub1(x):=uf(�x)andub2(x):=�uf(�x).3.2ConstructionoflocalizedsolutionsviagluingWenowwishto\glue"togetherfrontandbacksolutionstoformalocalizedstationarysolutionuloc(x)whichisinvariantunderu(x)7!u(�x).Clearlythisisonlypossibleifwehaveamaximumorminimumatthecenterofthelocalizedoscillatorystructure.De ningthephase'atthecenterofthelocalizedsolutiontobethedistancetraveledpastamaximum,andrescalingxifnecessarysothatthespatiallyoscillatorylimitingsolutionv(x)mentionedabovehasperiod2,thisisequivalenttorequiringthatthephaseatthecenterofthestructuresatis es'=0or'=;seeFigure3.Inthecasethatwehavetheadditionalsymmetry:u7!�u,werecallthattheexistenceofafrontsolutionuf(x)impliestheexistenceofthefrontsolutionuf2(x):=�uf(x)andthebacksolutionsub1(x):=uf(�x)and4 Figure9:Illustrationthatthefunctionzwillbe-periodicwhenevertheperiodicorbitv(x)respectsbothx7!�xandu7!�usymmetries.Left:Afrontuf(x)withcharacteristiclengthl,whichweassumeexistsatsome0.Right:Thefrontuf2(x):=�uf(x)willalsoexistforthis0,andwillhavecharacteristiclengthl+.Thus,asinthecasewherewehadonlyx7!�xsymmetry,weagainseethatthezero-levelsetofthefunctionZ(L;'):=z(L+')�z(L�')describesallbifurcationbranchesoflocalizedoscillatorystructures.TheR-symmetricsolutionbranchesarethosewith'=0and'=,whiletheRbranchescorrespondto'= 2and'=3 2.BoththesesolutiontypesexistforallvaluesofL.Finally,asymmetricsolutionsexistonlyforthosevaluesofLand'=2f0; 2;;3 2gsuchthatZ(L;')=0.SeeFigure1forthebifurcationdiagramwhenzhastheshapeoutlinedinFigure7(i).Similartothecasewithoutsymmetry,theseresultshavebeenderivedrigorouslyin[3]:ifaZ2symmetryispresent,thefunctionzwillberatherthan2-periodic,andtwoadditionalsnakingbrancheswithRsymmetrywillexistfor=(L;'0)=z(L+'0)+O(e�KL)forsomeK�0with'02f 2;3 2g.4MainresultsandpredictionsOurgoalnowistostartwithasystemthatrespectstheZ2symmetryforall,andtodescribewhathappensunderforcedsymmetrybreaking.Toillustrateourapproach,westartwiththecasewherez(L)possessesonemaximumandoneminimumforeachperiod,wherethe-periodicityisenforcedbythepresenceofaZ2symmetry.Wewillbeinterestedinperturbativetermsbreakingthesymmetrywhenasecondparameter"isswitchedon,i.e.,when"6=0.InFigure10(a)weprovidetwoequivalentrenderingsofthesolutionbranchesoflocalizedstructuresinasystempossessingsymmetryandwithz(L)havingasinglemaximumperperiod.Weillustratethebranchesofevenandoddsymmetricstructures(R-andR-symmetric,respectively)aswellastheasymmetricsolutionbranches.Theleftpanelshowsthephase'alongthex-axis,andthehalf-pulselengthLalongthey-axis,whilethecenterpanelshowsthesolutionsinthe(;L)planeviathefunction=z(L+')forsolutions(L;')ofZ(L;'):=z(L+')�z(L�')=0:Thisisanalogoustoourusualbifurcationdiagram,withlengthLbeingequivalenttotheL2norm.Theformu-lationintheleftpanelwillprovideanaturalwaytounderstandthee ectsofsymmetrybreakingperturbations,whilethecenterpanelprovidesthelinktofamiliarbifurcationdiagrams.Weseethat,beforeperturbation,theR-symmetricsolutionsat'=0and'=coincideinthe(;L)plane,asdotheR-symmetricsolutionsat'= 2and'=3 2(latternotshown).Wealsonotethat,duetothe-periodicityofz,allinformationisactuallycontainedinasinglequadrantoftheleftpanel,butweshowthelargerdiagramhereforeasiercomparisonwiththediagramaftersymmetrybreaking.9 Inparticular,wecansolvefor(~L0;~'0)(")as:~F(L;';")=~F(L0;'0;0)+D~F(L0;'0;0)0B@L�L0'�'0"1CA+O("2)= 00!so 2z00(L0+'0)(L�L0)+(z01(L0+'0)+z01(L0�'0))"�2z00(L0+'0)('�'0)+(�z01(L0+'0)+z01(L0�'0))"!+O("2)= 00!yieldingL�L0="�z01(L0+'0)�z01(L0�'0) 2z00(L0+'0))+O("2)'�'0="�z01(L0+'0)+z01(L0�'0) 2z00(L0+'0))+O("2)or(~L0;~'0)(")=(L0;'0)+" 2z00(L0+'0)(�z01(L0+'0)�z01(L0�'0);�z01(L0+'0)+z01(L0�'0))+O("2):Incase(i)where'02f0;g,the2-periodicityofz1(L)yields(~L0;~'0)(")=(L0;'0)+" 2z00(L0+'0)(�2z01(L0+'0);0)+O("2):Infact,for'02f0;g,the2-periodicityof~z(L;")inLimpliesthat~F(L;'0;")=2 ~z0(L+'0)0!:Sotheunique(~L0;~'0)(")near(L0;'0)satisfying~F((~L0;~'0)(");")=0mustbeoftheform(~L0(");'0)where~L0(")satis esz0(~L0(")+'0)+"z01(~L0(")+'0)=0.Thisthenimplies~Z(~L0(");'0;")=z(~L0(")+'0)+"z1(~L0(")+'0)�z(~L0(")�'0)+"z1(~L0(")�'0)=0as~zis2-periodic.Thuswehaveshown(i).Incase(ii)where'02f 2;3 2gwehave~Z((~L0;~'0)(");")=zL0+'0�"z01(L0+'0) z00(L0+'0)+"z1L0+'0�"z01(L0+'0) z00(L0+'0)�zL0�'0�"z01(L0�'0) z00(L0+'0)�"z1L0�'0�"z01(L0�'0) z00(L0+'0)+O("2):(4.5)WeexpandzL0+'0�"z01(L0+'0) z00(L0+'0)=z(L0+'0)+2z0(L0+'0)�"z01(L0+'0) z00(L0+'0)+O("2)andsimilarlyforzL0�'0�"z01(L0�'0) z00(L0+'0).Wealsorecallthatz0(L0+'0)=z0(L0�'0)=0,andz(L0+'0)�z(L0�'0)=0.Thuswerewrite(4.5)as~Z((~L0;~'0)(");")="z1(L0+'0)�"z1(L0�'0)+O("2)sothat~Z((~L0;~'0)(");")6=0aslongasz1(L0+'0)6=z1(L0�'0).Thiscompletestheproofof(ii). ThekeypointoftheaboveisthatsaddleequilibriacorrespondingtopitchforkbifurcationsfromtheR-symmetricbranchesgenericallydonotremaininthezero-levelsetofZoncethesymmetryisbroken,sothattheR-symmetricbranchesarethemselvesbrokeninamannerconsistentwiththeHamiltonianvector eldformulationdescribedabove.12 Figure12:Bifurcationstructureofasystemcharacterizedby-periodiczpossessingtwodistinctmaximaperperiod.Again,weillustratethesolutionbranchesinthe(';L)plane,bothwithandwithoutthevector eldinterpretation,aswellasinthe(=z(L+');L)plane,wheretheactualbifurcationbrancheswillbeexponentiallycloseinLtotheonesshown.Asbefore,R-symmetricsolutionbranchesareshownindashedblue,andR-symmetricindottedorange.Particularasymmetricsolutionbranchesareshowninsolidpurpleandgreen.Forclarity,notallasymmetricsolutionbranchesareshownintheright-mostrendering;branchesnotshownontherightarerenderedinthindottedgrayinthecenterillustration.ThelightdashedhorizontallinesshowthecorrespondencebetweenthehyperbolicequilibriaatA,a,B,b,etc.andthemaximaandminimaontheright.infactqualitativelyequivalentasbothresultinaseriesofalternatingcross-connectingandself-connectingasymmetricbranches,eachwithtwosaddlenodes.Intermsofthefamiliarbifurcationdiagraminthe(;L)plane,self-connectingbrancheswillappearas`S'shapedcurvesandcross-connectingas`Z'shapedcurvesforperturbationssuchthatthesignof~Zisthesame[(+;+)or(�;�)]forsaddleequilibriawithL2[0;)near'==2.Theoppositeistrueforperturbationssuchthatthesignof~Zis(+;�)or(�;+).Aswewillseebelow,whenzhastwoormoremaxima,di erentsymmetrybreakingperturbationsmayresultindistinctbifurcationdiagrams,whicharenotreducibleviare ectionsortranslations.Wenotethattheseresultsareapplicabletolocalizedrollsolutionsoftheone-dimensionalSwift{Hohenbergmodelut=�(1+@2x)2u�u+u3�u5;x2R(4.6)withtheadditionofperturbativeterms,regardlessofwhetherthesetermspreservethevariationalstructure.In-deed,weobservethatthese ndingsareentirelyconsistentwiththenumericalresultsofHoughtonandKnobloch,includingthebreakingupoftheoddparitybranches,broadeningofthesnakingregion,andappearanceofSandZasymmetricbranches.4.2SystemssuchthatzhasatleasttwomaximaperperiodWenowturntothesomewhatmorecomplicatedsituationwherez(L)possessestwomaximaandminimaperperiod;ofcoursetheperiodicityimpliesthatmaximaandminimamustoccurinpairs.14 (a)Bifurcationdiagramforplanarstripesandspots,withnumbersindicatingthelocationsoftwoR-symmetricsolutions,andtheintermediatecross-connectingasymmetricsolutionshownatright;see[2]. (b)Bifurcationdiagramforplanarstripesandspots,withnumbersindicatingthelocationsofthetwoR-symmetricandtheinter-mediateself-connectingasymmetricsolutionshownatright;see[2].Figure15:Bifurcationdiagramforplanarstripesandspotsin(5.1),alongwithlocationsofsolutionpro lesshownatright.R-symmetricbranchshownindashedblue,R-symmetricbranchindottedorange,andrepresentativeasymmetricbranchesinsolidgray.Thecolorbaristhesameforallsolutionpro les,andrecallingthatsolutionsareperiodicinthex-direction,weshow6periodsforeachsolution.18 5.2ComputationofsplittingdistanceandcomparisonwithcontinuationresultsIntheirnumericalstudyofsymmetry-breakingintheone-dimensionalcubic-quinticSwift{Hohenbergmodel,HoughtonandKnoblochnotedthatthesplittingdistanceisunequalontheleftandrightsideofthesnakingdiagram;thatis,thesymmetrybreakingtermcausesthesetofsaddlenodestoshiftmoretoboththeinsideandoutsideononesidethanontheotherside.Tounderstandthisobservation,andtoexplainasimilarphenomenonwhichoccursinthetwo-dimensionalcase{seeFigures16and19,inwhichthedisplacementoftheoutersaddlenodesontheleftismuchlessthanontheright{wecanlookatthederivativeoftheperturbedSwift{Hohenbergequation(2.1)or(5.2)withrespectto".Startingwiththeone-dimensionalcase,wede neF(u;;"):=�(1+@2x)2u�u+bu3�u5+"g(u)whereg(u)isourperturbativeterm,e.g.,u2oru2x.Wecanthenparameterizeasolutionbranchfortheunperturbedsystemas(u(s);(s)),wheresis,forinstance,arclengthalongthebranch,sothatF(u(s);(s);0)=0foralls.Wedenotethetangentvectortothissolutionbranchby(v;):=d ds(u;)(s):For"nonzero,thepersistingR-symmetricbranchwillbegivenbyF(u(s;");(s;");")=0;anddi erentiatingthiswithrespectto"weobtainFuu"+F"+F"=0:De ningL=�(1+@2x)2�+3bu2�5u4foraparticularsolution(u;),thisyieldsthesystem(Lu0�u0+g(u)=0hu0;vi+0=0(5.4)whosesolutionis(u0;0)=d d"(u;):Thustheo setalongthesolutionbranchwillbegivenby0"+O("2).Wecan nd0anywherealongthesolutionbranchbysolvingthelinearsystem(5.4).Alternatively,wenotethat,atasaddlenode,wehave=0sothatLv=0;sinceLisself-adjointinL2,applyinghv;itothe rstequationin(5.4)yieldshv;0ui+hv;g(u)i=0or0=hv;g(u)i hv;ui:Thusweneedonlytocalculatethesolution(u;)anditsassociatedeigenfunctionvtocomputetheo setatasaddlenode.Whilethemethodofdirectlysolvingthelinearsystemissomewhatmorerobustnumerically,thelattermethodprovideshelpfulinsight,particularlyintheone-dimensionalcase.Weemphasizethat,whichevermethodweuse,thiscalculationallowsustodeterminethesignof~Zasde nedinSection4,whichinturndetermineswhichclassofbifurcationdiagramtheperturbedsystemwillexhibit;thatis,wecandescribethefullbifurcationdiagramwithouttheneedforanycomputationsontheperturbedsystem.InFigure20weshowfoursuccessivesaddlenodesfortheone-dimensionalcubic-quinticSwift{Hohenbergequa-tionpriortoperturbation.Weseethatthesolutionu(x)atsuccessiveleft-handsaddlenodesisrelatedby21 leadingorderinanydimension,andhaveshownthatthismethodagreeswellwiththeresultsofnumericalcontinuationintheplanarcase.Thismethodcanbeemployedfurthertodeterminewhichperturbationsleadtowhichbifurcationscenarios,usingmeasurementsfromonlytheunperturbedbifurcationstructure.Finally,weobservethatthissortofanalysiscouldbeusedtointerpretorpredictresultsofvaryingforvariouspatterntypes,someofwhichwerereportedin[2].Severalareasremainforfutureexploration.Althoughitseemsclearatthisstage,ithasnotyetbeenshownanalyticallythatasymmetricsolutionsareconstructedbygluingtogethersymmetricsolutions,evenintheone-dimensionalcase.Provingthisrigorouslywillaidinaddressingthestabilityofplanarpatterns;whilesomecomputationshavebeendonenumerically,stabilityintheplanarcasehasyettobestudiedanalytically.Beyondthis,localizedhexagonpatches(see,forexample,[18])andotherfullylocalizedstructuresintwoorhigherdimensionsremainchallengingphenomenawhereeventhebifurcationstructuresthemselvesremainpoorlyunderstood.Furthermore,ashighlightedrecentlyin[24],therearestrongconnectionsbetweenthedescriptionoflocalizedstructuresviaSwift{Hohenberg-typemodelsandthetransitionfroma uidtocrystallinestate;understandingtheserelationshipspromisestobeafruitfulareaforongoingwork.AcknowledgementsMakrideswassupportedbytheNSFundertheIGERTgrant\ReverseEcology:Com-putationalIntegrationofGenomes,Organisms,andEnvironments"DGE-0966060.SandstedewaspartiallysupportedbytheNSFundergrantDMS-0907904.References[1]Y.AstrovandY.Logvin.Formationofclustersoflocalizedstatesinagasdischargesystemviaaself-completionscenario.Phys.Rev.Lett.79(1997)2983{2986.[2]D.Avitabile,D.J.B.Lloyd,J.Burke,E.KnoblochandB.Sandstede.TosnakeornottosnakeintheplanarSwift-Hohenbergequation.SIAMJ.Appl.Dyn.Syst.9(2010)704{733.[3]M.Beck,J.Knobloch,D.J.B.Lloyd,B.SandstedeandT.Wagenknecht.Snakes,ladders,andisolasoflocalizedpatterns.SIAMJ.Math.Anal.41(2009)936{972.[4]S.Blanch ower.Magnetohydrodynamicconvectons.Phys.A261(1999)74{81.[5]U.Bortolozzo,M.G.ClercandS.Residori.Solitarylocalizedstructuresinaliquidcrystallight-valveexperiment.NewJ.Phys.11(2009)093037.[6]J.BurkeandE.Knobloch.LocalizedstatesinthegeneralizedSwift-Hohenbergequation.Phys.Rev.E73(2006)056211.[7]J.BurkeandE.Knobloch.Homoclinicsnaking:Structureandstability.Chaos17(2007)037102.[8]J.BurkeandE.Knobloch.Snakesandladders:localizedstatesintheSwift-Hohenbergequation.Phys.Lett.A360(2007)681{688.[9]S.J.ChapmanandG.Kozyre .Exponentialasymptoticsoflocalisedpatternsandsnakingbifurcationdiagrams.Phys.D238(2009)319{354.[10]P.Coullet,C.RieraandC.Tresser.Stablestaticlocalizedstructuresinonedimension.Phys.Rev.Lett.84(2000)3069{3072.[11]M.CrossandP.Hohenberg.Patternformationoutsideofequilibrium.Rev.Mod.Phys.65(1993)851{1112.24